
Fixed-Point Designer™
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Reference
© COPYRIGHT 2013–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2013 Online only New for Version 4.0 (R2013a)
September 2013 Online only Revised for Version 4.1 (R2013b)
March 2014 Online only Revised for Version 4.2 (R2014a)
October 2014 Online Only Revised for Version 4.3 (R2014b)
March 2015 Online Only Revised for Version 5.0 (R2015a)
September 2015 Online Only Revised for Version 5.1 (R2015b)
October 2015 Online only Rereleased for Version 5.0.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 5.2 (R2016a)
September 2016 Online only Revised for Version 5.3 (R2016b)
March 2017 Online only Revised for Version 5.4 (R2017a)
September 2017 Online only Revised for Version 6.0 (R2017b)
March 2018 Online only Revised for Version 6.1 (R2018a)
September 2018 Online only Revised for Version 6.2 (R2018b)
March 2019 Online only Revised for Version 6.3 (R2019a)
September 2019 Online only Revised for Version 6.4 (R2019b)
March 2020 Online only Revised for Version 7.0 (R2020a)
September 2020 Online only Revised for Version 7.1 (R2020b)
March 2021 Online only Revised for Version 7.2 (R2021a)
September 2021 Online only Revised for Version 7.3 (R2021b)
March 2022 Online only Revised for Version 7.4 (R2022a)
September 2022 Online only Revised for Version 7.5 (R2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Blocks
2

Properties
3

fi Object Properties . 3-2
bin . 3-2
data . 3-2
dec . 3-2
double . 3-2
fimath . 3-2
hex . 3-2
int . 3-3
NumericType . 3-3
oct . 3-3
Value . 3-3

iii

Contents

Functions
4

Classes
5

Methods
6

Model Metrics Objects and Object Functions
7

Selected Bibliography
A

iv Contents

Apps

1

Fixed-Point Converter
Convert MATLAB code to fixed point

Description
The Fixed-Point Converter app converts floating-point MATLAB® code to fixed-point MATLAB code.

Using the app, you can:

• Propose data types based on simulation range data, static range data, or both.
• Propose fraction lengths based on default word lengths or propose word lengths based on default

fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• View a histogram of bits used by each variable.
• Specify replacement functions or generate approximate functions for functions in the original

MATLAB algorithm that do not support fixed point.
• Test the numerical behavior of the fixed-point code. You can then compare its behavior against the
floating-point version of your algorithm using either the Simulation Data Inspector or your own
custom plotting functions.

If your end goal is to generate fixed-point C code, use the MATLAB Coder™ app instead. See “Convert
MATLAB Code to Fixed-Point C Code” (MATLAB Coder).

If your end goal is to generate HDL code, use the HDL Coder™ workflow advisor instead. See
“Floating-Point to Fixed-Point Conversion” (HDL Coder).

1 Apps

1-2

Open the Fixed-Point Converter App
• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.
• MATLAB command prompt: Enter fixedPointConverter.
• To open an existing Fixed-Point Converter app project, either double-click the .prj file or open

the app and browse to the project file.

Creating a project or opening an existing project causes any other Fixed-Point Converter or
MATLAB Coder projects to close.

• A MATLAB Coder project opens in the MATLAB Coder app. To convert the project to a Fixed-Point
Converter app project, in the MATLAB Coder app:

1
Click and select Reopen project as.

2 Select Fixed-Point Converter.

 Fixed-Point Converter

1-3

Examples
• “Propose Data Types Based on Simulation Ranges”
• “Propose Data Types Based on Simulation Ranges”
• “Propose Data Types Based on Derived Ranges”

Programmatic Use
fixedPointConverter opens the Fixed-Point Converter app.

fixedPointConverter -tocode projectname converts the existing project named
projectname.prj to the equivalent script of MATLAB commands. It writes the script to the
Command Window.

fixedPointConverter -tocode projectname -script scriptname converts the existing
project named projectname.prj to the equivalent script of MATLAB commands. The script is
named scriptname.m.

• If scriptname already exists, fixedPointConverter overwrites it.
• The script contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the same fixed-
point conversion settings as the project.

• Run the fiaccel command to convert the floating-point MATLAB function to a fixed-point
MATLAB function.

Before converting the project to a script, you must complete the Test step of the fixed-point
conversion process.

Version History
Introduced in R2014b

See Also
Functions
fiaccel

Topics
“Propose Data Types Based on Simulation Ranges”
“Propose Data Types Based on Simulation Ranges”
“Propose Data Types Based on Derived Ranges”
“Fixed-Point Conversion Workflows”
“Automated Fixed-Point Conversion”
“Generated Fixed-Point Code”
“Automated Fixed-Point Conversion in MATLAB”

1 Apps

1-4

Fixed-Point Tool
Convert a floating-point model to a fixed-point model

Description
The Fixed-Point Tool enables you to automatically convert a floating-point model to use fixed-point
data types, optimize existing data types on a model, and analyze ranges and data types on your model
using rich statistics and visualizations.

The Fixed-Point Tool provides three workflows depending on your needs:

• Optimized Fixed-Point Conversion — Automatically convert your model to use optimized fixed-
point data types.

• Iterative Fixed-Point Conversion — Automatically propose fixed-point data types and manually
select which data types to apply to your model.

• Range Collection — Explore the numerical behavior of your model before or after data type
conversion.

The table below provides a summary of the differences between these three workflows. These options
are explained in more detail below.

Workflow Changes
Model Data
Types

Ease of Use Amount of
Control Over
Data Types
Applied to
Model

Requires
Knowledge of
System
Behavior
Tolerances

Command-
Line Workflow

Optimized
Fixed-Point
Conversion

Yes One step Low Yes fxpopt

Iterative
Fixed-Point
Conversion

Yes Multiple
iterations

High Recommended DataTypeWork
flow.Convert
er

Range
Collection

No One step N/A Recommended DataTypeWork
flow.Convert
er

Optimized Fixed-Point Conversion Workflow

The Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool provides a fully-
automated means of converting a Simulink® model to fixed point. If you know the desired behavior of
your system and can specify acceptable tolerances on this behavior, you can use this workflow to find
the optimal data types for your system. You can achieve better results if you additionally specify any
known ranges or supply additional simulation inputs.

The tool allows you to specify allowable wordlengths and will also take into account limitations of
target hardware you specify. You can also specify a safety margin to increase the bounds of the
ranges collected by a specified amount. Optimized data types stay within specified behavioral
tolerances and minimize the cost of the design. If more than one feasible solution is found, you can

 Fixed-Point Tool

1-5

apply and explore different solutions to your model to find one that fits your needs. You can explore
the ranges and statistics collected in your baseline model using rich visualization to quickly spot
sources of overflow and other numerical issues. You can compare the results of different fixed-point
implementations in the Simulation Data Inspector.

After optimizing data types in the Fixed-Point Tool, you can export the workflow to a MATLAB
script. This allows you to continue data type optimization using fxpopt at the command line, which
has additional advanced options available for further customizing the optimization process.

This workflow will automatically change the data types on your model at completion of the
optimization process. If you complete the preparation step before starting optimization, you can
automatically restore your model to its original state.

Iterative Fixed-Point Conversion Workflow

The Iterative Fixed-Point Conversion workflow in the Fixed-Point Tool is an interactive automatic
means of specifying fixed-point data types in a Simulink model. The tool collects ranges for model
objects, then proposes fixed-point data types that maximize precision and cover the range. You can
then review the data type proposals and apply them selectively to objects in your model.

The tool allows you to propose word lengths or fraction lengths, giving you the option to have a fixed-
precision design, and will also take into account limitations of target hardware you specify. You can
also specify a safety margin to increase the bounds of the ranges collected by a specified amount.
Rich visualizations allow you to explore the ranges of objects in your model and quickly spot sources
of overflow and other numerical issues, both before and after converting your model to fixed point. If
the proposed data types do not meet your needs, you can continue iterating through this process. You
can compare the results of different fixed-point implementations in the Simulation Data Inspector.

This workflow gives you full control over which proposed data types are applied to your model, if any.
If you complete the preparation step of conversion, you can automatically restore your model to its
original state.

This workflow does not require you to specify the desired behavior of your system, however it is
recommended that you specify any known ranges, simulation inputs, and signal tolerances in order to
achieve more accurate data type proposals and be able to evaluate whether proposed data types meet
the specified requirements of the design.

Range Collection Workflow

The Range Collection workflow in the Fixed-Point Tool is an analysis and troubleshooting tool, and
does not change your model. This workflow provides independent access to the range collection step
found in the data type conversion workflows.

You can choose to specify additional simulation inputs and tolerances on logged signals in your
model. The tool will individually collect ranges for all simulation inputs specified, and also merge the
results for a combined view. If you want to explore the ideal floating-point behavior of your system,
you can choose to collect ranges with data type override enabled.

Rich visualizations allow you to explore the ranges of objects in your model and quickly spot sources
of overflow, underflow, and other numerical issues, before or after conversion to fixed point. Signals
that do not meet the specified tolerances are highlighted in the results. You can compare the results
of simulation runs using the Simulation Data Inspector.

1 Apps

1-6

Open the Fixed-Point Tool
• Simulink Toolstrip: On the Apps tab, under Code Generation, click the app icon.
• MATLAB command prompt: Enter fxptdlg('system_name'), where 'system_name' is the

name of the model or system you want to convert, specified as a string.

Examples

Optimized Fixed-Point Conversion in the Fixed-Point Tool

This example shows how to use the Optimized Fixed-Point Conversion workflow in the Fixed-
Point Tool. The model used in this example is a simple FIR filter modeled using floating-point data
types. In this example, you specify known behavioral constraints for the output of the filter and
optimize the fixed-point data types in the Embedded Efficient Filter subsystem.

Open the mSimpleFIR model.

open_system('mSimpleFIR');

 Fixed-Point Tool

1-7

Inspect the Embedded Efficient Filter subsystem.

open_system('mSimpleFIR/Embedded Efficient Filter');

Known design minimum and maximum values are specified explicitly on blocks in the model,
including on the inputs and outputs of the Embedded Efficient Filter subsystem.

Open the Fixed-Point Tool. On the Simulink® Apps tab, under Code Generation, click the app icon.

To start the optimized fixed-point conversion workflow, select Optimized Fixed-Point Conversion.

Select the subsystem that you want to analyze. Under System Under Design (SUD), select the
Embedded Efficient Filter subsystem.

Choose the range collection method to use. Under Range Collection Mode, select Simulation with
derived ranges. During the range analysis step of optimization, the tool will combine ranges from
simulation minimum and maximum values, design minimum and maximum values specified explicitly
on blocks in the model, and derived minimum and maximum values that are computed through a
static analysis that derived ranges for objects in the model.

Specify Simulation Inputs. For this example, use the default model inputs for simulation.

Specify signal tolerances for logged signals. Set the Absolute Tolerance and Relative Tolerance of
the output_signal:1 to 0.01.

1 Apps

1-8

To prepare the model for fixed-point conversion, click Prepare. The Fixed-Point Tool creates a backup
version of the model and checks the model for comaptibility with the conversion process. For more
about preparation checks, see “Use the Fixed-Point Tool to Prepare a System for Conversion”.

 Fixed-Point Tool

1-9

Next, expand the Settings button arrow to configure the settings to use for data type optimization.
For this example, use the default settings.

1 Apps

1-10

To optimize data types in the model, click Optimize Data Types.

During the optimization process, the software analyzes ranges of objects in your system under
design. Optimization will take into account all specified behavioral constraints, including design
minimum and maximum values and signal tolerances, to apply heterogeneous data types to your
system while minimizing the objective function. For this example, the objective function is set to the
default Bit Width Sum, which instructs the optimization to minimize the sum of word lengths in the
system under design.

During the optimization process, the software makes changes to several settings and model
configuration parameters. These purpose of these changes include suppressing diagnostics, enabling
logging with the Simulation Data Inspector, reducing the memory consumed by the result, ensuring
validity of the model, accelerating the optimization process, and turning off data type override. For
more information, see “Model Configuration Changes Made During Data Type Optimization”. You can
restore these diagnostics after the optimization is complete.

Details about the optimization process are printed to the Optimization Details pane in the Fixed-
Point Tool. You can pause or stop the optimization solver before the optimization search is complete
by clicking Stop.

 Fixed-Point Tool

1-11

When the optimization is complete, the Fixed-Point Tool displays a table that contains all of the
solutions found during the optimization process. Solution 1 in the table corresponds to the best
solution found.

Solutions are ordered in the table based on the Cost, which is defined by the objective function
specified in the Settings menu. Feasible solutions that meet the defined behavioral constraints are
marked with a pass status in the solutions table. Solutions that do not meet the behavioral constraints
are marked with a fail status. This example uses tolerances on the output of the filter subsystem to
define the desired behavior of the system. For more information about defining other types of
behavioral constraints, see “Specify Behavioral Constraints”.

1 Apps

1-12

During the optimization process, the tool collects ranges and statistics for objects in your model. To
explore these ranges, in the Workflow Browser pane, select BaselineRun.

 Fixed-Point Tool

1-13

The Results spreadsheet displays a summary of the statistics collected during the range collection
phase of optimization, including simulation minimum and simulation maximum values. You can click
on any result to view additional details in the Result Details pane. The Visualization of Simulation
Data pane displays a summary of histograms of the bits used by each object in your model.

You can customize the information displayed in the Results spreadsheet, or use the Explore tab to
sort and filter these results based on additional criteria. For more information, see “Control Views in
the Fixed-Point Tool”.

The best solution found during optimization, Solution 1, is automatically applied to the model. To
compare this optimized solution to the baseline run, click Compare. In the Embedded Efficient
Filter subsystem, you can see the applied optimized fixed-point data types. When you click
Compare for a model that has logged signals, the tool opens the Simulation Data Inspector. In the
Simulation Data Inspector, select output_signal as the signal to compare. The plot of the plant
output signal for Solution 1 is within the specified tolerance band.

1 Apps

1-14

You can continue exploring other solutions by selecting a solution from the solutions table and
clicking Apply and Compare.

After optimizing data types in the Fixed-Point Tool, you can choose to export the optimization
workflow steps to a MATLAB® script. This allows you to save the current optimization workflow steps
and continue data type optimization using fxpopt at the command line.

Click Export Script to export a script named fxpOptimizationOptions to the current working
directory.

 Fixed-Point Tool

1-15

After the conversion process, if you want to restore your model to its state at the start of the
conversion process, click Restore Original Model. Any changes made to your model after the
preparation stage of conversion are removed.

Iterative Fixed-Point Conversion in the Fixed-Point Tool

This example shows how to use the Iterative Fixed-Point Conversion workflow in the Fixed-Point
Tool. The model used in this example is a simple FIR filter modeled using initial guesses for fixed-
point data types. In this example, you specify known behavioral constraints for the output of the filter
and improve the fixed-point data types in the Embedded Efficient Filter subsystem.

Open the mSimpleFIR_fxp model.

open_system('mSimpleFIR_fxp');

Inspect the Embedded Efficient Filter subsystem.

open_system('mSimpleFIR_fxp/Embedded Efficient Filter');

1 Apps

1-16

Known design minimum and maximum values are specified explicitly on blocks in the model,
including on the inputs and outputs of the Embedded Efficient Filter subsystem.

Open the Fixed-Point Tool. On the Simulink® Apps tab, under Code Generation, click the app icon.

To start the iterative fixed-point conversion workflow, select Iterative Fixed-Point Conversion.

Select the subsystem that you want to analyze. Under System Under Design (SUD), select the
Embedded Efficient Filter subsystem.

Choose the range collection method to use. Under Range Collection Mode, select Simulation with
derived ranges. During the range analysis step of optimization, the tool will combine ranges from
simulation minimum and maximum values, design minimum and maximum values specified explicitly
on blocks in the model, and derived minimum and maximum values that are computed through a
static analysis that derived ranges for objects in the model.

Specify Simulation Inputs. For this example, use the default model inputs for simulation.

Specify signal tolerances for logged signals. Set the Absolute Tolerance and Relative Tolerance of
the output_signal:1 to 0.01.

 Fixed-Point Tool

1-17

To prepare the model for fixed-point conversion, click Prepare. The Fixed-Point Tool creates a backup
version of the model and checks the model for comaptibility with the conversion process. For more
about preparation checks, see “Use the Fixed-Point Tool to Prepare a System for Conversion”.

1 Apps

1-18

Next, collect ranges. Expand the Collect Ranges button arrow and select Double precision. Click
Collect Ranges to start the range collection run.

 Fixed-Point Tool

1-19

When you select Double precision as the range collection mode, the tool simulates the system under
design with data type override enabled. Data type override performs a global override of the fixed-
point data types in the model, thereby avoiding quantization effects. This enables you to establish an
ideal floating-point baseline for the behavior of your model.

1 Apps

1-20

The results of range collection are stored in BaselineRun. The Results spreadsheet displays a
summary of the statistics collected during the range collection simulation, including the currently
specified data types on the model (SpecifiedDT), simulation minimum, and simulation maximum
values. The compiled data type (CompiledDT) column displays double for all objects in the
Embedded Efficient Filter subsystem, indicating that data type override was applied during
the range collection simulation.

You can click on any result to view additional details in the Result Details pane. The Visualization
of Simulation Data pane displays a summary of histograms of the bits used by each object in your
model. The simulation data shows that several objects in the model have potential underflows.

You can customize the information displayed in the Results spreadsheet, or use the Explore tab to
sort and filter these results based on additional criteria. For more information, see “Control Views in
the Fixed-Point Tool”.

Next, expand the Settings button arrow to configure the settings to use for data type proposals. Set
Propose to Word Length.

 Fixed-Point Tool

1-21

To propose data types based on the ranges collected and the data type proposal settings specified,
click Propose Data Types. The tool uses all available range data to calculate data type proposals
which can include design minimum or maximum values, simulation minimum or maximum values, and
derived minimum or maximum values. Data types are proposed for all objects in the system under
design whose Lock output data type setting against changes by the fixed-point tools
parameter is cleared.

1 Apps

1-22

To write the proposed data types to the model, click Apply Data Types. The tool updates the
SpecifiedDT column to show that the data types have been applied to the model.

Simulate the model using the applied fixed-point data types. Expand the Simulate with Embedded
Types button arrow and select Specified data types. Then click Simulate with Embedded Types.

The Fixed-Point Tool simulates the model using the new fixed-point data types and logs minimum and
maximum values and overflow data for all objects in the system under design. This information is
stored in a new run named EmbeddedRun. The icon next to EmbeddedRun displays a pass status,
indicating that all signals in the system under design meet the specified tolerances. The
Visualization of Simulation Data pane updates to display the new EmbeddedRun data.

 Fixed-Point Tool

1-23

To compare the ideal results stored in BaselineRun with the newly applied fixed-point data types,
select EmbeddedRun from the Run to compare in SDI drop down menu. Then click Compare
Results to open the Simulation Data Inspector.

In the Simulation Data Inspector, select output_signal as the signal to compare.

1 Apps

1-24

The plot of the filter output signal for EmbeddedRun is within the specified tolerance band.

If the behavior of the converted system does not meet your requirements or if you wish to explore the
effect of additional data type selections, you can propose new data types after applying new proposal
settings. Continue iterating until you find settings for which the fixed-point behavior of the system is
acceptable.

After the conversion process, if you want to restore your model to its state at the start of the
conversion process, click Restore Original Model. Any changes made to your model after the
preparation stage of conversion are removed.

Range Collection in the Fixed-Point Tool

This example shows how to use the Range Collection workflow in the Fixed-Point Tool. The model
used in this example is a simple FIR filter modeled using fixed-point data types. In this example, you
analyze the numerical behavior of the model to determine the source of overflow in the Embedded
Efficient Filter subsystem.

Open the mSimpleFIR_fxp_ovf model.

open_system('mSimpleFIR_fxp_ovf');

 Fixed-Point Tool

1-25

Inspect the Embedded Efficient Filter subsystem.

open_system('mSimpleFIR_fxp_ovf/Embedded Efficient Filter');

Known design minimum and maximum values are specified explicitly on blocks in the model,
including on the inputs and outputs of the Embedded Efficient Filter subsystem.

Open the Fixed-Point Tool. On the Simulink® Apps tab, under Code Generation, click the app icon.

To start the range collection workflow, select Range Collection.

Select the subsystem that you want to analyze. Under System Under Design (SUD), select the
Embedded Efficient Filter subsystem.

Choose the range collection method to use. Under Range Collection Mode, select Simulation with
derived ranges. During range collection, the tool will combine ranges from simulation minimum and
maximum values, design minimum and maximum values specified explicitly on blocks in the model,
and derived minimum and maximum values that are computed through a static analysis that derived
ranges for objects in the model.

Specify Simulation Inputs. For this example, use the default model inputs for simulation.

Specify signal tolerances for logged signals. Set the Absolute Tolerance and Relative Tolerance of
the output_signal:1 to 0.01.

1 Apps

1-26

Next, expand the Collect Ranges button arrow to configure the settings to use for range collection.
Select Double precision to temporarily override data types in the model with doubles during the
baseline range collection run. Click Collect Ranges.

 Fixed-Point Tool

1-27

The results of the range collection run are stored in BaselineRun. The Results spreadsheet displays
a summary of the statistics collected during the range collection, including the currently specified
data types on the model (SpecifiedDT), simulation minimum, and simulation maximum values. The
compiled data type (CompiledDT) column displays double for all objects in the Embedded
Efficient Filter subsystem, indicating that data type override was applied during the range
collection simulation.

1 Apps

1-28

You can click on any result to view additional details in the Result Details pane. The Visualization
of Simulation Data pane displays a summary of histograms of the bits used by each object in your
model.

You can customize the information displayed in the Results spreadsheet, or use the Explore tab to
sort and filter these results based on additional criteria. For more information, see “Control Views in
the Fixed-Point Tool”.

Next, simulate the model using the fixed-point data types currently specified on the model. Expand
the Settings button arrow and select Specified data types, then click Simulate with Embedded
Types.

The Fixed-Point Tool stores the results of the simulation in EmbeddedRun.

 Fixed-Point Tool

1-29

The icon next to EmbeddedRun displays a fail status, indicating that one or more signals do not meet
the specified tolerances. The results for the Product block indicate that there is an issue with this
result. The Result Details pane shows that the block overflowed 1670 times, indicating a poor choice
of word length.

To compare the ideal results stored in BaselineRun with the fixed-point results, select
EmbeddedRun from the Run to compare in SDI drop down menu. Then click Compare Results to
open the Simulation Data Inspector. In the Simulation Data Inspector, select output_signal as
the signal to compare.

1 Apps

1-30

• “Convert Floating-Point Model to Fixed Point”
• “Optimize the Fixed-Point Data Types of a System Using the Fixed-Point Tool”
• “Perform Data Type Optimization with Custom Behavioral Constraints”
• “Use the Fixed-Point Tool to Explore Numerical Behavior”

Parameters
System Under Design (SUD) — System or subsystem to analyze or convert
current system (default)

System or subsystem to analyze or convert to fixed-point. You can select individual subsystems in
your model one at a time to facilitate debugging by isolating the source of numerical issues, or you
can choose the top-level model.

For more information on converting systems containing particular modeling constructs, see:

• “Convert a Referenced Model to Fixed Point”
• “Bus Objects in the Fixed-Point Workflow”
• “Autoscaling Data Objects Using the Fixed-Point Tool”

 Fixed-Point Tool

1-31

• “Convert MATLAB Function Block to Fixed Point”

Range Collection Mode — How the tool collects ranges for objects in your system
Simulation ranges (default) | Derived ranges | Simulation with derived ranges

How the tool collects ranges for objects in your system, specified as one of the following:

• Simulation ranges — Collect ranges through simulation. To collect and merge the ranges of
multiple simulation runs, specify “Simulation Inputs” on page 1-0 . Data type proposals are as
good as the test bench provided.

• Derived ranges — Collect ranges through a static analysis that derives the ranges, also known as
range analysis or derived range analysis. Ranges collected using this option are based only on
design ranges specified on the model. This option typically delivers more conservative data type
proposals. For more information, see “How Range Analysis Works”.

• Simulation with derived ranges — Collect ranges through simulation and derived range
analysis and combine the results. Proposed data types are based on the union of simulation and
derived ranges. This option provides the most comprehensive range information.

For more information, see “Choosing a Range Collection Method”.

Simulation Inputs — Inputs for simulations
Use default model inputs (default) | Simulink.SimulationInput object

Inputs for simulations, specified as a Simulink.SimulationInput object.

If you choose the “Range Collection Mode” on page 1-0 to be Simulation ranges or Simulation
with derived ranges, you can choose to specify additional simulation inputs to improve the accuracy
of the collected ranges and data type proposals. During the range collection simulation, the Fixed-
Point Tool captures the minimum and maximum values from each specified simulation scenario. If
the Simulink.SimulationInput object that you select contains more than one simulation
scenario, the Fixed-Point Tool proposes data types based on the merged ranges from all simulation
scenarios.

A comprehensive set of input signals that exercise the full range of your design will result in more
accurate data type proposals for your system. For an example, see “Propose Data Types For Merged
Simulation Ranges”.

Signal Tolerances — Tolerances for signals in your model that have signal logging
enabled
absolute tolerance | relative tolerance | time tolerance

To determine if the numerical behavior of a new fixed-point implementation is acceptable, you can
define tolerances for individual signals in your model that have logging enabled. You can specify any
of the following types of tolerances:

• Absolute Tolerance — Absolute value of the maximum acceptable difference between the
original signal and the signal in the converted design.

• Relative Tolerance — Maximum relative difference, specified as a percentage, between the
original output and the output of the new design. For example, a value of 1e-2 indicates a
maximum difference of one percent between the original values and the signal values of the
converted design.

• Time Tolerance (seconds) — Time interval in which the maximum and minimum values define
the upper and lower values to compare against.

1 Apps

1-32

In the Optimized Fixed-Point Conversion workflow, you must specify at least one behavioral
constraint in order to optimize data types. Signal tolerances are one type of behavioral constraint
that you can specify.

In the Iterative Fixed-Point Conversion workflow, signal tolerances are not required to propose
data types, but are required for the tool to determine whether the embedded run is within tolerance.

In the Range Collection workflow, signal tolerances are not required to collect ranges, but are
required for the tool to determine whether the ranges collected are within tolerance.

For more information, see “Specify Behavioral Constraints” and “Tolerance Computation”.

Collect Ranges — Collect ranges
Use current settings (default) | Double precision | Single precision | Scaled double
precision

Collect ranges for objects in your model using:

• Use current settings — Use the current data type override set on the model.
• Double precision — Override data types in the model with doubles.
• Single precision — Override data types in the model with singles.
• Scaled double precision — Override data types in the model with scaled doubles.

Ranges collected depend on the “Range Collection Mode” on page 1-0 and any “Simulation Inputs”
on page 1-0 specified.

For more information, see “Fixed-Point Instrumentation and Data Type Override” and “Use Custom
Data Type Override Settings for Range Collection”.

Settings — Data typing options
Allowable Wordlengths | Max Iterations | Propose | Propose signedness | Verify
using | ...

Data typing options available in the Settings menu depend on the workflow chosen.

Optimized Fixed-Point Conversion Workflow Options

Option Description
Allowable Wordlengths [2:128] (default)

Word lengths that can be used in your optimized
system under design. The final result of the
optimization uses word lengths in the intersection
of the Allowable Wordlengths and word
lengths compatible with hardware constraints
specified in the Hardware Implementation
pane of your model.

 Fixed-Point Tool

1-33

Option Description
Max Iterations 50 (default)

Maximum number of iterations to perform,
specified as a scalar integer. The optimization
process iterates through different solutions until
it finds an ideal solution, reaches the maximum
number of iterations, or reaches another stopping
criteria.

Max Time (sec) 600 (default)

Maximum amount of time for the optimization to
run, specified in seconds as a scalar number. The
optimization runs until it reaches the time
specified, an ideal solution, or another stopping
criteria.

Patience (iterations) 10 (default)

Maximum number of iterations where no new
best solution is found, specified as a scalar
integer. The optimization continues as long as the
algorithm continues to find new best solutions.

Safety Margin (%) 0 (default)

A safety margin, specified as a positive scalar
value, indicating the percentage increase in the
bounds of the collected range. The safety margin
is applied to the union of all collected ranges.

1 Apps

1-34

Option Description
Objective Function Objective function to use during the optimization

search. The optimization algorithm seeks to
minimize an objective function while meeting the
specified behavioral constraints.

• Bit Width Sum (default) — Minimize total
bit width sum.

• Operator Count — Minimize estimated
count of operators in generated C code.

This option may result in a lower program
memory size for C code generated from
Simulink models. The 'OperatorCount'
objective function is not suitable for FPGA or
ASIC targets.

Note To use Operator Count as the objective
function during optimization, the model must be
ready for code generation. For more information
about determining code generation readiness, see
“Check Model and Configuration for Code
Generation” (Embedded Coder).

Perform Neighborhood Search on (default)

Whether to perform a neighborhood search for
the optimized solution.

Disabling this option can increase the speed of
the optimization process, but also increases the
chances of finding a less ideal solution.

Use Parallel off (default)

Whether to run iterations of the optimization in
parallel.

Running the iterations in parallel requires a
Parallel Computing Toolbox™ license. If you do
not have a Parallel Computing Toolbox license, or
if you do no enable this option, the iterations run
in serial.

Iterative Fixed-Point Conversion Workflow Options

 Fixed-Point Tool

1-35

Option Description
Propose Whether to propose fraction lengths or word

lengths for objects in the system under design.

• Fraction Length (default) — The Fixed-
Point Tool uses range information and the
specified Default word length value to
propose best-precision fraction lengths for the
objects in your model.

• Word Length — The Fixed-Point Tool uses
range information and the specified Default
fraction length value to propose word
lengths for the objects in your model.

Propose signedness Yes (default)

Whether to use the collected range information to
propose signedness.

Safety margin for simulation min/max
(%)

2 (default)

Specify a safety margin to apply to collected
simulation ranges. The Fixed-Point Tool will add
the specified amount to the collected ranges and
base proposals on this larger range.

Convert double/single/half types Yes (default)

Whether to generate data type proposals for
objects that currently specify a double, single, or
half-precision data type.

Convert inherited types Yes (default)

Whether to generate data type proposals for
results that currently specify an inherited data
type.

Default word length 16 (default)

Default word length to use for data type
proposals, specified as a scalar integer. This
setting is enabled only when the Propose setting
is set to Fraction Length.

Default fraction length 4 (default)

Default fraction length to use for data type
proposals, specified as a scalar integer. This
setting is enabled only when the Propose setting
is set to Word Length.

Range Collection Workflow Options

1 Apps

1-36

Option Description
Verify using Data type override settings to use for embedded

simulation.

• Specified data types — Use data types
specified on the model

• Scaled double precision — Override
data types with scaled doubles.

Limitations
• Some blocks do not support fixed-point data types and can result in an error during fixed-point

conversion. See “Blocks That Do Not Support Fixed-Point Data Types”.
• Some modeling constructs may cause data type propagation issues. See “Models That Might

Cause Data Type Propagation Errors”.
• If your model contains a MATLAB Function block, use only supported modeling constructs for

successful conversion. See “MATLAB Language Features Supported for Automated Fixed-Point
Conversion”.

Tips
• For best practices and recommendations, see “Best Practices for Fixed-Point Conversion
Workflow”.

• To customize views in the Fixed-Point Tool, see “Control Views in the Fixed-Point Tool”.
• For help troubleshooting the optimization workflow, see “Data Type Optimization Not Successful”.

Version History
Introduced before R2006a

See Also
fxptdlg | DataTypeWorkflow.Converter | fxpopt | “Optimize Fixed-Point Data Types for a
System” | “The Command-Line Interface for the Fixed-Point Tool”

Topics
“Convert Floating-Point Model to Fixed Point”
“Optimize the Fixed-Point Data Types of a System Using the Fixed-Point Tool”
“Perform Data Type Optimization with Custom Behavioral Constraints”
“Use the Fixed-Point Tool to Explore Numerical Behavior”

 Fixed-Point Tool

1-37

Lookup Table Optimizer
Optimize existing lookup table or approximate function with lookup table

Description
Use the Lookup Table Optimizer app to obtain an optimized (memory-efficient) lookup table.

Using this app, you can:

• Approximate an existing Simulink block, including Subsystem blocks and math function blocks
• Approximate a MATLAB handle
• Approximate a curve fit object

You can choose to return the optimized lookup table as a Simulink block or as a MATLAB function.

The optimizer supports any combination of floating-point and fixed-point data types. The original
input and output data types can be kept or changed as desired. To minimize memory used, the
optimizer selects the data types of breakpoints and table data as well as the number and spacing of
breakpoints.

1 Apps

1-38

Open the Lookup Table Optimizer App
• Simulink toolstrip: On the Apps tab, under Code Generation, click the app icon.
• In a Simulink model with a Lookup Table block, select the Lookup Table block. In the Lookup

Table tab, select Lookup Table Optimizer.

Examples
• “Optimize Lookup Tables for Memory-Efficiency”
• “Generate an Optimized Lookup Table as a MATLAB Function”
• “Convert Floating-Point Model to Fixed Point”

Parameters
Source — Source for memory-efficient LUT
Simulink block or subsystem (default) | MATLAB function handle | curve fit object

Select the source for memory-efficient LUT:

• Simulink block or subsystem — Simulink block or subsystem to approximate, or lookup table block
to optimize, for example, 1-D Lookup Table or n-D Lookup Table. If you specify one of the lookup
table blocks, the app generates an optimized lookup table.

• MATLAB function handle — MATLAB function handle to approximate with a lookup table. Function
handles must be on the MATLAB search path, or approximation fails.

• Fitted curve — Curve fit cfit object from the base workspace to approximate. For a list of library
models to approximate, see “List of Library Models for Curve and Surface Fitting” (Curve Fitting
Toolbox).

Tip The process of generating a lookup table approximation is faster for a function handle than for a
subsystem. If a subsystem can be represented by a function handle, approximating the function
handle is faster.

Output Error Tolerance — Tolerance of difference between original and approximation
non-negative scalar

Specify the maximum tolerance of the Absolute and Relative difference between the original
output value and the output value of the approximation.

Allowed Word Lengths — Word lengths permitted in lookup table approximation
[8 16 32] (default) | vector of integers

Specify the word lengths, in bits, that can be used in the lookup table approximation based on your
intended hardware. For example, if you intend to target an embedded processor, you can restrict the
data types in your lookup table to native types. The word lengths must be between 1 and 128.

LUT Specification — Options for optimized lookup table
Interpolation | Breakpoint specification | Saturate to output type | AUTOSAR
Compliant | Explore Half | HDL Optimized | Solution Type

 Lookup Table Optimizer

1-39

Specify options to use for the optimized lookup table.

Option Description
Interpolation When an input falls between breakpoint values,

the lookup table interpolates the output value
using neighboring breakpoints.

• Linear — Fits a line between the adjacent
breakpoints and returns the point on that line
that corresponds to the input.

• Flat — Returns the output value that
corresponds to the breakpoint value that is
immediately less than the input value. If no
breakpoint value exists below the input value,
this option returns the breakpoint value
nearest to the input value.

• Nearest — Returns the value that
corresponds to the breakpoint that is closest
to the input. If the input is equidistant from
two adjacent breakpoints, this option selects
the breakpoint with the higher index.

• None — Generates a Direct Lookup Table (n-
D) block, which performs table lookups
without any interpolation or extrapolation.

Note When generating a Direct Lookup Table
block, the maximum number of inputs is two.

Breakpoint specification Spacing of breakpoint data.

• ExplicitValues — Lookup table
breakpoints are specified explicitly.
Breakpoints can be closer together for some
input ranges and farther apart in others.

• EvenSpacing — Lookup table breakpoints
are evenly spaced throughout.

• EvanPow2Spacing — Lookup table
breakpoints use power-of-two spacing. This
breakpoint specification boasts the fastest
execution speed because a bit shift can
replace the position search.

For more information on how breakpoint
specification can affect performance, see “Effects
of Spacing on Speed, Error, and Memory Usage”.

Saturate to output type Whether to automatically saturate the range of
the output of the function to approximate to the
range of the output data type.

1 Apps

1-40

Option Description
AUTOSAR Compliant Whether the generated lookup table is AUTOSAR

compliant. When this option is set to True,

• The generated lookup table is a Curve or Map
block from the AUTOSAR Blockset.

• The data type of the table data must equal the
output data type of the block.

• An AUTOSAR Blockset license is checked out.

This option is not supported when the Solution
Type option is set to MATLAB.

Explore Half Whether to allow the optimizer to explore half-
precision data types for table data and
breakpoints.

HDL Optimized Whether to generate an HDL-optimized
approximation. When this option is set to True,
the generated approximation is a subsystem
consisting of a prelookup step followed by
interpolation that functions as a lookup table with
explicit pipelining to generate efficient HDL code.

To generate an HDL-optimized approximation,
the function to approximate must be one-
dimensional and Breakpoint specification
must be set to EvenSpacing or
EvenPow2Spacing. This property is not
supported when the Solution Type option is
set to MATLAB.

 Lookup Table Optimizer

1-41

Option Description
Solution Type How the app outputs the optimized lookup table.

• Simlink — Generate a Simulink subsystem
containing the optimized lookup table.

• MATLAB — Output the optimized lookup table
as a MATLAB function. Generating an
optimized lookup table as a MATLAB function
is not supported when:

• The AUTOSARCompliant property is set to
true.

• The UseParallel property is set to true.
• The HDLOptimized property is set to

true.
• The InterpolationMethod property is

set to 'None'.

Note The Simulink block and MATLAB function
lookup table approximations generated by the
Lookup Table Optimizer may not be exactly
numerically equivalent. However, both solution
forms are guaranteed to meet all constraints
specified in the optimization problem.

Settings — Optimization options
Max time | Max memory usage (bytes) | On curve table values | Use parallel

Specify additional optimization options.

Option Description
Max time Maximum amount of time for the approximation

to run, specified in seconds as a scalar number.
The approximation runs until it reaches the time
specified, finds an ideal solution, or reaches
another stopping criterion.

Default: Inf
Max memory usage (bytes) The maximum amount of memory the generated

lookup table can use, in bytes, specified as a
scalar integer.

Default: 10000000

1 Apps

1-42

Option Description
On curve table values Whether to constrain table values to the

quantized output of the function being
approximated. When you set this option to False
and allow off-curve table values, you may be able
to reduce the memory of the lookup table while
maintaining the same error tolerances or
maintain the same memory while reducing the
error tolerances.

Default: False
Use parallel Whether to run iterations of the optimization in

parallel. Running iterations in parallel requires a
Parallel Computing Toolbox license. If you do not
have a Parallel Computing Toolbox, or if you
specify False, the iterations run in serial.

This option is not supported when the Solution
Type option is set to MATLAB.

Default: False

Limitations
• Lookup table objects and breakpoint objects are not supported in a model mask workspace.
• Functions and function handles that you approximate must meet these criteria:

• The function must be time-invariant.
• The function must operate element-wise, meaning for each input there is one output.
• The function must not contain states.

For more information, see “Vectorization”.

Algorithms
Infinite Upper and Lower Input Bounds

When object to approximate specifies infinite input ranges and the input type is non-floating-point,
the software infers upper and lower ranges during the approximation based on the range of the input
data type. The resulting lookup table solution specifies the bounds that the algorithm used during the
approximation, not the originally specified infinite bounds.

Upper and Lower Input Bounds and Input Data Type Range

If the Minimum or Maximum specified for an input fall outside the range of the specified Desired
Data Type, the algorithm uses the range of the data type specified by Desired Data Type for the
approximation.

In cases where the Breakpoint specification option is set to EvenSpacing but the specified
Minimum or Maximum values of the input is equal to the range of the Desired Data Type, the
algorithm does not attempt to find a solution using EvenPow2Spacing.

 Lookup Table Optimizer

1-43

Version History
Introduced in R2018a

Support for curve fitting objects

The Lookup Table Optimizer app now supports curve fitting cfit objects as valid inputs for
approximation.

Improved memory reduction for 1-D and flat interpolation

The Lookup Table Optimizer has an improved algorithm for lookup table value and breakpoint
optimization for one-dimensional functions with flat interpolation. This enhancement can enable
improved memory reduction of the optimized lookup table and faster completion of the lookup table
optimization process.

This improvement applies when the function to approximate is one-dimensional and all of these
options are specified:

• Interpolation is set to Flat.
• Breakpoint specification is set to ExplicitValues.
• On curve table values is set to False.

Generate an optimized lookup table approximation as a MATLAB function

Use the Lookup Table Optimizer app to generate an optimized lookup table approximation as a
MATLAB function. The generated MATLAB function is editable and supports C/C++ code generation
using MATLAB Coder.

Generate optimized one-dimensional lookup tables for HDL applications

Use the Lookup Table Optimizer app to generate a subsystem consisting of a prelookup step
followed by interpolation that functions as a lookup table with explicit pipelining to generate efficient
HDL code.

Lookup table optimization support for functions with scalar inputs

Previously, the Lookup Table Optimizer required that functions and function handles to
approximate were vectorized, meaning that for each input, there is exactly one output. Starting in
R2021a, lookup table optimization fully supports approximation of Simulink blocks and subsystems
that only allow scalar inputs.

Improved lookup table value optimization

The Lookup Table Optimizer has an improved algorithm for lookup table value optimization for the
Flat and Nearest interpolation methods when off-curve table values are allowed. This enhancement
can enable faster completion of the lookup table optimization process and improved memory
reduction of the optimized lookup table.

1 Apps

1-44

Stop optimization in Lookup Table Optimizer app

You can now stop the optimization solver in the Lookup Table Optimizer before the optimization
search is complete. The app will choose the best solution found at the time the Stop button is clicked
and display the solution in the app.

Explore half precision in optimized lookup tables

Specify whether the optimization process explores half-precision data types for table data and
breakpoint values.

Iteratively redesign lookup tables in your model

The Lookup Table Optimizer now replaces blocks being approximated by a lookup table with a
variant subsystem containing the function approximation. The variant subsystem enables you to
return to the original function and perform the optimization again using different optimization
settings and constraints.

Parallelized lookup table optimization

Specify whether to run iterations of the optimization in parallel. Running iterations in parallel
requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing Toolbox
license, or if you specify False, the iterations run in serial.

Allow off-curve table values in optimized lookup tables

You can now generate an optimized lookup table with off-curve table values.

In previous releases, the optimization required table values to match the quantized output values of
the original function being approximated. By allowing off-curve table values, you may be able to
reduce the memory of the lookup table while maintaining the same error tolerances, or maintain the
same memory while reducing the error tolerances.

Generate optimized AUTOSAR-compliant lookup table

Generate an AUTOSAR-compliant optimized lookup table using a Curve or Map block.

Setting this option to True checks out an AUTOSAR Blockset license.

See Also
Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator | LUTCompressionResult

Functions
solve | approximate | compare | totalmemoryusage | solutionfromID |
displayfeasiblesolutions | displayallsolutions

 Lookup Table Optimizer

1-45

Topics
“Optimize Lookup Tables for Memory-Efficiency”
“Generate an Optimized Lookup Table as a MATLAB Function”
“Convert Floating-Point Model to Fixed Point”

1 Apps

1-46

Single Precision Converter
Convert double-precision system to single precision

Description
The Single Precision Converter automatically converts a double-precision system to single precision.

During the conversion process, the converter replaces all user-specified double-precision data types,
as well as output data types that compile to double precision, with single-precision data types. The
converter does not change built-in integer, Boolean, or fixed-point data types.

Open the Single Precision Converter
• From the Simulink Apps tab, select Single Precision Converter.

Examples
• “Convert a System to Single Precision”

Programmatic Use
report = DataTypeWorkflow.Single.convertToSingle(systemToConvert) converts the
system specified by systemToConvert to single-precision and returns a report. The
systemToConvert must be open before you begin the conversion.

Version History
Introduced in R2016b

See Also
Functions
convertToSingle

Topics
“Convert a System to Single Precision”
“Getting Started with Single Precision Converter”

 Single Precision Converter

1-47

Parameter Quantization Advisor
Inspect numerical issues related to parameter quantization

Description
The Parameter Quantization Advisor app provides additional details on numerical issues related to
parameter quantization. Using this app, you can:

• Filter quantization issues resulting from parameter overflow, underflow, and precision loss.
• Sort quantization issues based on bits of error, absolute error, or relative error.
• Explore in detail the effects of parameter quantization on your model.

Open the Parameter Quantization Advisor App
• Diagnostic Viewer: From a numeric diagnostic warning or error, under Suggested Actions,

click Open.

Examples

Explore Parameter Precision Loss

Use the Parameter Quantization Advisor to explore parameter precision loss in a feedback
controller model.

1 Apps

1-48

Open the fxpdemo_feedback model.

fxpdemo_feedback

Check that parameter diagnostics are enabled. In the Configuration Parameters dialog, under
Diagnostics > Data Validity, set the Detect precision loss parameter diagnostic to warning.

Simulate the model.

The Diagnostic Viewer displays a warning for parameter precision loss.

To inspect details of this diagnostic in the Parameter Quantization Advisor, from Suggested
Actions, click Open.

The app displays details of the parameter precision loss that occurred in fxpdemo_feedback/
Denominator Terms. In this example, the model has only precision loss issues, as indicated by a
blue square in the Quantization Issue column of the table. You can also use the app to explore
overflow and underflow issues.

Four coefficients in the Discrete FIR Filter block named Denominator Terms experienced precision
loss. The table shows the dialog value entered for each parameter and the corresponding quantized
value of each parameter. You can sort the table by bits of error, absolute error, or relative error.

The Parameter Details pane contains additional details for the parameter experiencing numeric
issues, including the location in the model and the name, dimension, and complexity of the parameter.

 Parameter Quantization Advisor

1-49

The table displays the data type of the parameter in the dialog and the data type of the parameter at
run time along with the minimum, maximum, and precision representable by these data types.

Tips
• Update the diagram or simulate the model to view messages in the Diagnostic Viewer.
• The Parameter Quantization Advisor app reports information for these quantization issues:

• “Detect underflow”
• “Detect overflow”
• “Detect precision loss”

Diagnostics set to none are also reported in the app.
• The Parameter Quantization Advisor reports details on quantization issues for tunable and

nontunable parameters that experience quantization loss.
• You can inspect one parameter at a time in the Parameter Quantization Advisor. To inspect a
different parameter, open a new instance of the app from a message in the Diagnostic Viewer.

Version History
Introduced in R2022b

See Also
“Detect underflow” | “Detect overflow” | “Detect precision loss”

1 Apps

1-50

Simulation Data Inspector
Inspect and compare data and simulation results to validate and iterate model designs

Description
The Simulation Data Inspector visualizes and compares multiple kinds of data.

Using the Simulation Data Inspector, you can inspect and compare time series data at multiple stages
of your workflow. This example workflow shows how the Simulation Data Inspector supports all
stages of the design cycle:

1 “View Data in the Simulation Data Inspector”

Run a simulation in a model configured to log data to the Simulation Data Inspector, or import
data from the workspace or a MAT-file. You can view and verify model input data or inspect
logged simulation data while iteratively modifying your model diagram, parameter values, or
model configuration.

2 “Inspect Simulation Data”

Plot signals on multiple subplots, zoom in and out on specified plot axes, and use data cursors to
understand and evaluate the data. “Create Plots Using the Simulation Data Inspector” to tell your
story.

3 “Compare Simulation Data”

Compare individual signals or simulation runs and analyze your comparison results with relative,
absolute, and time tolerances. The compare tools in the Simulation Data Inspector facilitate
iterative design and allow you to highlight signals that do not meet your tolerance requirements.
For more information about the comparison operation, see “How the Simulation Data Inspector
Compares Data”.

4 “Save and Share Simulation Data Inspector Data and Views”

Share your findings with others by saving Simulation Data Inspector data and views.

You can also harness the capabilities of the Simulation Data Inspector from the command line. For
more information, see “Inspect and Compare Data Programmatically”.

 Simulation Data Inspector

1-51

Open the Simulation Data Inspector
• Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.
• Click the streaming badge on a signal to open the Simulation Data Inspector and plot the signal.
• MATLAB command prompt: Enter Simulink.sdi.view.

Examples

Apply a Tolerance to a Signal in Multiple Runs

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the
same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four
runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session
includes logged data from four simulations of a Simulink® model of a longitudinal controller for an
aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data
Inspector. You can use this number as the index for a for loop that operates on each run.

count = Simulink.sdi.getRunCount;

Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.

1 Apps

1-52

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 aircraftRun = Simulink.sdi.getRun(runID);
 sig = getSignalByIndex(aircraftRun,1);
 sig.AbsTol = 0.1;
end

• “View Data in the Simulation Data Inspector”
• “Inspect Simulation Data”
• “Compare Simulation Data”
• “Iterate Model Design Using the Simulation Data Inspector”

Programmatic Use
Simulink.sdi.view opens the Simulation Data Inspector from the MATLAB command line.

Version History
Introduced in R2010b

See Also
Functions
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.snapshot

Topics
“View Data in the Simulation Data Inspector”
“Inspect Simulation Data”
“Compare Simulation Data”
“Iterate Model Design Using the Simulation Data Inspector”

 Simulation Data Inspector

1-53

Blocks

2

Complex Burst Asynchronous Matrix Solve Using
Q-less QR Decomposition
Compute the value of X in the equation A'AX = B for complex-valued matrices using asynchronous Q-
less QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block solves the
system of linear equations A'AX = B using asynchronous Q-less QR decomposition, where A and B are
complex-valued matrices.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst Asynchronous Matrix
Solve Using Q-less QR Decomposition block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

This block operates asynchronously. The forward- and backward-substitution and Q-less QR
decomposition run independently using the latest R and B matrices.

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Rows of complex matrix B
vector

Rows of complex matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

2 Blocks

2-2

Data Types: single | double | fixed point

validInA — Whether A(i,:) input is valid
Boolean scalar

Whether A(i,:) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port X is valid. When this value is 1 (true), the block has successfully computed the
matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

 Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-3

readyA — Whether block is ready for input A(i,:)
Boolean scalar

Whether block is ready for input A(i,:), returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true),
the block accepts input data in the next time step. When this value is 0 (false), the block ignores
input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when
the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

2 Blocks

2-4

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

 Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-5

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

2 Blocks

2-6

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-
row and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously. The matrix is output from the first row to the last
row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-7

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• Last row validIn to validOut — From the last mth row input to the block starting to output the

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row
and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.

2 Blocks

2-8

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

Last Row
validIn to
validOut
(cycles)

Real Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl+5)*n + 2 + (n
+ 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl*2 + 11)*n + 2
+ (n + 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx® Zynq® UltraScale™ + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado® v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

 Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-9

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 36070 425280 8.48
CLB Registers 45878 850560 5.39
DSPs 12 4272 0.28
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.781 ns
Slack 0.199 ns
Clock Frequency 263.09 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 Blocks

2-10

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition | Complex Burst Matrix Solve
Using QR Decomposition | Complex Burst Matrix Solve Using Q-less QR Decomposition

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-11

Complex Burst Matrix Solve Using Q-less QR
Decomposition
Compute the value of X in the equation A'AX = B for complex-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear
equations, A'AX = B, using Q-less QR decomposition, where A and B are complex-valued matrices.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst Matrix Solve Using
Q-less QR Decomposition block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

2 Blocks

2-12

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the ready value
is 1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is
0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-13

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

2 Blocks

2-14

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Tips
Use fixed.getQlessQRMatrixSolveModel(A,B) to generate a template model containing a
Complex Burst Matrix Solve Using Q-less QR Decomposition block for complex-valued input matrices
A and B.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-15

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

2 Blocks

2-16

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using QR Decomposition blocks accept and process A and B matrices row by
row synchronously. After accepting m rows, the block outputs the X matrix row by row continuously.
The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-17

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• Last row validIn to new matrix ready — From the block starting to output the solution to the

block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process A and B matrices
row by row synchronously. After accepting m rows, the block outputs the X matrix row by row
continuously. The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

2 Blocks

2-18

• Last row validIn to new matrix ready — From the block starting to output the solution to the
block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

Block Operation validIn to ready
(cycles)

Last Row
validIn to
validOut
(cycles)

Last row validIn
to new matrix
ready (cycles)

Real Burst Matrix
Solve Using QR
Decomposition

Synchronous (wl + 5)*n + 2 (wl + 5)*n + 3.5*n2

+ n*(nextPow2(wl)
+ wl + 8.5) + 3

(wl + 5)*n + 3.5*(n
- 1)2 + (n - 1)
(nextPow2(wl) +
wl + 8.5) + 3

Complex Burst
Matrix Solve Using
QR Decomposition

Synchronous (wl*2 + 11)*n + 2 (wl*2 + 11)*n +
3.5*n2 +
n*(nextPow2(wl) +
wl + 8.5) + 3

(wl*2 + 11)*n +
3.5*(n-1)2 + (n-1)
(nextPow2(wl) +
wl + 8.5) + 3

Real Burst Matrix
Solve Using Q-less
QR Decomposition

Synchronous (wl + 5)*n + 2 7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)

7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition

Synchronous (wl*2 + 11)*n + 2 7*22 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)

7*n2 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-19

• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 30915 425280 7.27
CLB Registers 34833 850560 4.10
DSPs 12 4272 0.28
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.686 ns
Slack 0.296 ns
Clock Frequency 269.98 MHz

Version History
Introduced in R2020a

Support for Tikhonov regularization parameter

The Complex Burst Matrix Solve Using Q-less QR Decomposition block now supports the Tikhonov
“Regularization parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-20

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Burst Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve
Using Q-less QR Decomposition | Complex Burst Matrix Solve Using QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-21

Complex Burst Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor
Compute the value of X in the equation A'AX = B for complex-valued matrices with infinite number of
rows using asynchronous Q-less QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves
the system of linear equations A'AX = B using asynchronous Q-less QR decomposition, where A and B
are complex-valued matrices. A is an infinitely tall matrix representing streaming data.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst Matrix Solve Using
Q-less QR Decomposition with Forgetting Factor block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

This block operates asynchronously. The forward- and backward-substitution and Q-less QR
decomposition run independently using the latest R and B matrices.

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Rows of complex matrix B
vector

Rows of complex matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

2 Blocks

2-22

Data Types: single | double | fixed point

validInA — Whether A(i,:) input is valid
Boolean scalar

Whether A(i,:) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port X is valid. When this value is 1 (true), the block has successfully computed the
matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

 Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-23

readyA — Whether block is ready for input A(i,:)
Boolean scalar

Whether block is ready for input A(i,:), returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true),
the block accepts input data in the next time step. When this value is 0 (false), the block ignores
input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when
the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

2 Blocks

2-24

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

 Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-25

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

2 Blocks

2-26

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A
row-by-row and matrix B as a single vector. After accepting the first valid pair of A and B matrices,
the block outputs the X matrices row by row continuously. The matrix is output from the first row to
the last row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-27

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• nth row validIn to validOut — From the nth row input to the block starting to output the first

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks
accept matrix A row-by-row and matrix B as a single vector. After accepting the first valid pair of A
and B matrices, the block outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.

2 Blocks

2-28

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor blocks.

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

nth Row validIn
to validOut
(cycles)

Real Burst Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous (wl + 5)*n + 2 + n 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition
with Forgetting
Factor

Asynchronous (wl*2 + 11)*n + 2
+ n

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n+ 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

 Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-29

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• p = 1
• Matrix A dimension: inf-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 36045 425280 8.48
CLB Registers 45870 850560 5.39
DSPs 44 4272 1.03
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.794 ns
Slack 0.187 ns
Clock Frequency 262.26 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 Blocks

2-30

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Partial-
Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Burst Matrix
Solve Using Q-less QR Decomposition

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-31

Complex Burst Matrix Solve Using QR
Decomposition
Compute the value of x in the equation Ax = B for complex-valued matrices using QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Burst Matrix Solve Using QR Decomposition block solves the system of linear equations
Ax = B using QR decomposition, where A and B are complex-valued matrices. To compute x = A-1, set
B to be the identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst Matrix Solve Using

QR Decomposition block computes the matrix solution of complex-valued
λIn
A

X =
0n, p

B
 where λ is

the regularization parameter, A is an m-by-n matrix, p is the number of columns in B, In = eye(n),
and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

2 Blocks

2-32

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

 Complex Burst Matrix Solve Using QR Decomposition

2-33

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0

Output datatype — Data type of the output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'

2 Blocks

2-34

Default: 'fixdt(1,18,14)'

Tips
Use fixed.getMatrixSolveModel(A,B) to generate a template model containing a Complex
Burst Matrix Solve Using QR Decomposition block for complex-valued input matrices A and B.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

 Complex Burst Matrix Solve Using QR Decomposition

2-35

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

2 Blocks

2-36

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using QR Decomposition blocks accept and process A and B matrices row by
row synchronously. After accepting m rows, the block outputs the X matrix row by row continuously.
The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Burst Matrix Solve Using QR Decomposition

2-37

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• Last row validIn to new matrix ready — From the block starting to output the solution to the

block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process A and B matrices
row by row synchronously. After accepting m rows, the block outputs the X matrix row by row
continuously. The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

2 Blocks

2-38

• Last row validIn to new matrix ready — From the block starting to output the solution to the
block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

Block Operation validIn to ready
(cycles)

Last Row
validIn to
validOut
(cycles)

Last row validIn
to new matrix
ready (cycles)

Real Burst Matrix
Solve Using QR
Decomposition

Synchronous (wl + 5)*n + 2 (wl + 5)*n + 3.5*n2

+ n*(nextPow2(wl)
+ wl + 8.5) + 3

(wl + 5)*n + 3.5*(n
- 1)2 + (n - 1)
(nextPow2(wl) +
wl + 8.5) + 3

Complex Burst
Matrix Solve Using
QR Decomposition

Synchronous (wl*2 + 11)*n + 2 (wl*2 + 11)*n +
3.5*n2 +
n*(nextPow2(wl) +
wl + 8.5) + 3

(wl*2 + 11)*n +
3.5*(n-1)2 + (n-1)
(nextPow2(wl) +
wl + 8.5) + 3

Real Burst Matrix
Solve Using Q-less
QR Decomposition

Synchronous (wl + 5)*n + 2 7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)

7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition

Synchronous (wl*2 + 11)*n + 2 7*22 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)

7*n2 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1

 Complex Burst Matrix Solve Using QR Decomposition

2-39

• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 23719 425280 5.58
CLB Registers 24062 850560 2.83
DSPs 6 4272 0.14
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.242 ns
Slack 0.072 ns
Clock Frequency 306.62 MHz

Version History
Introduced in R2019b

Support for Tikhonov regularization parameter

The Complex Burst Matrix Solve Using QR Decomposition block now supports the Tikhonov
“Regularization parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-40

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Burst Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR
Decomposition | Complex Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qrMatrixSolve

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Burst Matrix Solve Using QR Decomposition

2-41

Complex Burst Q-less QR Decomposition
Q-less QR decomposition for complex-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Burst Q-less QR Decomposition block uses QR decomposition to compute the economy
size upper-triangular R factor of the QR decomposition A = QR, where A is a complex-valued matrix,
without computing Q. The solution to A'Ax = B is x = R\R'\b.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst Q-less QR
Decomposition block computes the upper-triangular factor R of the economy size QR decomposition

of
λIn
A

 where λ is the regularization parameter.

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is a m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

2 Blocks

2-42

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R(i,:) — Rows of upper-triangular matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper-
triangular matrix. The size of the matrix R is min(m,n)-by-n. The output at R(i,:) has the same data
type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

 Complex Burst Q-less QR Decomposition

2-43

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Tips
Use fixed.getQlessQRDecompositionModel(A) to generate a template model containing a
Complex Burst Q-less QR Decomposition block for complex-valued input matrix A.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

2 Blocks

2-44

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst QR Decomposition blocks accept and process A and B matrices row by row synchronously.
After accepting m rows, the block outputs the R and C matrices row by row continuously. The
matrices are output from the last row to the first row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix A row by row. After
accepting m rows, the block outputs the matrix R row by row continuously. The matrix is output from
the last row to the first row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Burst Q-less QR Decomposition

2-45

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.

Block validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

validOut to ready
(cycles)

Real Burst QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst QR
Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

Real Burst Q-less QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst Q-less
QR Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

2 Blocks

2-46

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• Matrix A dimension: 16-by-16

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 21137 425280 4.97
CLB Registers 21157 850560 2.49
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.18 ns
Slack 0.134 ns
Clock Frequency 312.57 MHz

Version History
Introduced in R2020a

Support for Tikhonov regularization parameter

The Complex Burst Q-less QR Decomposition block now supports the Tikhonov “Regularization
parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

 Complex Burst Q-less QR Decomposition

2-47

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Burst Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex
Burst QR Decomposition

Functions
fixed.qlessQR

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-48

Complex Burst Q-less QR Decomposition Whole R
Output
Q-less QR decomposition for complex-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Burst Q-less QR Decomposition Whole R Output block uses QR decomposition to
compute the economy size upper-triangular R factor of the QR decomposition A = QR, where A is a
complex-valued matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst Q-less QR
Decomposition Whole R Output block computes the upper-triangular factor R of the economy size QR

decomposition of
λIn
A

 where λ is the regularization parameter.

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If A is
a fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is
not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

 Complex Burst Q-less QR Decomposition Whole R Output

2-49

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Economy size QR decomposition matrix R
vector

Economy size QR decomposition matrix R, returned as a vector. R is an upper triangular matrix. The
size of matrix R is min(m,n)-by-n. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

2 Blocks

2-50

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

 Complex Burst Q-less QR Decomposition Whole R Output

2-51

Block Timing

The Burst Q-less QR Decomposition Whole R Output blocks accept and process A and B matrices row
by row synchronously. After accepting m rows, the block outputs the R matrix as a single vector.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The following table provides details of the timing for the Burst Q-less QR Decomposition Whole R
Output blocks.

Block validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

validOut to ready
(cycles)

Real Burst Q-less QR
Decomposition Whole R
Output

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 +
min(m,n) - 1

2

Complex Burst Q-less
QR Decomposition
Whole R Output

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2 + min(m,n) -1

2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

2 Blocks

2-52

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• Matrix A dimension: 16-by-16

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 21177 425280 4.98
CLB Registers 21153 850560 2.49
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.172 ns
Slack 0.142 ns
Clock Frequency 313.35 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

 Complex Burst Q-less QR Decomposition Whole R Output

2-53

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Real Burst Q-less QR Decomposition Whole R Output | Complex Burst Q-less QR Decomposition |
Complex Burst QR Decomposition

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-54

Complex Burst Q-less QR Decomposition with
Forgetting Factor Whole R Output
Q-less QR decomposition for complex-valued matrices with infinite number of rows
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition, A =
QR, without computing Q. A is an infinitely tall complex-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Complex Burst Q-less QR Decomposition with
Forgetting Factor Whole R Output block initializes the first upper-triangular factor R to λIn before
factoring in the rows of A, where λ is the regularization parameter and In = eye(n)

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If A
uses a fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation
is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

 Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

2-55

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Economy size QR decomposition matrix R
vector

Economy size QR decomposition matrix R, returned as a vector. R is an upper triangular matrix. The
size of matrix R is n-by-n. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

2 Blocks

2-56

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

 Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

2-57

Block Timing

The Burst Q-less QR Decomposition with Forgetting Factor Whole R Output blocks accept and
process the matrix A row by row. After accepting the first m rows, the block starts to output the R
matrix as a vector. Then, for each row input, the block calculates an R matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• validIn to validOut — From a successful row input to the block starting to output the

corresponding solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The following table provides details of the timing for the Burst Q-less QR Decomposition with
Forgetting Factor Whole R Output blocks.

Block validIn to ready
(cycles)

validIn to validOut
(cycles)

validOut to ready
(cycles)

Real Burst Q-less QR
Decomposition with
Forgetting Factor Whole
R Output

(wl + 5)*n + 2 + n (wl + 5)*n + 2 + n - 1 1

Complex Burst Q-less
QR Decomposition with
Forgetting Factor Whole
R Output

(wl*2 + 11)*n + 2 + n (wl*2 + 11)*n + 2 + n -
1

1

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

2 Blocks

2-58

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• Matrix A dimension: inf-by-16

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 21142 425280 4.97
CLB Registers 21158 850560 2.49
DSPs 32 4272 0.75
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.051 ns
Slack 0.264 ns
Clock Frequency 325.80 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

2-59

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output | Complex Burst Q-less
QR Decomposition Whole R Output

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-60

Complex Burst QR Decomposition
QR decomposition for complex-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Burst QR Decomposition block uses QR decomposition to compute R and C = Q'B,
where QR = A, and A and B are complex-valued matrices. The least-squares solution to Ax = B is x =
R\C. R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be
the identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Burst QR Decomposition

block transforms
λIn
A

 in-place to R = Q′
λIn
A

 and
0n, p

B
 in-place to C = Q′

0n, p
B

 where λ is the

regularization parameter, QR is the economy size QR decomposition of
λIn
A

, A is an m-by-n matrix, p

is the number of columns in B, In = eye(n), and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

 Complex Burst QR Decomposition

2-61

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false), and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R(i,:) — Rows of matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. The size of the matrix R is min(m,n)-by-n. R has the same data type as A.
Data Types: single | double | fixed point

C(i,:) — Rows of matrix C=Q'B
scalar | vector

Rows of the economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the
same number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R(i,:) and C(i,:) is valid. When this value is 1 (true), the block has
successfully computed the R and C matrices. When this value is 0 (false), the output data is not
valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the

2 Blocks

2-62

block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B

4 (default) | positive integer-valued scalar

The number of rows in matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

The number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

The number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter

 Complex Burst QR Decomposition

2-63

Type: character vector
Values: real nonnegative scalar
Default: 0

Tips
Use fixed.getQRDecompositionModel(A,B) to generate a template model containing a Complex
Burst QR Decomposition block for complex-valued input matrices A and B.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst QR Decomposition blocks accept and process A and B matrices row by row synchronously.
After accepting m rows, the block outputs the R and C matrices row by row continuously. The
matrices are output from the last row to the first row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

2 Blocks

2-64

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix A row by row. After
accepting m rows, the block outputs the matrix R row by row continuously. The matrix is output from
the last row to the first row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

 Complex Burst QR Decomposition

2-65

• validOut to ready — From the block starting to output the solution to the block ready to accept
the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.

Block validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

validOut to ready
(cycles)

Real Burst QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst QR
Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

Real Burst Q-less QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst Q-less
QR Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 22713 425280 5.34

2 Blocks

2-66

Resource Usage Available Utilization (%)
CLB Registers 22469 850560 2.64
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.149 ns
Slack 0.166 ns
Clock Frequency 315.72 MHz

Version History
Introduced in R2019b

Support for Tikhonov regularization parameter

The Complex Burst QR Decomposition block now supports the Tikhonov “Regularization parameter”
on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Complex Burst QR Decomposition

2-67

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Burst QR Decomposition | Complex Burst Q-less QR Decomposition | Complex Partial-Systolic
QR Decomposition

Functions
fixed.qrAB

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-68

Complex Divide HDL Optimized
Divide one input by another and generate optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Complex Divide HDL Optimized block outputs the result of dividing the scalar num by the scalar
den, such that y = num/den.

Limitations
Data type override is not supported for the Complex Divide HDL Optimized block.

Ports
Input

num — Numerator
scalar

Numerator, specified as a scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

den — Denominator
scalar

Denominator, specified as a scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the num and den input ports are valid. When this value is 1 (true), the block captures the values at
the input ports num and den. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

 Complex Divide HDL Optimized

2-69

Output

y — Output computed by dividing inputs
complex scalar

Output computed by dividing num by den, such that y = num/den, returned as a complex scalar
with data type specified by Output datatype.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output at port y. When this value is 0 (false), the
output data is not valid.
Data Types: Boolean

Parameters
Output datatype — Data type of output
fixdt(1,18,10) (default) | single | fixdt(1,16,0) | <data type expression>

Data type of output y, specified as fixdt(1,18,10), single, fixdt(1,16,0), or as a user-
specified data type expression. The type can be specified directly or expressed as a data type object,
such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,10)' | 'single' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'fixdt(1,18,10)'

Tips
The blocks Divide by Constant HDL Optimized, Real Divide HDL Optimized, and Complex Divide HDL
Optimized all perform the division operation and generate optimized HDL code.

• Real Divide HDL Optimized and Complex Divide HDL Optimized are based on a CORIDC
algorithm. These blocks accept a wide variety of inputs, but will result in greater latency.

• Divide by Constant HDL Optimized accepts only real inputs and a constant divisor. Use of this
block consumes DSP slices, but will complete the division operation in fewer cycles and at a
higher clock rate.

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers.

2 Blocks

2-70

Fully Pipelined Fixed-Point Computations

The Complex Divide HDL Optimized block supports HDL code generation for fixed-point data with
binary-point scaling. It is designed with this application in mind, and employs hardware specific
semantics and optimizations. One of these optimizations is pipelining its entire internal circuitry to
maintain a very high throughput.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between
resource usage and total throughput for a given computation. Resource-sharing often reduces the
resources consumed by a design, but also reduces the throughput in the process. Simple arithmetic
and trigonometric computations, which typically form parts of bigger computations, require high
throughput to drive circuits further in the design. Thus, fully pipelined implementations consume
more on-chip resources but are beneficial in large designs.

All of the key computational units in the Complex Divide HDL Optimized block are fully pipelined
internally. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also
the adders and shifters used elsewhere in the design, thus ensuring maximum throughput.

How to Interface with the Complex Divide HDL Optimized Block

Because of its fully pipelined nature, the Complex Divide HDL Optimized block is able to accept input
data on any cycle, including consecutive cycles. To send input data to the block, the validIn signal
must be set to true. When the block has finished the computation and is ready to send the output, it
will set validOut to true for one clock cycle. For inputs sent on consecutive cycles, validOut will also
be set to true on consecutive cycles. Both the numerator and the denominator must be sent together
on the same cycle.

Division by Zero Behavior

For fixed-point inputs num and den, the Complex Divide HDL Optimized block wraps on overflow for
division by zero. The behavior for fixed-point division by zero is summarized in the table below.

Wrap Overflow Saturate Overflow
0/0 = 0 0/0 = 0
1/0 = 0 1/0 = upper bound
-1/0 = 0 -1/0 = lower bound

For floating-point inputs, the Complex Divide HDL Optimized block follows IEEE® Standard 754.

 Complex Divide HDL Optimized

2-71

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Restrictions

Supports binary-point scaled fixed-point data types only.

See Also
Blocks
Real Divide HDL Optimized | Real Reciprocal HDL Optimized | Normalized Reciprocal HDL Optimized

Functions
fixed.cordicReciprocal | fixed.cordicDivide

2 Blocks

2-72

Complex Partial-Systolic Matrix Solve Using Q-less
QR Decomposition
Compute the value of X in the equation A'AX = B for complex-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations, A'AX = B, using Q-less QR decomposition, where A and B are complex-valued
matrices.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Partial-Systolic Matrix
Solve Using Q-less QR Decomposition block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B — Matrix B
vector

Matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or double, B must be
the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point scaling,
and have the same word length as A. Slope-bias representation is not supported for fixed-point data
types.
Data Types: single | double | fixed point

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-73

Complex Number Support: Yes

validInA — Whether input A is valid
Boolean scalar

Whether input A is valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value at readyA is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether input B is valid
Boolean scalar

Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the value at readyB is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
matrix | vector

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

2 Blocks

2-74

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-75

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

2 Blocks

2-76

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-77

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

Block Timing

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-
row and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously. The matrix is output from the first row to the last
row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.

2 Blocks

2-78

• validIn to ready — From a successful A row input to the block being ready to accept the next
row.

• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it
generates output at a constant rate. This is the delay between two adjacent valid outputs.

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row
and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• Last row validIn to validOut — From the last mth row input to the block starting to output the

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-79

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

Last Row
validIn to
validOut
(cycles)

Real Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl+5)*n + 2 + (n
+ 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl*2 + 11)*n + 2
+ (n + 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

2 Blocks

2-80

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 300675 425280 70.70
CLB Registers 260811 850560 30.66
DSPs 12 4272 0.28
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.954 ns
Slack 0.029 ns
Clock Frequency 251.83 MHz

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block now supports the
Tikhonov “Regularization parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-81

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix
Solve Using Q-less QR Decomposition with Forgetting Factor | Complex Burst Matrix Solve Using Q-
less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-82

Complex Partial-Systolic Matrix Solve Using Q-less
QR Decomposition with Forgetting Factor
Compute the value of X in the equation A'AX = B for complex-valued matrices with infinite number of
rows using Q-less QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
block solves the system of linear equations, A'AX = B, using Q-less QR decomposition, where A and B
are complex-valued matrices. A is an infinitely tall matrix representing streaming data.

When the regularization parameter is nonzero, the Complex Partial-Systolic Matrix Solve Using Q-
less QR Decomposition with Forgetting Factor initializes the first upper-triangular factor R to λIn
before factoring in the rows of A, where λ is the regularization parameter and In = eye(n).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B — Matrix B
matrix | vector

Matrix B, specified as a vector or a matrix. B is an n-by-p matrix where n ≥ 2. If A is single or double,
B must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-83

Whether A(i, ;) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether input B is valid
Boolean scalar

Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
matrix | vector

Matrix X, returned as a matrix or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1

2 Blocks

2-84

(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-85

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Tips
• Use fixed.forgettingFactor to compute the forgetting factor, α, for an infinite number of

rows with the equivalent gain of a matrix with m rows.
• Use fixed.forgettingFactorInverse to compute the number of rows, m, of a matrix with

equivalent gain corresponding to forgetting factor α

.

Algorithms
Q-less QR Decomposition with Forgetting Factor

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
block implements the following recursion to compute the upper-triangular factor R of continuously
streaming n-by-1 row vectors A(k,:) using forgetting factor α. It's as if matrix A is infinitely tall. The
forgetting factor in the range 0 < α < 1 prevents it from integrating without bound.

2 Blocks

2-86

R0 = zeros(n, n)

∼ , R1 = qr
R0

A 1, :
, 0

R1 = αR1

∼ , R2 = qr
R1

A 2, :
, 0

R2 = αR2

⋮

∼ , Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk

⋮

Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization

The output Xk after processing the kth input A(k,:) is computed using the following iteration.

R0 = λIn

, R1 = qr
R0

A 1, :
, 0

R1 = αR1
X1 = R1\ R′1\B

, R2 = qr
R1

A 2, :
, 0

R2 = αR2
X2 = R2\ R′2\B

⋮

, Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk
Xk = Rk\ R′k\B

⋮

This is mathematically equivalent to computing A'kAkX = B, where Ak is defined as follows, though the
block never actually creates Ak.

Ak =

αkλIn
αk

αk− 1

⋱
α

A 1:k, :

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-87

Forward and Backward Substitution

When an upper triangular factor is ready, then forward and backward substitution are computed with
the current input B to produce output X.

X = Rk\ Rk′ \B

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A
row-by-row and matrix B as a single vector. After accepting the first valid pair of A and B matrices,
the block outputs the X matrices row by row continuously. The matrix is output from the first row to
the last row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

2 Blocks

2-88

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• nth row validIn to validOut — From the nth row input to the block starting to output the first

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks
accept matrix A row-by-row and matrix B as a single vector. After accepting the first valid pair of A
and B matrices, the block outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-89

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor blocks.

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

nth Row validIn
to validOut
(cycles)

Real Burst Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous (wl + 5)*n + 2 + n 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition
with Forgetting
Factor

Asynchronous (wl*2 + 11)*n + 2
+ n

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n+ 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

2 Blocks

2-90

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• p = 1
• Matrix A dimension: inf-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 334280 425280 78.60
CLB Registers 261319 850560 30.72
DSPs 12 4272 0.28
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.892 ns
Slack 0.088 ns
Clock Frequency 255.62 MHz

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
block now supports the Tikhonov “Regularization parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-91

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real
Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less QR
Decomposition | Complex Burst Q-less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

2 Blocks

2-92

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-93

Complex Partial-Systolic Matrix Solve Using QR
Decomposition
Compute value of x in the equation Ax = B for complex-valued matrices using QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Complex Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear
equations Ax = B using QR decomposition, where A and B are complex-valued matrices. To compute x
= A-1, set B to be the identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Partial-Systolic Matrix

Solve Using QR Decomposition block computes the matrix solution of complex-valued
λIn
A

X =
0n, p

B
where λ is the regularization parameter, A is an m-by-n matrix, p is the number of columns in B, In =
eye(n), and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

2 Blocks

2-94

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the ready value
is 1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is
0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i, :) — Rows of matrix X
scalar | vector

Rows of matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

 Complex Partial-Systolic Matrix Solve Using QR Decomposition

2-95

Parameters
Number of rows in matrices A and B — Number of rows in input matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

2 Blocks

2-96

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic Matrix Solve Using QR Decomposition blocks accept and process A and B
matrices row by row. After accepting m rows, the block outputs the matrix X as a single vector. The
partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs
before outputting the result of the current matrix.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Partial-Systolic Matrix Solve Using QR Decomposition

2-97

In the figure,

• A1r1 is the first row of the first A matrix and X1 is the matrix X, output as a vector.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The following table provides details of the timing for the Partial-Systolic Matrix Solve Using QR
Decomposition blocks.

Block Operation validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

Real Partial-Systolic
Matrix Solve Using QR
Decomposition

Synchronous max((wl+7), ceil((3.5*n2

+ n*(nextpow2(wl) + wl
+ 9.5) + 1)/n))

(wl + 6)*n + 3.5*n2 +
n*(nextpow2(wl) + wl +
9.5) + 9 - n

Complex Partial-Systolic
Matrix Solve Using QR
Decomposition

Synchronous max((wl + 9),
ceil((3.5*n2 +
n*(nextpow2(wl) + wl +
9.5) + 1)/n))

(wl + 7.5)*2*n + 3.5*n2

+ n*(nextpow2(wl) + wl
+ 9.5) + 9 - n

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

2 Blocks

2-98

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 319045 425280 75.02
CLB Registers 261210 850560 30.71
DSPs 6 4272 0.14
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.897 ns
Slack 0.085 ns
Clock Frequency 255.43 MHz

Version History
Introduced in R2020b

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Complex Partial-Systolic Matrix Solve Using QR Decomposition

2-99

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Real Partial-Systolic Matrix Solve Using QR Decomposition | Complex Partial-Systolic Matrix Solve
Using Q-less QR Decomposition | Complex Burst Matrix Solve Using QR Decomposition

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-100

Complex Partial-Systolic Q-less QR Decomposition
Q-less QR decomposition for complex-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the
economy size upper-triangular R factor of the QR decomposition A = QR, where A is a complex-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Partial-Systolic Q-less QR
Decomposition block computes the upper-triangular factor R of the economy size QR decomposition

of
λIn
A

 where λ is the regularization parameter.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

 Complex Partial-Systolic Q-less QR Decomposition

2-101

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. The size of matrix R is n-by-n. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

2 Blocks

2-102

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

 Complex Partial-Systolic Q-less QR Decomposition

2-103

Block Timing

The Partial-Systolic QR Decomposition blocks accept and process A and B matrices row by row. After
accepting m rows, the block outputs the R and C matrices as vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix A row by row.
After accepting m rows, the block outputs the R matrices as single vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

2 Blocks

2-104

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The following table provides details of the timing for the Partial-Systolic QR Decomposition blocks.

Block validIn to ready (cycles) Last Row validIn to
validOut (cycles)

Real Partial-Systolic QR
Decomposition

wl + 7 (wl + 6)*n + 6

Complex Partial-Systolic QR
Decomposition

wl + 9 (wl + 7.5)*2*n + 6

Real Partial-Systolic Q-less QR
Decomposition

wl + 7 (wl + 6)*n + 3

Complex Partial-Systolic Q-less
QR Decomposition

wl + 9 (wl + 7.5)*2*n + 3

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

 Complex Partial-Systolic Q-less QR Decomposition

2-105

Resource Usage Available Utilization (%)
CLB LUTs 295989 425280 69.60
CLB Registers 236040 850560 27.75
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.302 ns
Slack 0.012 ns
Clock Frequency 301.08 MHz

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Complex Partial-Systolic Q-less QR Decomposition block now supports the Tikhonov
“Regularization parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

2 Blocks

2-106

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Partial-Systolic Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition
with Forgetting Factor | Complex Burst Q-less QR Decomposition

Functions
fixed.qlessQR

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Partial-Systolic Q-less QR Decomposition

2-107

Complex Partial-Systolic Q-less QR Decomposition
with Forgetting Factor
Q-less QR decomposition for complex-valued matrices with infinite number of rows
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition A =
QR, without computing Q. A is an infinitely tall complex-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Complex Partial-Systolic Q-less QR Decomposition
with Forgetting Factor block initializes the first upper-triangular factor R to λIn before factoring in
the rows of A, where λ is the regularization parameter and In = eye(n).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If A is a fixed-
point data type, A must be signed, use binary-point scaling, and have the same word length as B.
Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

2 Blocks

2-108

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. The size of matrix R is n-by-n. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of matrix is factored
0.99 (default) | real positive scalar

 Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-109

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Q-less QR Decomposition with Forgetting Factor

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block implements the
following recursion to compute the upper-triangular factor R of continuously streaming n-by-1 row
vectors A(k,:) using forgetting factor α. It's as if matrix A is infinitely tall. The forgetting factor in the
range 0 < α < 1 prevents it from integrating without bound.

R0 = zeros(n, n)

∼ , R1 = qr
R0

A 1, :
, 0

R1 = αR1

∼ , R2 = qr
R1

A 2, :
, 0

R2 = αR2

⋮

∼ , Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk

⋮

Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization

The upper-triangular factor Rk after processing the kth input A(k,:) is computed using the following
iteration.

2 Blocks

2-110

R0 = λIn

, R1 = qr
R0

A 1, :
, 0

R1 = αR1

, R2 = qr
R1

A 2, :
, 0

R2 = αR2

⋮

, Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk

⋮

This is mathematically equivalent to computing the upper-triangular factor Rk of matrix Ak, defined as
follows, though the block never actually creates Ak.

Ak =

αkλIn
αk

αk− 1

⋱
α

A 1:k, :

Forward and Backward Substitution

When an upper triangular factor is ready, then forward and backward substitution are computed with
the current input B to produce output X.

X = Rk\ Rk′ \B

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

 Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-111

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic QR Decomposition with Forgetting Factor blocks accept and process the matrix A
row by row. After accepting the first m rows, the block starts to output the R matrix as a single vector.
From this point, for each row input, the block calculates a R matrix. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input matrix A is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the Q-less QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• validIn to validOut — From a successful row input to the block starting to output the

corresponding solution.

The following table provides details of the timing for the Partial-Systolic Q-less QR Decomposition
with Forgetting Factor blocks.

Block validIn to ready (cycles) validIn to validOut (cycles)
Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

wl + 7 (wl + 6)*n + 3

2 Blocks

2-112

Block validIn to ready (cycles) validIn to validOut (cycles)
Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

wl + 9 (wl + 7.5)*2*n + 3

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• p = 1
• Matrix A dimension: inf-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 327009 425280 76.89
CLB Registers 236476 850560 27.80
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.299 ns
Slack 0.016 ns
Clock Frequency 301.45 MHz

 Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-113

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block supports the
Tikhonov “Regularization parameter” on page 2-0 .

Reduced HDL resource utilization

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

2 Blocks

2-114

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

General
OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Complex
Partial-Systolic QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex
Burst Q-less QR Decomposition

Functions
fixed.qlessQR

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-115

Complex Partial-Systolic QR Decomposition
QR decomposition for complex-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Complex Partial-Systolic QR Decomposition block uses QR decomposition to compute R and C =
Q'B, where QR = A, and A and B are complex-valued matrices. The least-squares solution to Ax = B is
x = R\C. R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to
be the identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Complex Partial-Systolic QR

Decomposition block transforms
λIn
A

 in-place to R = Q′
λIn
A

 and
0n, p

B
 in-place to C = Q′

0n, p
B

 where

λ is the regularization parameter, QR is the economy size QR decomposition of
λIn
A

, A is an m-by-n

matrix, p is the number of columns in B, In = eye(n), and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

2 Blocks

2-116

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false), and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Matrix R
matrix

Economy-size QR decomposition matrix R, returned as a matrix. R is an upper triangular matrix. The
size of matrix R is n-by-n. R has the same data type as A.
Data Types: single | double | fixed point

C — Matrix C=Q'B
matrix

Economy-size QR decomposition matrix C=Q'B, returned as a matrix or vector. C has the same
number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R and C is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

 Complex Partial-Systolic QR Decomposition

2-117

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in input matrices A and B

4 (default) | positive integer-valued scalar

The number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

The number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

The number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0

2 Blocks

2-118

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic QR Decomposition blocks accept and process A and B matrices row by row. After
accepting m rows, the block outputs the R and C matrices as vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Complex Partial-Systolic QR Decomposition

2-119

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix A row by row.
After accepting m rows, the block outputs the R matrices as single vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The following table provides details of the timing for the Partial-Systolic QR Decomposition blocks.

Block validIn to ready (cycles) Last Row validIn to
validOut (cycles)

Real Partial-Systolic QR
Decomposition

wl + 7 (wl + 6)*n + 6

Complex Partial-Systolic QR
Decomposition

wl + 9 (wl + 7.5)*2*n + 6

Real Partial-Systolic Q-less QR
Decomposition

wl + 7 (wl + 6)*n + 3

Complex Partial-Systolic Q-less
QR Decomposition

wl + 9 (wl + 7.5)*2*n + 3

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

2 Blocks

2-120

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 319908 425280 75.22
CLB Registers 250839 850560 29.49
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.299 ns
Slack 0.016 ns
Clock Frequency 301.45 MHz

Version History
Introduced in R2020b

Reduced HDL resource utilization

 Complex Partial-Systolic QR Decomposition

2-121

This block now has an improved algorithm to reduce resource utilization on hardware-constrained
target platforms.

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

2 Blocks

2-122

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

See Also
Blocks
Real Partial-Systolic QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Complex
Burst QR Decomposition

Functions
fixed.qrAB

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Complex Partial-Systolic QR Decomposition

2-123

Divide by Constant and Round
Divide input by a constant and round to integer
Library: Fixed-Point Designer

Description
The Divide by Constant and Round block outputs the result of dividing the input by a constant and
rounds the result to an integer using the specified rounding method.

The Divide by Constant and Round block uses an algorithm that is functionally similar to the
Granlund-Montgomery-Warren Method. The division operation is computed via a multiplication by
inverse, which generally results in better performance on embedded systems.

Ports
Input

X — Dividend
scalar | vector | matrix | N-D array

Dividend, specified as a scalar, vector, matrix, or N-D array.

Divide by Constant and Round does not support data types with word length greater than 128. Slope-
bias representation is not supported for fixed-point data types.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

Y — Result of division and round operation
scalar | vector | matrix | N-D array

Result of division and round operation, returned as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Parameters
Denominator — Divisor
10 (default) | scalar

Divisor, specified as a positive, real-valued, finite scalar.

Programmatic Use
Block Parameter: Denominator
Type: character vector

2 Blocks

2-124

Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric
value
Default: '10'
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Rounding Method — Rounding method to use
Floor (default) | Ceiling | Nearest | Zero | Convergent

Rounding method to use, specified as one of these values:

• Floor — Round to nearest integer in the direction of negative infinity.
• Ceiling — Round to nearest integer in the direction of positive infinity.
• Nearest — Round to the nearest integer. Ties are rounded to the nearest integer in the direction

of positive infinity.
• Zero — Round to the nearest integer in the direction of zero.
• Convergent — Round to the nearest integer. Ties are rounded to the nearest even integer.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Floor' | 'Ceiling' | 'Nearest' | 'Zero' | 'Convergent'
Default: 'Floor'

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

See Also
Divide by Constant HDL Optimized | Divide

Topics
“Choosing a Rounding Method”

 Divide by Constant and Round

2-125

Divide by Constant HDL Optimized
Divide input by a constant and round to integer and generate optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Divide by Constant HDL Optimized block outputs the result of dividing the input by a constant
and rounds the result to an integer using the specified rounding method using an HDL-optimized
architecture with cycle-true latency.

The Divide by Constant HDL Optimized block uses an algorithm that is functionally similar to the
Granlund-Montgomery-Warren Method. The division operation is computed via a multiplication by
inverse, which generally results in better performance on embedded systems.

Ports
Input

X — Dividend
real scalar

Dividend, specified as a real scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

validIn — Whether input is valid
boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the X input port is valid. When this value is 1 (true), the block captures the value on the X input
port. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

Y — Result of division and round operation
scalar

Result of division and round operation, returned as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

validOut — Whether output data is valid
boolean scalar

2 Blocks

2-126

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output Y. When this value is 0 (false), the output
data is not valid.
Data Types: Boolean

Parameters
Denominator for rational division — Divisor
10 (default) | scalar

Divisor, specified as a positive, real-valued, finite scalar.

Programmatic Use
Block Parameter: Denominator
Type: character vector
Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric
value
Default: '10'
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Rounding Method — Rounding method to use
Floor (default) | Ceiling | Nearest | Zero | Convergent

Rounding method to use, specified as one of these values:

• Floor — Round to nearest integer in the direction of negative infinity.
• Ceiling — Round to nearest integer in the direction of positive infinity.
• Nearest — Round to the nearest integer. Ties are rounded to the nearest integer in the direction

of positive infinity.
• Zero — Round to the nearest integer in the direction of zero.
• Convergent — Round to the nearest integer. Ties are rounded to the nearest even integer.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Floor' | 'Ceiling' | 'Nearest' | 'Zero' | 'Convergent'
Default: 'Floor'

Tips
The blocks Divide by Constant HDL Optimized, Real Divide HDL Optimized, and Complex Divide HDL
Optimized all perform the division operation and generate optimized HDL code.

• Real Divide HDL Optimized and Complex Divide HDL Optimized are based on a CORIDC
algorithm. These blocks accept a wide variety of inputs, but will result in greater latency.

• Divide by Constant HDL Optimized accepts only real inputs and a constant divisor. Use of this
block consumes DSP slices, but will complete the division operation in fewer cycles and at a
higher clock rate.

 Divide by Constant HDL Optimized

2-127

Algorithms
The Divide by Constant HDL Optimized uses an HDL-optimized architecture with cycle-true latency.

The Divide by Constant HDL Optimized block uses an algorithm that is functionally similar to the
Granlund-Montgomery-Warren Method. The division operation is computed via a multiplication by
inverse, which generally results in better performance on embedded systems.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Slope-bias representation is not supported for fixed-point data types.

2 Blocks

2-128

See Also
Divide by Constant and Round | Divide

Topics
“Choosing a Rounding Method”

 Divide by Constant HDL Optimized

2-129

Euler to NED Transformation HDL Optimized
Computes Euler to North-East-Down transformation using pipelined or burst architecture and
generates optimized HDL code
Library: Fixed-Point Designer HDL Support / Coordinate

Transformations

Description
The Euler to NED Transformation HDL Optimized block provides two architectures that implement
Euler to North-East-Down (NED) transformation using a CORDIC rotation kernel for FPGA and ASIC
applications.

You can select an architecture that optimizes for either throughput or area.

• Pipelined — Use this architecture for high-throughput applications.
• Burst — Use this architecture for a minimum resource implementation.

The Euler to NED Transformation HDL Optimized block provides hardware-friendly control signals.

Ports
Input

U In — Input array
3-by-1 vector

Input array, specified as a 3-by-1 vector.

Fixed-point inputs must use binary-point scaling.
Example: UIn = [0;0;1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point
Complex Number Support: Yes

Angle In — Angles to rotate by
3-by-1 vector

Angles to rotate by, specified as a 3-by-1 real-valued vector containing the angles phi, theta, and psi
in radians.
Example: AngleIn = [phi;theta;psi]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

2 Blocks

2-130

Valid In — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the U In and Angle In input ports are valid. When this value is 1 (true), the block captures the
values at the input ports U In and Angle In. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

Restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the Valid
In value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

U Out — Rotated array
3-by-1 vector

Rotated array, returned as a 3-by-1 vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Valid Out — Whether output data is valid
boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output U Out. When this value is 0 (false), the
output data is not valid.
Data Types: Boolean

Ready — Whether block is ready for input
Boolean scalar

Whether the block is ready for input, returned as a Boolean scalar. This control signal indicates when
the block is ready for new input data. When this value is 1 (true) and Valid In value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.
Data Types: Boolean

Parameters
Architecture — Architecture type
Pipelined (default) | Burst

This parameter specifies the type of architecture.

• Pipelined — Select this value to specify low-latency architecture.

 Euler to NED Transformation HDL Optimized

2-131

• Burst — Select this value to specify minimum resource architecture.

Programmatic Use
Block Parameter: Architecture
Type: character vector
Values: 'Pipelined' | 'Burst'
Default: 'Pipelined'

Algorithms
Euler-NED Transformation

The Euler to North-East-Down (NED) transformation is carried out by the successive application of
these three rotation matrices.

Rϕ =
1 0 0
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)

Rθ =
cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

Rψ =
cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

Multiplying these matrices together gives the total transformation.

A = RψRθRϕ

=
cos(ψ)cos(θ) cos(ψ)sin(ϕ)sin(θ)− cos(ϕ)sin(ψ) sin(ϕ)sin(ψ) + cos(ϕ)cos(ψ)sin(θ)
cos(θ)sin(ψ) cos(ϕ)cos(ψ) + sin(ϕ)sin(ψ)sin(θ) cos(ϕ)sin(ψ)sin(θ)− cos(ψ)sin(ϕ)
−sin(θ) cos(θ)sin(ϕ) cos(ϕ)cos(θ)

You can transform between two frames related by the angles ϕ, θ

, and ψ by multiplying a vector in an initial frame by the matrix above.

CORDIC Algorithm

CORDIC is an acronym for COordinate Rotation Digital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations. It is an iterative algorithm that approximates the solution by converging toward
the ideal point. Using CORDIC, you can calculate various functions such as sine and cosine.

To use CORDIC to solve the Euler-NED transformation, CORDIC Givens rotations are applied
sequentially in the appropriate subspaces of the initial space. First, rotate by ϕ in the yz-plane, then
rotate by -θ in the xz-plane, then rotate by ψ in the xy-plane.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Virtex®-7.

2 Blocks

2-132

Resource Usage

Algorithm Flip Flops LUT LUTRAM DSPs
Pipelined CORDIC
(sfix14En10)

3141 86 3973 0

Resource Shared
CORDIC
(sfix14En10)

337 659 0 0

Static Timing Analysis

Algorithm Clock Frequency
(MHz)

Latency (Cycles) Latency (ns)

Pipelined CORDIC
(sfix14En10)

347 63 181

Resource Shared
CORDIC (sfix14En10)

347 57 164

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Supports fixed-point data types only. Fixed-point data types must use binary-point scaling.

Generated C/C++ code will have timing of the HDL block.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 Euler to NED Transformation HDL Optimized

2-133

General
InputPipeline Number of input pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only. Fixed-point data types must use binary-point scaling.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Topics
“Hardware-Efficient Euler Rotations Using CORDIC”

2 Blocks

2-134

Hyperbolic Tangent HDL Optimized
Computes CORDIC-based hyperbolic tangent and generates optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Hyperbolic Tangent HDL Optimized block returns the hyperbolic tangent of x, computed using a
CORDIC-based implementation optimized for HDL code generation.

Ports
Input

x — Angle in radians
real finite scalar

Angle in radians, specified as a real finite scalar. If x is a fixed-point or scaled double data type, x
must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the x input port is valid. When this value is 1 (true), the block captures the value on the x input port.
When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

y — Hyperbolic tangent of x
scalar

Hyperbolic tangent of the value at x, returned as a scalar. The value at y is the CORDIC-based
approximation of the hyperbolic tangent of x. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is a fixed-point data type, the
output has the same word length as the input and a fraction length equal to 2 less than the word
length.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

 Hyperbolic Tangent HDL Optimized

2-135

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output y. When this value is 0 (false), the output
data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers.

The block automatically determines the number of iterations, niters, the CORDIC algorithm
performs based on the data type of the input.

Data type of input x niters
single 23
double 52
fixed point One less than the word length of x. The minimum

number of CORDIC iterations is 7.

2 Blocks

2-136

Hardware Efficient Fixed-Point Computations

The Hyperbolic Tangent HDL Optimized block supports HDL code generation for fixed-point data with
binary-point scaling. It is designed with this application in mind, and employs hardware specific
semantics and optimizations. One of these optimizations is resource sharing.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between
resource usage and total throughput for a given computation. Fully pipelined and parallelized
algorithms have the greatest throughput, but they are often too resource intensive to deploy on real
devices. By implementing scheduling logic around one or several core computational circuits, it is
possible to reuse resources throughout a computation. The result is an implementation with a much
smaller footprint, at the cost of a reduced total throughput. This is often an acceptable trade-off, as
resource shared designs can still meet overall latency requirements.

All of the key computational units in the Hyperbolic Tangent HDL Optimized block are reused
throughout the computation life cycle. This includes not only the CORDIC circuitry used to perform
the Givens rotations, but also the adders and multipliers used for updating the angles. This saves
both DSP and fabric resources when deploying to FPGA or ASIC devices.

How to Interface with the Hyperbolic Tangent HDL Optimized Block

The Hyperbolic Tangent HDL Optimized block accepts data when the ready output is high, indicating
that the block is ready to begin a new computation. To send input data to the block, the validIn
signal must be asserted. If the block successfully registers the input value it will de-assert the ready
signal, and the user must then wait until the signal is asserted again to send a new input. This
protocol is summarized in the following wave diagram. Note how the first valid input to the block is
discarded because the block was not ready to accept input data.

When the block has finished the computation and is ready to send the output, it will assert validOut
for one clock cycle. Then ready will be asserted, indicating that the block is ready to accept a new
input value.

Version History
Introduced in R2020a

 Hyperbolic Tangent HDL Optimized

2-137

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Functions
cordictanh

2 Blocks

2-138

Modulo by Constant
Perform modulo operation with a constant denominator
Library: Fixed-Point Designer

Description
The Modulo by Constant block performs the modulo operation (remainder after division) with a
constant denominator.

The Modulo by Constant block uses an algorithm that is functionally similar to a Barrett Reduction.
The division operation is computed via a multiplication by inverse, which generally results in better
performance on embedded systems.

Ports
Input

X — Dividend
real scalar

Dividend, specified as a real scalar.

If X is a fixed-point data type, it must use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | fixed
point

Output

Y — Result of modulus operation
scalar

Result of modulus operation, returned as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | fixed
point

Parameters
Denominator for Modulo Problem — Divisor
10 (default) | scalar

Divisor to use for the modulus operation, specified as a positive, real-valued, finite scalar.

Programmatic Use
Block Parameter: Denominator
Type: character vector

 Modulo by Constant

2-139

Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric
value
Default: '10'
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

See Also
Modulo by Constant HDL Optimized

2 Blocks

2-140

Modulo by Constant HDL Optimized
Perform mod operation with a constant denominator and generate optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Modulo by Constant HDL Optimized block performs the modulo operation (remainder after
division) with a constant denominator using an HDL-optimized architecture with cycle-true latency.

The Modulo by Constant block uses an algorithm that is functionally similar to a Barrett Reduction.
The division operation is computed via a multiplication by inverse, which generally results in better
performance on embedded systems.

Ports
Input

X — Dividend
real scalar

Dividend, specified as a real scalar.

If X is a fixed-point data type, it must use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | fixed
point

validIn — Whether input is valid
boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the X input port is valid. When this value is 1 (true), the block captures the value on the X input
port. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

Y — Result of modulus operation
scalar

Result of modulus operation, returned as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | fixed
point

validOut — Whether output data is valid
boolean scalar

 Modulo by Constant HDL Optimized

2-141

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output Y. When this value is 0 (false), the output
data is not valid.
Data Types: Boolean

Parameters
Denominator — Divisor
10 (default) | real scalar

Divisor to use for the modulus operation, specified as a positive, real-valued, finite scalar.

Programmatic Use
Block Parameter: Denominator
Type: character vector
Values: MATLAB expression that evaluates to a positive, real-valued, finite fixed point or numeric
value
Default: '10'
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Algorithms
The Modulo by Constant HDL Optimized block performs the modulo operation (remainder after
division) with a constant denominator using an HDL-optimized architecture with cycle-true latency.

The modulo operation,

Y = XmodD = X − X
D × D

is an important building block for many mathematical algorithms. However, this formula for X mod D
is computationally inefficient for fixed-point and integer inputs. Many embedded processors lack
instructions for integer division. Those that do have them require many clock cycles to compute the
answer. Division is also inefficient in commercially-available FPGAs, whose arithmetic circuits are
designed for efficient multiplication, addition, and subtraction. Finally, for fixed-point modulo
operations, it is difficult to optimize the word length of internal data types used for the calculation
because the division operation is unbounded, even for small-wordlength inputs.

The denominator in the modulo problem is a compile-time constant, so the block can compute the
floored division by using a multiplication followed by a cast. Rewriting the division operation as

X
D = X × 1

D

shows this. The constant is calculated to the precision necessary to maintain both accuracy and
computational efficiency. The cast that follows discards any fractional bits, which is an efficient
operation on both microprocessors and FPGAs.

The Modulo by Constant block uses an algorithm that is functionally similar to a Barrett Reduction.
The division operation is computed via a multiplication by inverse, which generally results in better
performance on embedded systems.

2 Blocks

2-142

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Slope-bias representation is not supported for fixed-point data types.

See Also
Modulo by Constant

 Modulo by Constant HDL Optimized

2-143

Normalized Reciprocal HDL Optimized
Computes normalized reciprocal and generates optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Normalized Reciprocal HDL Optimized block computes the normalized reciprocal of u, returned
as y and t such that 0.5 < |y| ≤ 1 and 2ey = 1/u.

• If u = 0 and u is a fixed-point or scaled-double data type, then y = 2 – eps(y) and e = 2nextpow2(w) – w
+ f, where w is the word length of u and f is the fraction length of u.

• If u = 0 and u is a floating-point data type, then y = Inf and t = 1.

Ports
Input

u — Value to take normalized reciprocal of
real scalar

Value to take the normalized reciprocal of, specified as a real scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the u input port is valid. When this value is 1 (true), the block captures the value at the u input port.
When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

y — Normalized reciprocal
scalar

Normalized reciprocal that satisfies 0.5 < |y| ≤ 1 and 2ey = 1/u, returned as a scalar.

• If the input at port u is a signed fixed-point or scaled-double data type with word length w, then y
is a signed fixed-point or scaled-double data type with word length w and fraction length w – 2.

2 Blocks

2-144

• If the input at port u is an unsigned fixed-point or scaled-double data type with word length w,
then y is an unsigned fixed-point or scaled-double data type with word length w and fraction
length w – 1.

• If the input at port u is a double, then y is a double.
• If the input at port u is a single, the y is a single.

Data Types: single | double | fixed point

e — Exponent
integer scalar

Exponent that satisfies 0.5 < |y| ≤ 1 and 2ey = 1/u, returned as an integer scalar.
Data Types: int32

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the outputs at ports y and e. When this value is 0
(false), the output data is not valid.
Data Types: Boolean

Algorithms
The Normalized Reciprocal HDL Optimized block works by normalizing the input using a binary
search, which has a latency of approximately log2 of the word length of the input, followed by a
CORDIC reciprocal kernel, which has a latency approximately the same as the word length of the
input.

The Normalized Reciprocal HDL Optimized block is always ready to accept data. After the initial
latency, valid samples are output every sample. The latency in samples for a fixed-point input u is

 D = ceil(log2(u.WordLength)) + u.WordLength + 5

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Normalized Reciprocal HDL Optimized

2-145

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Functions
normalizedReciprocal

Blocks
HDL Reciprocal

2 Blocks

2-146

Real Burst Asynchronous Matrix Solve Using Q-
less QR Decomposition
Compute the value of X in the equation A'AX = B for real-valued matrices using asynchronous Q-less
QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations A'AX = B using asynchronous Q-less QR decomposition, where A and B are real-
valued matrices.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst Asynchronous Matrix
Solve Using Q-less QR Decomposition block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

This block operates asynchronously. The forward- and backward-substitution and Q-less QR
decomposition run independently using the latest R and B matrices.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

 Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-147

Data Types: single | double | fixed point

validInA — Whether A(i,:) input is valid
Boolean scalar

Whether A(i,:) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port X is valid. When this value is 1 (true), the block has successfully computed the
matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

2 Blocks

2-148

readyA — Whether block is ready for input A(i,:)
Boolean scalar

Whether block is ready for input A(i,:), returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true),
the block accepts input data in the next time step. When this value is 0 (false), the block ignores
input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when
the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

 Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-149

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

2 Blocks

2-150

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

 Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-151

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-
row and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously. The matrix is output from the first row to the last
row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

2 Blocks

2-152

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• Last row validIn to validOut — From the last mth row input to the block starting to output the

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row
and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.

 Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-153

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

Last Row
validIn to
validOut
(cycles)

Real Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl+5)*n + 2 + (n
+ 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl*2 + 11)*n + 2
+ (n + 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

2 Blocks

2-154

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 16131 425280 3.79
CLB Registers 21469 850560 2.52
DSPs 4 4272 0.09
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.544 ns
Slack 0.437 ns
Clock Frequency 280.66 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition

2-155

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve
Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-156

Real Burst Matrix Solve Using Q-less QR
Decomposition
Compute the value of X in the equation A'AX = B for real-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear
equations A'AX = B using Q-less QR decomposition, where A and B are real-valued matrices.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst Matrix Solve Using Q-less
QR Decomposition block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-157

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

2 Blocks

2-158

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-159

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Tips
Use fixed.getQlessQRMatrixSolveModel(A,B) to generate a template model containing a Real
Burst Matrix Solve Using Q-less QR Decomposition block for real-valued input matrices A and B.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

2 Blocks

2-160

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-161

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using QR Decomposition blocks accept and process A and B matrices row by
row synchronously. After accepting m rows, the block outputs the X matrix row by row continuously.
The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

2 Blocks

2-162

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• Last row validIn to new matrix ready — From the block starting to output the solution to the

block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process A and B matrices
row by row synchronously. After accepting m rows, the block outputs the X matrix row by row
continuously. The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-163

• Last row validIn to new matrix ready — From the block starting to output the solution to the
block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

Block Operation validIn to ready
(cycles)

Last Row
validIn to
validOut
(cycles)

Last row validIn
to new matrix
ready (cycles)

Real Burst Matrix
Solve Using QR
Decomposition

Synchronous (wl + 5)*n + 2 (wl + 5)*n + 3.5*n2

+ n*(nextPow2(wl)
+ wl + 8.5) + 3

(wl + 5)*n + 3.5*(n
- 1)2 + (n - 1)
(nextPow2(wl) +
wl + 8.5) + 3

Complex Burst
Matrix Solve Using
QR Decomposition

Synchronous (wl*2 + 11)*n + 2 (wl*2 + 11)*n +
3.5*n2 +
n*(nextPow2(wl) +
wl + 8.5) + 3

(wl*2 + 11)*n +
3.5*(n-1)2 + (n-1)
(nextPow2(wl) +
wl + 8.5) + 3

Real Burst Matrix
Solve Using Q-less
QR Decomposition

Synchronous (wl + 5)*n + 2 7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)

7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition

Synchronous (wl*2 + 11)*n + 2 7*22 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)

7*n2 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1

2 Blocks

2-164

• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 13653 425280 3.21
CLB Registers 15739 850560 1.85
DSPs 4 4272 0.09
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.468 ns
Slack 0.427 ns
Clock Frequency 279.88 MHz

Version History
Introduced in R2020a

Support for Tikhonov regularization parameter

The Real Burst Matrix Solve Using Q-less QR Decomposition block now supports the Tikhonov
“Regularization parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-165

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Burst Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real Partial-
Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-166

Real Burst Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor
Compute the value of X in the equation A'AX = B for real-valued matrices with infinite number of
rows using asynchronous Q-less QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block solves the
system of linear equations A'AX = B using asynchronous Q-less QR decomposition, where A and B are
real-valued matrices. A is an infinitely tall matrix representing streaming data.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst Matrix Solve Using Q-less
QR Decomposition with Forgetting Factor block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

This block operates asynchronously. The forward- and backward-substitution and Q-less QR
decomposition run independently using the latest R and B matrices.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an n-by-p matrix where n ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

 Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-167

Data Types: single | double | fixed point

validInA — Whether A(i,:) input is valid
Boolean scalar

Whether A(i,:) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port X is valid. When this value is 1 (true), the block has successfully computed the
matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

2 Blocks

2-168

readyA — Whether block is ready for input A(i,:)
Boolean scalar

Whether block is ready for input A(i,:), returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA is 1 (true),
the block accepts input data in the next time step. When this value is 0 (false), the block ignores
input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether block is ready for input B, returned as a Boolean scalar. This control signal indicates when
the block is ready for new input data. When this value is 1 (true) and validInB is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

 Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-169

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

2 Blocks

2-170

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

 Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-171

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A
row-by-row and matrix B as a single vector. After accepting the first valid pair of A and B matrices,
the block outputs the X matrices row by row continuously. The matrix is output from the first row to
the last row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

2 Blocks

2-172

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• nth row validIn to validOut — From the nth row input to the block starting to output the first

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks
accept matrix A row-by-row and matrix B as a single vector. After accepting the first valid pair of A
and B matrices, the block outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.

 Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-173

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor blocks.

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

nth Row validIn
to validOut
(cycles)

Real Burst Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous (wl + 5)*n + 2 + n 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition
with Forgetting
Factor

Asynchronous (wl*2 + 11)*n + 2
+ n

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n+ 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

2 Blocks

2-174

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• p = 1
• Matrix A dimension: inf-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 16148 425280 3.80
CLB Registers 21484 850560 2.53
DSPs 20 4272 0.47
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.084 ns
Slack 0.23 ns
Clock Frequency 322.23 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-175

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real Partial-
Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-176

Real Burst Q-less QR Decomposition
Q-less QR decomposition for real-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Burst Q-less QR Decomposition block uses QR decomposition to compute the economy size
upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued matrix, without
computing Q. The solution to A'Ax = B is x = R\R'\b.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst Q-less QR Decomposition

block computes the upper-triangular factor R of the economy size QR decomposition of
λIn
A

 where λ

is the regularization parameter.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

 Real Burst Q-less QR Decomposition

2-177

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R(i,:) — Rows of upper-triangular matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. The size of the matrix R is min(m,n)-by-n. The output at R(i,:) has the same data
type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

2 Blocks

2-178

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Tips
Use fixed.getQlessQRDecompositionModel(A) to generate a template model containing a Real
Burst Q-less QR Decomposition block for real-valued input matrix A.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

 Real Burst Q-less QR Decomposition

2-179

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst QR Decomposition blocks accept and process A and B matrices row by row synchronously.
After accepting m rows, the block outputs the R and C matrices row by row continuously. The
matrices are output from the last row to the first row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix A row by row. After
accepting m rows, the block outputs the matrix R row by row continuously. The matrix is output from
the last row to the first row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

2 Blocks

2-180

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.

Block validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

validOut to ready
(cycles)

Real Burst QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst QR
Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

Real Burst Q-less QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst Q-less
QR Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

 Real Burst Q-less QR Decomposition

2-181

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• Matrix A dimension: 16-by-16

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 8006 425280 1.88
CLB Registers 8286 850560 0.97
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 2.89 ns
Slack 0.338 ns
Clock Frequency 333.85 MHz

Version History
Introduced in R2020a

Support for Tikhonov regularization parameter

The Real Burst Q-less QR Decomposition block now supports the Tikhonov “Regularization
parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-182

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Burst QR Decomposition | Complex Burst Q-less QR Decomposition | Real Partial-Systolic QR
Decomposition

Functions
fixed.qlessQR

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Burst Q-less QR Decomposition

2-183

Real Burst Matrix Solve Using QR Decomposition
Compute the value of x in the equation Ax = B for real-valued matrices using QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Burst Matrix Solve Using QR Decomposition block solves the system of linear equations Ax
= B using QR decomposition, where A and B are real-valued matrices. To compute x = A-1, set B to be
the identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst Matrix Solve Using QR

Decomposition block computes the matrix solution of real-valued
λIn
A

X =
0n, p

B
 where λ is the

regularization parameter, A is an m-by-n matrix, p is the number of columns in B, In = eye(n), and
0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

2 Blocks

2-184

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

 Real Burst Matrix Solve Using QR Decomposition

2-185

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: positive integer-valued scalar
Default: 0

Output datatype — Data type of the output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'

2 Blocks

2-186

Default: 'fixdt(1,18,14)'

Tips
Use fixed.getMatrixSolveModel(A,B) to generate a template model containing a Real Burst
Matrix Solve Using QR Decomposition block for real-valued input matrices A and B.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

 Real Burst Matrix Solve Using QR Decomposition

2-187

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

2 Blocks

2-188

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using QR Decomposition blocks accept and process A and B matrices row by
row synchronously. After accepting m rows, the block outputs the X matrix row by row continuously.
The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Real Burst Matrix Solve Using QR Decomposition

2-189

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• Last row validIn to new matrix ready — From the block starting to output the solution to the

block ready to accept the next matrix input.

The Burst Matrix Solve Using Q-less QR Decomposition blocks accept and process A and B matrices
row by row synchronously. After accepting m rows, the block outputs the X matrix row by row
continuously. The matrix is output from the first row to the last row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, X1r3 is the third row of the first X matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row

within one matrix.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

2 Blocks

2-190

• Last row validIn to new matrix ready — From the block starting to output the solution to the
block ready to accept the next matrix input.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

Block Operation validIn to ready
(cycles)

Last Row
validIn to
validOut
(cycles)

Last row validIn
to new matrix
ready (cycles)

Real Burst Matrix
Solve Using QR
Decomposition

Synchronous (wl + 5)*n + 2 (wl + 5)*n + 3.5*n2

+ n*(nextPow2(wl)
+ wl + 8.5) + 3

(wl + 5)*n + 3.5*(n
- 1)2 + (n - 1)
(nextPow2(wl) +
wl + 8.5) + 3

Complex Burst
Matrix Solve Using
QR Decomposition

Synchronous (wl*2 + 11)*n + 2 (wl*2 + 11)*n +
3.5*n2 +
n*(nextPow2(wl) +
wl + 8.5) + 3

(wl*2 + 11)*n +
3.5*(n-1)2 + (n-1)
(nextPow2(wl) +
wl + 8.5) + 3

Real Burst Matrix
Solve Using Q-less
QR Decomposition

Synchronous (wl + 5)*n + 2 7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)

7*n2 + 27*n + 6 +
3*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition

Synchronous (wl*2 + 11)*n + 2 7*22 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)

7*n2 + 33*n + 6 +
4*n*wl +
2*n*nextPow2(wl)
+ min(m,n)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1

 Real Burst Matrix Solve Using QR Decomposition

2-191

• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 9629 425280 2.26
CLB Registers 10005 850560 1.18
DSPs 2 4272 0.05
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 2.893 ns
Slack 0.421 ns
Clock Frequency 343.37 MHz

Version History
Introduced in R2019b

Support for Tikhonov regularization parameter

The Real Burst Matrix Solve Using QR Decomposition block now supports the Tikhonov
“Regularization parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 Blocks

2-192

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Burst Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR
Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qrAB

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Burst Matrix Solve Using QR Decomposition

2-193

Real Burst Q-less QR Decomposition Whole R
Output
Q-less QR decomposition for real-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Burst Q-less QR Decomposition Whole R Output block uses QR decomposition to compute
the economy size upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst Q-less QR Decomposition
Whole R Output block computes the upper-triangular factor R of the economy size QR decomposition

of
λIn
A

 where λ is the regularization parameter.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

2 Blocks

2-194

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Economy size QR decomposition matrix R
vector

Economy size QR decomposition matrix R, returned as a vector. R is an upper triangular matrix. The
size of matrix R is min(m,n)-by-n. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

 Real Burst Q-less QR Decomposition Whole R Output

2-195

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

2 Blocks

2-196

Block Timing

The Burst Q-less QR Decomposition Whole R Output blocks accept and process A and B matrices row
by row synchronously. After accepting m rows, the block outputs the R matrix as a single vector.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The following table provides details of the timing for the Burst Q-less QR Decomposition Whole R
Output blocks.

Block validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

validOut to ready
(cycles)

Real Burst Q-less QR
Decomposition Whole R
Output

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 +
min(m,n) - 1

2

Complex Burst Q-less
QR Decomposition
Whole R Output

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2 + min(m,n) -1

2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

 Real Burst Q-less QR Decomposition Whole R Output

2-197

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• Matrix A dimension: 16-by-16

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 7916 425280 1.86
CLB Registers 8273 850560 0.97
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 2.762 ns
Slack 0.466 ns
Clock Frequency 348.76 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

2 Blocks

2-198

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Complex Burst Q-less QR Decomposition Whole R Output | Real Burst Q-less QR Decomposition | Real
Burst QR Decomposition

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Burst Q-less QR Decomposition Whole R Output

2-199

Real Burst Q-less QR Decomposition with
Forgetting Factor Whole R Output
Q-less QR decomposition for real-valued matrices with infinite number of rows
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition, A =
QR, without computing Q. A is an infinitely tall real-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Real Burst Q-less QR Decomposition with
Forgetting Factor Whole R Output block initializes the first upper-triangular factor R to λIn before
factoring in the rows of A, where λ is the regularization parameter and In = eye(n)

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If A uses a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

2 Blocks

2-200

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Economy size QR decomposition matrix R
vector

Economy size QR decomposition matrix R, returned as a vector. R is an upper triangular matrix. The
size of matrix R is n-by-n. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

 Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

2-201

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: real positive scalar
Default: 0

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a real nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

2 Blocks

2-202

Block Timing

The Burst Q-less QR Decomposition with Forgetting Factor Whole R Output blocks accept and
process the matrix A row by row. After accepting the first m rows, the block starts to output the R
matrix as a vector. Then, for each row input, the block calculates an R matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• validIn to validOut — From a successful row input to the block starting to output the

corresponding solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The following table provides details of the timing for the Burst Q-less QR Decomposition with
Forgetting Factor Whole R Output blocks.

Block validIn to ready
(cycles)

validIn to validOut
(cycles)

validOut to ready
(cycles)

Real Burst Q-less QR
Decomposition with
Forgetting Factor Whole
R Output

(wl + 5)*n + 2 + n (wl + 5)*n + 2 + n - 1 1

Complex Burst Q-less
QR Decomposition with
Forgetting Factor Whole
R Output

(wl*2 + 11)*n + 2 + n (wl*2 + 11)*n + 2 + n -
1

1

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

 Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

2-203

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• Matrix A dimension: inf-by-16

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 8015 425280 1.88
CLB Registers 8289 850560 0.97
DSPs 16 4272 0.37
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 2.872 ns
Slack 0.441 ns
Clock Frequency 345.74 MHz

Version History
Introduced in R2022b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-204

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output | Real Burst Q-less
QR Decomposition Whole R Output

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

2-205

Real Burst QR Decomposition
QR decomposition for real-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Burst QR Decomposition block uses QR decomposition to compute R and C = Q'B, where QR
= A, and A and B are real-valued matrices. The least-squares solution to Ax = B is x = R\C. R is an
upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be the identity
matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Real Burst QR Decomposition block

transforms
λIn
A

 in-place to R = Q′
λIn
A

 and
0n, p

B
 in-place to C = Q′

0n, p
B

 where λ is the

regularization parameter, QR is the economy size QR decomposition of
λIn
A

, A is an m-by-n matrix, p

is the number of columns in B, In = eye(n), and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

2 Blocks

2-206

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R(i,:) — Rows of matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. The size of the matrix R is min(m,n)-by-n. R has the same data type as A.
Data Types: single | double | fixed point

C(i,:) — Rows of matrix C = Q'B
scalar | vector

Rows of the economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the
same number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R(i,:) and C(i,:) is valid. When this value is 1 (true), the block has
successfully computed the R and C matrices. When this value is 0 (false), the output data is not
valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the
block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the

 Real Burst QR Decomposition

2-207

block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector

2 Blocks

2-208

Values: real nonnegative scalar
Default: 0

Tips
Use fixed.getQRDecompositionModel(A,B) to generate a template model containing a Real
Burst QR Decomposition block for real-valued input matrices A and B.

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst QR Decomposition blocks accept and process A and B matrices row by row synchronously.
After accepting m rows, the block outputs the R and C matrices row by row continuously. The
matrices are output from the last row to the first row.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Real Burst QR Decomposition

2-209

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.
• validOut to ready — From the block starting to output the solution to the block ready to accept

the next matrix input.

The Burst Q-less QR Decomposition blocks accept and process the matrix A row by row. After
accepting m rows, the block outputs the matrix R row by row continuously. The matrix is output from
the last row to the first row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1r3 is the third row of the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

2 Blocks

2-210

• validOut to ready — From the block starting to output the solution to the block ready to accept
the next matrix input.

The following table provides details of the timing for the Burst QR Decomposition blocks.

Block validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

validOut to ready
(cycles)

Real Burst QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst QR
Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

Real Burst Q-less QR
Decomposition

(wl + 5)*min(m,n) + 2 (wl + 5)*min(m,n) + 2 min(m,n) + 1

Complex Burst Q-less
QR Decomposition

(wl*2 + 11)*min(m,n) +
2

(wl*2 + 11)*min(m,n) +
2

min(m,n) + 1

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 8646 425280 2.03

 Real Burst QR Decomposition

2-211

Resource Usage Available Utilization (%)
CLB Registers 8797 850560 1.03
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.104 ns
Slack 0.211 ns
Clock Frequency 320.27 MHz

Version History
Introduced in R2019b

Support for Tikhonov regularization parameter

The Real Burst QR Decomposition block now supports the Tikhonov “Regularization parameter” on
page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

2 Blocks

2-212

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Burst QR Decomposition | Real Burst Q-less QR Decomposition | Real Partial-Systolic QR
Decomposition

Functions
fixed.qrAB

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Burst QR Decomposition

2-213

Real Divide HDL Optimized
Divide one real input by another and generate optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Real Divide HDL Optimized block outputs the result of dividing the real scalar num by the real
scalar den, such that y = num/den.

Limitations
Data type override is not supported for the Real Divide HDL Optimized block.

Ports
Input

num — Numerator
real scalar

Numerator, specified as a real scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

den — Denominator
real scalar

Denominator, specified as a real scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the num and den input ports are valid. When this value is 1 (true), the block captures the values at
the input ports num and den. When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

2 Blocks

2-214

Output

y — Output computed by dividing inputs
real scalar

Output computed by dividing num by den, such that y = num/den, returned as a real scalar with the
data type specified by the Output datatype parameter.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output at port y. When this value is 0 (false), the
output data is not valid.
Data Types: Boolean

Parameters
Output datatype — Data type of the output
fixdt(1,18,10) (default) | single | fixdt(1,16,0) | <data type expression>

Data type of the output y, specified as fixdt(1,18,10), single, fixdt(1,16,0), or as a user-
specified data type expression. The type can be specified directly or expressed as a data type object,
such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,10)' | 'single' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'fixdt(1,18,10)'

Tips
The blocks Divide by Constant HDL Optimized, Real Divide HDL Optimized, and Complex Divide HDL
Optimized all perform the division operation and generate optimized HDL code.

• Real Divide HDL Optimized and Complex Divide HDL Optimized are based on a CORIDC
algorithm. These blocks accept a wide variety of inputs, but will result in greater latency.

• Divide by Constant HDL Optimized accepts only real inputs and a constant divisor. Use of this
block consumes DSP slices, but will complete the division operation in fewer cycles and at a
higher clock rate.

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers.

 Real Divide HDL Optimized

2-215

Fully Pipelined Fixed-Point Computations

The Real Divide HDL Optimized block supports HDL code generation for fixed-point data with binary-
point scaling. It is designed with this application in mind, and employs hardware specific semantics
and optimizations. One of these optimizations is pipelining its entire internal circuitry to maintain a
very high throughput.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between
resource usage and total throughput for a given computation. Resource-sharing often reduces the
resources consumed by a design, but also reduces the throughput in the process. Simple arithmetic
and trigonometric computations, which typically form parts of bigger computations, require high
throughput to drive circuits further in the design. Thus, fully pipelined implementations consume
more on-chip resources but are beneficial in large designs.

All of the key computational units in the Real Divide HDL Optimized block are fully pipelined
internally. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also
the adders and shifters used elsewhere in the design, thus ensuring maximum throughput.

How to Interface with the Real Divide HDL Optimized Block

Because of its fully pipelined nature, the Real Divide HDL Optimized block is able to accept input
data on any cycle, including consecutive cycles. To send input data to the block, the validIn signal
must be true. When the block has finished the computation and is ready to send the output, it will
change validOut to true for one clock cycle. For inputs sent on consecutive cycles, validOut will
also be set to true on consecutive cycles. Both the numerator and the denominator must be sent
together on the same cycle.

Division by Zero Behavior

For fixed-point inputs num and den, the Real Divide HDL Optimized block wraps on overflow for
division by zero. The behavior for fixed-point division by zero is summarized in the table below.

Wrap Overflow Saturate Overflow
0/0 = 0 0/0 = 0
1/0 = 0 1/0 = upper bound
-1/0 = 0 -1/0 = lower bound

For floating-point inputs, the Real Divide HDL Optimized block follows IEEE Standard 754.

2 Blocks

2-216

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Restrictions

Supports binary-point scaled fixed-point data types only.

See Also
Blocks
Complex Divide HDL Optimized | Real Reciprocal HDL Optimized | Normalized Reciprocal HDL
Optimized

Functions
fixed.cordicReciprocal | fixed.cordicDivide

 Real Divide HDL Optimized

2-217

Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition
Compute value of X in the equation A'AX = B for real-valued matrices using Q-less QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations A'AX = B using Q-less QR decomposition, where A and B are real-valued matrices.

When “Regularization parameter” on page 2-0 is nonzero, the Real Partial-Systolic Matrix Solve
Using Q-less QR Decomposition block solves the matrix equation

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularization parameter, A is an m-by-n matrix, and In = eye(n).

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Matrix B
vector | matrix

Real matrix B, specified as a vector or matrix. B is an n-by-p matrix where n ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

2 Blocks

2-218

Whether A(i, :) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1
(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
vector | matrix

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A(i, :), returned as a Boolean scalar. This control signal
indicates when the block is ready for new input data. When this value is 1 (true) and validInA

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-219

value is 1 (true), the block accepts input data in the next time step. When this value is 0 (false), the
block ignores input data in the next time step.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p

2 Blocks

2-220

Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.
Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-221

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Synchronous vs Asynchronous Implementation

The Matrix Solve Using QR Decomposition blocks operate synchronously. These blocks first
decompose the input A and B matrices into R and C matrices using a QR decomposition block. Then,
a back substitute block computes RX = C. The input A and B matrices propagate through the system
in parallel, in a synchronized way.

The Matrix Solve Using Q-less QR Decomposition blocks operate asynchronously. First, Q-less QR
decomposition is performed on the input A matrix and the resulting R matrix is put into a buffer.
Then, a forward backward substitution block uses the input B matrix and the buffered R matrix to
compute R'RX = B. Because the R and B matrices are stored separately in buffers, the upstream Q-
less QR decomposition block and the downstream Forward Backward Substitute block can run
independently. The Forward Backward Substitute block starts processing when the first R and B
matrices are available. Then it runs continuously using the latest buffered R and B matrices,
regardless of the status of the Q-less QR Decomposition block. For example, if the upstream block
stops providing A and B matrices, the Forward Backward Substitute block continues to generate the
same output using the last pair of R and B matrices.

2 Blocks

2-222

The Burst (Asynchronous) Matrix Solve Using Q-less QR Decomposition blocks are available in both
synchronous and asynchronous operation variants, as denoted by the block name.

Block Timing

The Burst Asynchronous Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-
row and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously. The matrix is output from the first row to the last
row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-223

• validIn to ready — From a successful A row input to the block being ready to accept the next
row.

• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it
generates output at a constant rate. This is the delay between two adjacent valid outputs.

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition blocks accept matrix A row-by-row
and matrix B as a single vector. After accepting the first valid pair of A and B matrices, the block
outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• Last row validIn to validOut — From the last mth row input to the block starting to output the

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using QR Decomposition
and Burst Matrix Solve Using Q-less QR Decomposition blocks.

2 Blocks

2-224

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

Last Row
validIn to
validOut
(cycles)

Real Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl+5)*n + 2 + (n
+ 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Asynchronous
Matrix Solve Using
Q-less QR
Decomposition

Asynchronous (wl*2 + 11)*n + 2
+ (n + 1)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-225

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 104968 425280 24.68
CLB Registers 90547 850560 10.65
DSPs 4 4272 0.09
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.785 ns
Slack 0.197 ns
Clock Frequency 262.95 MHz

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block now supports the
Tikhonov “Regularization parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

2 Blocks

2-226

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting
Factor | Real Burst Matrix Solve Using Q-less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-227

Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor
Compute value of X in the equation A'AX = B for real-valued matrices with infinite number of rows
using Q-less QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block
solves the system of linear equations A'AX = B using Q-less QR decomposition, where A and B are
real-valued matrices. A is an infinitely tall matrix representing streaming data.

When the regularization parameter is nonzero, the Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor initializes the first upper-triangular factor R to λIn before
factoring in the rows of A, where λ is the regularization parameter and In = eye(n).

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Matrix B
matrix

Real matrix B, specified as a matrix. B is an n-by-p matrix where n ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(i, ;) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1

2 Blocks

2-228

(true), the block captures the values at the A(i,:) input port. When this value is 0 (false), the
block ignores the input samples.

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are both 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
vector | matrix

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-229

After sending a true validInA signal, there may be some delay before readyA is set to false. To
ensure all data is processed, you must wait until readyA is set to false before sending another
true validInA signal.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

After sending a true validInB signal, there may be some delay before readyB is set to false. To
ensure all data is processed, you must wait until readyB is set to false before sending another
true validInB signal.
Data Types: Boolean

Parameters
Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar

2 Blocks

2-230

Default: 0.99

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Tips
• Use fixed.forgettingFactor to compute the forgetting factor, α, for an infinite number of

rows with the equivalent gain of a matrix with m rows.
• Use fixed.forgettingFactorInverse to compute the number of rows, m, of a matrix with

equivalent gain corresponding to forgetting factor α

.

Algorithms
Q-less QR Decomposition with Forgetting Factor

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block
implements the following recursion to compute the upper-triangular factor R of continuously
streaming n-by-1 row vectors A(k,:) using forgetting factor α. It's as if matrix A is infinitely tall. The
forgetting factor in the range 0 < α < 1 prevents it from integrating without bound.

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-231

R0 = zeros(n, n)

∼ , R1 = qr
R0

A 1, :
, 0

R1 = αR1

∼ , R2 = qr
R1

A 2, :
, 0

R2 = αR2

⋮

∼ , Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk

⋮

Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization

The output Xk after processing the kth input A(k,:) is computed using the following iteration.

R0 = λIn

, R1 = qr
R0

A 1, :
, 0

R1 = αR1
X1 = R1\ R′1\B

, R2 = qr
R1

A 2, :
, 0

R2 = αR2
X2 = R2\ R′2\B

⋮

, Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk
Xk = Rk\ R′k\B

⋮

This is mathematically equivalent to computing A'kAkX = B, where Ak is defined as follows, though the
block never actually creates Ak.

Ak =

αkλIn
αk

αk− 1

⋱
α

A 1:k, :

2 Blocks

2-232

Forward and Backward Substitution

When an upper triangular factor is ready, then forward and backward substitution are computed with
the current input B to produce output X.

X = Rk\ Rk′ \B

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks accept matrix A
row-by-row and matrix B as a single vector. After accepting the first valid pair of A and B matrices,
the block outputs the X matrices row by row continuously. The matrix is output from the first row to
the last row.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-233

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.
• nth row validIn to validOut — From the nth row input to the block starting to output the first

solution.
• This block is always ready to accept B matrices, so readyB is always asserted.

The Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor blocks
accept matrix A row-by-row and matrix B as a single vector. After accepting the first valid pair of A
and B matrices, the block outputs the X matrices row by row continuously.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, A1r2 is the second row of the first A matrix, and so on.
• validIn to ready — From a successful A row input to the block being ready to accept the next

row.
• validOut to validOut — Because the Forward Backward Substitution block runs continuously, it

generates output at a constant rate. This is the delay between two adjacent valid outputs.

2 Blocks

2-234

• Last row validIn to validOut — From the last mth row input to the block starting to output the
solution.

• This block is always ready to accept B matrices, so readyB is always asserted.

The following table provides details of the timing for the Burst Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor and Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor blocks.

Block Operation validIn to ready
(cycles)

validOut to
validOut
(cycles)

nth Row validIn
to validOut
(cycles)

Real Burst Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous (wl + 5)*n + 2 + n 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 5)*n + n

Complex Burst
Matrix Solve Using
Q-less QR
Decomposition
with Forgetting
Factor

Asynchronous (wl*2 + 11)*n + 2
+ n

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n+ 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl*2 + 11)*n +
n

Real Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 7 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 6)*n + 2

Complex Partial-
Systolic Matrix
Solve Using Q-less
QR Decomposition
with Forgetting
Factor

Asynchronous wl + 9 4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)

4*n2 + 25*n + 5 +
2*n*wl +
2*n*nextpow2(wl)
+ (wl + 7.5)*2*n +
2

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-235

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• p = 1
• Matrix A dimension: inf-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 250 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 120582 425280 28.35
CLB Registers 90769 850560 10.67
DSPs 4 4272 0.09
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 4 ns
Data Path Delay 3.853 ns
Slack 0.129 ns
Clock Frequency 258.33 MHz

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block
now supports the Tikhonov “Regularization parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-236

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real
Partial-Systolic Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-
less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-237

Real Partial-Systolic Matrix Solve Using QR
Decomposition
Compute value of x in the equation Ax = B for real-valued matrices using QR decomposition
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Linear System Solvers

Description
The Real Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear
equations Ax = B using QR decomposition, where A and B are real-valued matrices. To compute x =
A-1, set B to be the identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Real Partial-Systolic Matrix Solve

Using QR Decomposition block computes the matrix solution of real-valued
λIn
A

X =
0n, p

B
 where λ is

the regularization parameter, A is an m-by-n matrix, p is the number of columns in B, In = eye(n),
and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

2 Blocks

2-238

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

 Real Partial-Systolic Matrix Solve Using QR Decomposition

2-239

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'

2 Blocks

2-240

Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic Matrix Solve Using QR Decomposition blocks accept and process A and B
matrices row by row. After accepting m rows, the block outputs the matrix X as a single vector. The
partial-systolic implementation uses a pipelined structure, so the block can accept new matrix inputs
before outputting the result of the current matrix.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Real Partial-Systolic Matrix Solve Using QR Decomposition

2-241

In the figure,

• A1r1 is the first row of the first A matrix and X1 is the matrix X, output as a vector.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The following table provides details of the timing for the Partial-Systolic Matrix Solve Using QR
Decomposition blocks.

Block Operation validIn to ready
(cycles)

Last Row validIn to
validOut (cycles)

Real Partial-Systolic
Matrix Solve Using QR
Decomposition

Synchronous max((wl+7), ceil((3.5*n2

+ n*(nextpow2(wl) + wl
+ 9.5) + 1)/n))

(wl + 6)*n + 3.5*n2 +
n*(nextpow2(wl) + wl +
9.5) + 9 - n

Complex Partial-Systolic
Matrix Solve Using QR
Decomposition

Synchronous max((wl + 9),
ceil((3.5*n2 +
n*(nextpow2(wl) + wl +
9.5) + 1)/n))

(wl + 7.5)*2*n + 3.5*n2

+ n*(nextpow2(wl) + wl
+ 9.5) + 9 - n

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

2 Blocks

2-242

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 110589 425280 26.00
CLB Registers 87850 850560 10.33
DSPs 2 4272 0.05
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.163 ns
Slack 0.151 ns
Clock Frequency 314.23 MHz

Version History
Introduced in R2020b

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Real Partial-Systolic Matrix Solve Using QR Decomposition

2-243

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve
Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

Functions
fixed.qrMatrixSolve

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

2 Blocks

2-244

Real Partial-Systolic Q-less QR Decomposition
Q-less QR decomposition for real-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the
economy size upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

When “Regularization parameter” on page 2-0 is nonzero, the Real Partial-Systolic Q-less QR
Decomposition block computes the upper-triangular factor R of the economy size QR decomposition

of
λIn
A

 where λ is the regularization parameter.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

 Real Partial-Systolic Q-less QR Decomposition

2-245

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Upper-triangular matrix R
matrix

Economy size QR decomposition matrix R, returned as a vector or matrix. R is an upper triangular
matrix. The size of matrix R is n-by-n. The output at R has the same data type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

2 Blocks

2-246

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic QR Decomposition blocks accept and process A and B matrices row by row. After
accepting m rows, the block outputs the R and C matrices as vectors. The partial-systolic

 Real Partial-Systolic Q-less QR Decomposition

2-247

implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix A row by row.
After accepting m rows, the block outputs the R matrices as single vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.

2 Blocks

2-248

• Last row validIn to validOut — From the last row input to the block starting to output the
solution.

The following table provides details of the timing for the Partial-Systolic QR Decomposition blocks.

Block validIn to ready (cycles) Last Row validIn to
validOut (cycles)

Real Partial-Systolic QR
Decomposition

wl + 7 (wl + 6)*n + 6

Complex Partial-Systolic QR
Decomposition

wl + 9 (wl + 7.5)*2*n + 6

Real Partial-Systolic Q-less QR
Decomposition

wl + 7 (wl + 6)*n + 3

Complex Partial-Systolic Q-less
QR Decomposition

wl + 9 (wl + 7.5)*2*n + 3

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 96911 425280 22.79

 Real Partial-Systolic Q-less QR Decomposition

2-249

Resource Usage Available Utilization (%)
CLB Registers 77355 850560 9.09
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.221 ns
Slack 0.095 ns
Clock Frequency 308.80 MHz

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The RealPartial-Systolic Q-less QR Decomposition block now supports the Tikhonov “Regularization
parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

2 Blocks

2-250

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less QR Decomposition
with Forgetting Factor | Real Partial-Systolic QR Decomposition | Real Burst Q-less QR Decomposition

Functions
fixed.qlessQR

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Partial-Systolic Q-less QR Decomposition

2-251

Real Partial-Systolic Q-less QR Decomposition with
Forgetting Factor
Q-less QR decomposition for real-valued matrices with infinite number of rows
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition A =
QR, without computing Q. A is an infinitely tall real-valued matrix representing streaming data.

When the regularization parameter is nonzero, the Real Partial-Systolic Q-less QR Decomposition
with Forgetting Factor block initializes the first upper-triangular factor R to λIn before factoring in
the rows of A, where λ is the regularization parameter and In = eye(n).

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If A uses a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block
ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

2 Blocks

2-252

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Upper-triangular matrix R
matrix

Economy size QR decomposition matrix R multiplied by the Forgetting factor parameter,
returned as a matrix. R is an upper triangular matrix. The size of matrix R is n-by-n. The output at R
has the same data type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-253

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Q-less QR Decomposition with Forgetting Factor

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block implements the
following recursion to compute the upper-triangular factor R of continuously streaming n-by-1 row
vectors A(k,:) using forgetting factor α. It's as if matrix A is infinitely tall. The forgetting factor in the
range 0 < α < 1 prevents it from integrating without bound.

R0 = zeros(n, n)

∼ , R1 = qr
R0

A 1, :
, 0

R1 = αR1

∼ , R2 = qr
R1

A 2, :
, 0

R2 = αR2

⋮

∼ , Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk

⋮

Q-less QR Decomposition with Forgetting Factor and Tikhonov Regularization

The upper-triangular factor Rk after processing the kth input A(k,:) is computed using the following
iteration.

2 Blocks

2-254

R0 = λIn

, R1 = qr
R0

A 1, :
, 0

R1 = αR1

, R2 = qr
R1

A 2, :
, 0

R2 = αR2

⋮

, Rk = qr
Rk− 1
A k, :

, 0

Rk = αRk

⋮

This is mathematically equivalent to computing the upper-triangular factor Rk of matrix Ak, defined as
follows, though the block never actually creates Ak.

Ak =

αkλIn
αk

αk− 1

⋱
α

A 1:k, :

Forward and Backward Substitution

When an upper triangular factor is ready, then forward and backward substitution are computed with
the current input B to produce output X.

X = Rk\ Rk′ \B

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-255

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic QR Decomposition with Forgetting Factor blocks accept and process the matrix A
row by row. After accepting the first m rows, the block starts to output the R matrix as a single vector.
From this point, for each row input, the block calculates a R matrix. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input matrix A is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the Q-less QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• validIn to validOut — From a successful row input to the block starting to output the

corresponding solution.

The following table provides details of the timing for the Partial-Systolic Q-less QR Decomposition
with Forgetting Factor blocks.

Block validIn to ready (cycles) validIn to validOut (cycles)
Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

wl + 7 (wl + 6)*n + 3

2 Blocks

2-256

Block validIn to ready (cycles) validIn to validOut (cycles)
Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

wl + 9 (wl + 7.5)*2*n + 3

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• n = 16
• p = 1
• Matrix A dimension: inf-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 112218 425280 26.39
CLB Registers 77563 850560 9.12
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.191 ns
Slack 0.125 ns
Clock Frequency 311.69 MHz

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-257

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block now supports the
Tikhonov “Regularization parameter” on page 2-0 .

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

2 Blocks

2-258

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Real Partial-Systolic Q-less
QR Decomposition | Real Partial-Systolic QR Decomposition | Real Burst Q-less QR Decomposition

Functions
fixed.qlessQR

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-259

Real Partial-Systolic QR Decomposition
QR decomposition for real-valued matrices
Library: Fixed-Point Designer HDL Support / Matrices and Linear

Algebra / Matrix Factorizations

Description
The Real Partial-Systolic QR Decomposition block uses QR decomposition to compute R and C = Q'B,
where QR = A, and A and B are real-valued matrices. The least-squares solution to Ax = B is x = R\C.
R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be the
identity matrix.

When “Regularization parameter” on page 2-0 is nonzero, the Real Partial-Systolic QR

Decomposition block transforms
λIn
A

 in-place to R = Q′
λIn
A

 and
0n, p

B
 in-place to C = Q′

0n, p
B

 where

λ is the regularization parameter, QR is the economy size QR decomposition of
λIn
A

, A is an m-by-n

matrix, p is the number of columns in B, In = eye(n), and 0n,p = zeros(n,p).

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

2 Blocks

2-260

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at
ready is 1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this
value is 0 (false), the block ignores the input samples.

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. The size of matrix R is n-by-n. R has the same data type as A.
Data Types: single | double | fixed point

C — Matrix C = Q'B
scalar | vector

Economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the same
number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R and C is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the
block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

 Real Partial-Systolic QR Decomposition

2-261

After sending a true validIn signal, there may be some delay before ready is set to false. To
ensure all data is processed, you must wait until ready is set to false before sending another true
validIn signal.
Data Types: Boolean

Parameters
Number of rows in input matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: regularizationParameter
Type: character vector
Values: real nonnegative scalar
Default: 0

2 Blocks

2-262

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area
Systolic C O(n) O(mn2)
Partial-Systolic C O(m) O(n2)
Partial-Systolic with
Forgetting Factor

C O(n) O(n2)

Burst O(n) O(mn2) O(n)

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

For additional considerations in selecting a block for your application, see “Choose a Block for HDL-
Optimized Fixed-Point Matrix Operations”.

AMBA AXI Handshake Process

This block uses the AMBA AXI handshake protocol [1]. The valid/ready handshake process is used
to transfer data and control information. This two-way control mechanism allows both the manager
and subordinate to control the rate at which information moves between manager and subordinate. A
valid signal indicates when data is available. The ready signal indicates that the block can accept
the data. Transfer of data occurs only when both the valid and ready signals are high.

Block Timing

The Partial-Systolic QR Decomposition blocks accept and process A and B matrices row by row. After
accepting m rows, the block outputs the R and C matrices as vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A and B matrices are 3-by-3. Additionally assume that validIn
asserts before ready, meaning that the upstream data source is faster than the QR decomposition.

 Real Partial-Systolic QR Decomposition

2-263

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The Partial-Systolic Q-less QR Decomposition blocks accept and process the matrix A row by row.
After accepting m rows, the block outputs the R matrices as single vectors. The partial-systolic
implementation uses a pipelined structure, so the block can accept new matrix inputs before
outputting the result of the current matrix.

For example, assume that the input A matrix is 3-by-3. Additionally assume that validIn asserts
before ready, meaning that the upstream data source is faster than the QR decomposition.

In the figure,

• A1r1 is the first row of the first A matrix, R1 is the first R matrix, and so on.
• validIn to ready — From a successful row input to the block being ready to accept the next row.
• Last row validIn to validOut — From the last row input to the block starting to output the

solution.

The following table provides details of the timing for the Partial-Systolic QR Decomposition blocks.

Block validIn to ready (cycles) Last Row validIn to
validOut (cycles)

Real Partial-Systolic QR
Decomposition

wl + 7 (wl + 6)*n + 6

Complex Partial-Systolic QR
Decomposition

wl + 9 (wl + 7.5)*2*n + 6

Real Partial-Systolic Q-less QR
Decomposition

wl + 7 (wl + 6)*n + 3

Complex Partial-Systolic Q-less
QR Decomposition

wl + 9 (wl + 7.5)*2*n + 3

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. wl represents the word length of A.

2 Blocks

2-264

• If the data type of A is fixed point, then wl is the word length.
• If the data type of A is double, then wl is 53.
• If the data type of A is single, then wl is 24.

Hardware Resource Utilization

This block supports HDL code generation using the Simulink HDL Workflow Advisor. For an example,
see “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder) and “Implement
Digital Downconverter for FPGA” (DSP HDL Toolbox).

This example data was generated by synthesizing the block on a Xilinx Zynq UltraScale + RFSoC
ZCU111 evaluation board. The synthesis tool was Vivado v.2020.2 (win64).

The following parameters were used for synthesis.

• Block parameters:

• m = 16
• n = 16
• p = 1
• Matrix A dimension: 16-by-16
• Matrix B dimension: 16-by-1

• Input data type: sfix16_En14
• Target frequency: 300 MHz

The following tables show the post place-and-route resource utilization results and timing summary,
respectively.

Resource Usage Available Utilization (%)
CLB LUTs 105922 425280 24.91
CLB Registers 82211 850560 9.67
DSPs 0 4272 0.00
Block RAM Tile 0 1080 0.00
URAM 0 80 0.00

 Value
Requirement 3.3333 ns
Data Path Delay 3.276 ns
Slack 0.038 ns
Clock Frequency 303.46 MHz

Version History
Introduced in R2020b

 Real Partial-Systolic QR Decomposition

2-265

References
[1] "AMBA AXI and ACE Protocol Specification Version E." https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-
read-and-write-transactions/Handshake-process

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Complex Partial-Systolic QR Decomposition | Real Partial-Systolic Q-less QR Decomposition | Real
Burst QR Decomposition

2 Blocks

2-266

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process

Functions
fixed.qrAB

Topics
“Choose a Block for HDL-Optimized Fixed-Point Matrix Operations”

 Real Partial-Systolic QR Decomposition

2-267

Real Reciprocal HDL Optimized
Compute reciprocal and generate optimized HDL code
Library: Fixed-Point Designer HDL Support / Math Operations

Description
The Real Reciprocal HDL Optimized block computes 1/u, where u is a real scalar.

Limitations
Data type override is not supported for the Real Reciprocal HDL Optimized block.

Ports
Input

u — Value to take reciprocal of
real scalar

Value to take the reciprocal of, specified as a real scalar.

Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the u input port is valid. When this value is 1 (true), the block captures the value at the u input port.
When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

y — Reciprocal
real scalar

Reciprocal, returned as a real scalar with the data type specified by the Output datatype parameter.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

2 Blocks

2-268

Whether output data is valid, returned as a Boolean scalar. When the value of this control signal is 1
(true), the block has successfully computed the output at port y. When this value is 0 (false), the
output data is not valid.
Data Types: Boolean

Parameters
Output datatype — Data type of output
fixdt(1,18,10) (default) | single | fixdt(1,16,0) | <data type expression>

Data type of the output y, specified as fixdt(1,18,10), single, fixdt(1,16,0), or as a user-
specified data type expression. The type can be specified directly, or expressed as a data type object,
such as Simulink.NumericType.
Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,10)' | 'single' | 'fixdt(1,16,0)' | '<data type expression>'
Default: 'fixdt(1,18,10)'

Algorithms
Division by Zero Behavior

For fixed-point input u, the Real Reciprocal HDL Optimized block wraps on overflow for division by
zero. The behavior for fixed-point division by zero is summarized in the table below.

Wrap Overflow Saturate Overflow
0/0 = 0 0/0 = 0
1/0 = 0 1/0 = upper bound
-1/0 = 0 -1/0 = lower bound

For floating-point inputs, the Real Reciprocal HDL Optimized block follows IEEE Standard 754.

How to Interface with the Real Reciprocal HDL Optimized Block

Because of its fully pipelined nature, the Real Reciprocal HDL Optimized block is able to accept input
data on any cycle, including consecutive clock cycles. To send input data to the block, the validIn
signal must be true. When the block has finished the computation and is ready to send the output, it
will change validOut to true for one clock cycle. For inputs set of consecutive cycles, validOut will
also be set to true on consecutive cycles.

The latency is defined from the input to the corresponding output. For example in the figure below,
from In1 to Out1, In2 to Out2, In3 to Out3, etc.

 Real Reciprocal HDL Optimized

2-269

The latency depends on the input data type, as summarized in the table.

Input Type Latency
fi nextpow2(u.WordLength) + 1 +

u.WordLength + 2 - issigned(u) + 7
Scaled double u.WordLength + 2 - issigned(u) + 7
Floating point 7

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Slope-bias representation is not supported for fixed-point data types.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Restrictions

Supports fixed-point data types only.

See Also
Blocks
Real Divide HDL Optimized | Complex Divide HDL Optimized | Normalized Reciprocal HDL Optimized

Functions
fixed.cordicReciprocal | fixed.cordicDivide

2 Blocks

2-270

Properties

3

fi Object Properties
The properties associated with fi objects are described in the following sections in alphabetical
order.

You can set these properties when you create a fi object. For example, to set the stored integer value
of a fi object:

x = fi(0,true,16,15,'int',4);

Note The fimath properties and numerictype properties are also properties of the fi object.
Refer to “fimath Object Properties” and “numerictype Object Properties” for more information.

bin
Stored integer value of a fi object in binary.

data
Numerical real-world value of a fi object.

dec
Stored integer value of a fi object in decimal.

double
Real-world value of a fi object stored as a MATLAB double.

fimath
fimath properties associated with a fi object. fimath properties determine the rules for
performing fixed-point arithmetic operations on fi objects. fi objects get their fimath properties
from a local fimath object or from default values. The factory-default fimath values have the
following settings:

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

To learn more about fimath objects, refer to “fimath Object Construction”. For more information
about each of the fimath object properties, refer to “fimath Object Properties”.

hex
Stored integer value of a fi object in hexadecimal.

3 Properties

3-2

int
Stored integer value of a fi object, stored in a built-in MATLAB integer data type.

NumericType
The numerictype object contains all the data type and scaling attributes of a fixed-point object. The
numerictype object behaves like any MATLAB structure, except that it only lets you set valid values
for defined fields. For a table of the possible settings of each field of the structure, see “Valid Values
for numerictype Object Properties” in the Fixed-Point Designer User's Guide.

Note You cannot change the numerictype properties of a fi object after fi object creation.

oct
Stored integer value of a fi object in octal.

Value
Full-precision real world value of a fi object, stored as a character vector.

 fi Object Properties

3-3

Functions

4

abs
Absolute value of fi object

Syntax
y = abs(a)
y = abs(a,T)
y = abs(a,F)
y = abs(a,T,F)

Description
y = abs(a) returns the absolute value of fi object a with the same numerictype object as a.
Intermediate quantities are calculated using the fimath associated with a. The output fi object, y,
has the same local fimath as a.

y = abs(a,T) returns a fi object with a value equal to the absolute value of a and numerictype
object T. Intermediate quantities are calculated using the fimath associated with a and the output
fi object y has the same local fimath as a. See “Data Type Propagation Rules” on page 4-8.

y = abs(a,F) returns a fi object with a value equal to the absolute value of a and the same
numerictype object as a. Intermediate quantities are calculated using the fimath object F. The
output fi object, y, has no local fimath.

y = abs(a,T,F) returns a fi object with a value equal to the absolute value of a and the
numerictype object T. Intermediate quantities are calculated using the fimath object F. The output
fi object, y, has no local fimath. See “Data Type Propagation Rules” on page 4-8.

Examples

Absolute Value of Most Negative Representable Value

This example shows the difference between the absolute value results for the most negative value
representable by a signed data type when the 'OverflowAction' property is set to 'Saturate' or
'Wrap'.

Calculate the absolute value when the 'OverflowAction' is set to the default value 'Saturate'.

P = fipref('NumericTypeDisplay','full',...
 'FimathDisplay','full');
a = fi(-128)
y = abs(a)

a =

 -128

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16

4 Functions

4-2

 FractionLength: 8

y =

 127.9961

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

abs returns 127.9961, which is a result of saturation to the maximum positive value.

Calculate the absolute value when the 'OverflowAction' is set to 'Wrap'.

a.OverflowAction = 'Wrap'
y = abs(a)

a =

 -128

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

y =

 -128

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

abs returns 128, which is a result of wrapping back to the most negative value.

Difference Between Absolute Values for Real and Complex fi Inputs

This example shows the difference between the absolute value results for complex and real fi inputs
that have the most negative value representable by a signed data type when the 'OverflowAction'
property is set to 'Wrap'.

Define a complex fi object.

 abs

4-3

re = fi(-1,1,16,15);
im = fi(0,1,16,15);
a = complex(re,im)

a =

 -1.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

a is complex, but numerically equal to the real part, re.

Calculate the absolute value of the complex fi object.

y = abs(a,re.numerictype,fimath('OverflowAction','Wrap'))

y =

 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Calculate the absolute value of the real fi object.

y = abs(re,re.numerictype,fimath('OverflowAction','Wrap'))

y =

 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Specify numerictype and fimath Inputs to Control the Result of abs for Real Inputs

This example shows how to specify numerictype and fimath objects as optional arguments to
control the result of the abs function for real inputs. When you specify a fimath object as an
argument, that fimath object is used to compute intermediate quantities, and the resulting fi object
has no local fimath.

a = fi(-1,1,6,5,'OverflowAction','Wrap');
y = abs(a)

y =

 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-4

 WordLength: 6
 FractionLength: 5

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

The returned output is identical to the input. This may be undesirable because the absolute value is
expected to be positive.

F = fimath('OverflowAction','Saturate');
y = abs(a,F)

y =

 0.9688

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 5

The returned fi object is saturated to a value of 0.9688 and has the same numerictype object as
the input.

Because the output of abs is always expected to be positive, an unsigned numerictype may be
specified for the output.

T = numerictype(a.numerictype, 'Signed', false);
y = abs(a,T,F)

y =

 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 5

Specifying an unsigned numerictype enables better precision.

Specify numerictype and fimath Inputs to Control the Result of abs for Complex Inputs

This example shows how to specify numerictype and fimath objects as optional arguments to
control the result of the abs function for complex inputs.

Specify a numerictype input and calculate the absolute value of a.

a = fi(-1-i,1,16,15,'OverflowAction','Wrap');
T = numerictype(a.numerictype,'Signed',false);
y = abs(a,T)

y =

 abs

4-5

 1.4142

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 15

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

A fi object is returned with a value of 1.4142 and the specified unsigned numerictype. The
fimath used for intermediate calculation and the fimath of the output are the same as that of the
input.

Now specify a fimath object different from that of a.

F = fimath('OverflowAction','Saturate','SumMode',...
 'KeepLSB','SumWordLength',a.WordLength,...
 'ProductMode','specifyprecision',...
 'ProductWordLength',a.WordLength,...
 'ProductFractionLength',a.FractionLength);
y = abs(a,T,F)

y =

 1.4142

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 15

The specified fimath object is used for intermediate calculation. The fimath associated with the
output is the default fimath.

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as a scalar, vector, matrix, or multidimensional array.

abs only supports fi objects with trivial [Slope Bias] scaling, that is, when the bias is 0 and the
fractional slope is 1.

abs uses a different algorithm for real and complex inputs. For more information, see “Absolute
Value” on page 4-7.
Data Types: fi
Complex Number Support: Yes

T — numerictype of the output
numerictype object

4 Functions

4-6

numerictype of the output fi object y, specified as a numerictype object. For more information,
see “Data Type Propagation Rules” on page 4-8.
Example: T = numerictype(0,24,12,'DataType','Fixed')

F — Fixed-point math settings to use
fimath object

Fixed-point math settings to use for the calculation of absolute value, specified as a fimath object.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

Algorithms
Absolute Value

The absolute value of a real number is the corresponding nonnegative value that disregards the sign.

For a real input, a, the absolute value, y, is:

y = a if a >= 0 (4-1)

y = -a if a < 0 (4-2)

abs(-0) returns 0.

Note When the fi object a is real and has a signed data type, the absolute value of the most
negative value is problematic since it is not representable. In this case, the absolute value saturates
to the most positive value representable by the data type if the 'OverflowAction' property is set to
'Saturate'. If 'OverflowAction' is 'Wrap', the absolute value of the most negative value has no
effect.

For a complex input, a, the absolute value, y, is related to its real and imaginary parts as follows:

y = sqrt(real(a)*real(a) + imag(a)*imag(a)) (4-3)

The abs function computes the absolute value of a complex input, a, as follows:

1 Calculate the real and imaginary parts of a.

re = real(a) (4-4)

im = imag(a) (4-5)
2 Compute the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.
• The fimath associated with a if F is not specified as an argument.

3 If the input is signed, cast the squares of re and im to unsigned types.
4 Add the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.
• The fimath object associated with a if F is not specified as an argument.

 abs

4-7

5 Compute the square root of the sum computed in Step 4 using the sqrt function with the
following additional arguments:

• The numerictype object T if T is specified, or the numerictype object of a otherwise.
• The fimath object F if F is specified, or the fimath object associated with a otherwise.

Note Step 3 prevents the sum of the squares of the real and imaginary components from being
negative. This is important because if either re or im has the maximum negative value and the
'OverflowAction' property is set to 'Wrap' then an error will occur when taking the square root
in Step 5.

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the abs function follows the data type
propagation rules listed in the following table. In general, these rules can be summarized as “floating-
point data types are propagated.” This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Object
a

Data Type of numerictype
object T

Data Type of Output y

fi Fixed fi Fixed Data type of numerictype
object T

fi ScaledDouble fi Fixed ScaledDouble with properties
of numerictype object T

fi double fi Fixed fi double
fi single fi Fixed fi single
Any fi data type fi double fi double
Any fi data type fi single fi single

Note When the Signedness of the input numerictype object T is Auto, the abs function always
returns an Unsigned fi object.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Double and complex data types are not supported.

4 Functions

4-8

See Also
fi | fimath | numerictype

 abs

4-9

accumneg
Subtract two fi objects or values

Syntax
c = accumneg(a,b)
c = accumneg(a,b,RoundingMethod)
c = accumneg(a,b,RoundingMethod,OverflowAction)

Description
c = accumneg(a,b) subtracts b from a using the data type of a. b is cast into the data type of a. If
a is a fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used.
The fimath properties of a and b are ignored.

c = accumneg(a,b,RoundingMethod) subtracts b from a using the rounding method specified by
RoundingMethod if a is a fi object.

c = accumneg(a,b,RoundingMethod,OverflowAction) subtracts b from a using the rounding
method specified by RoundingMethod and the overflow action specified by OverflowAction if a is
a fi object.

Examples

Subtract Two fi Objects or Values

This example shows how to subtract two fi numbers using accumneg.

Subtract two fi numbers

Subtract b from a, where a and b are both fi numbers, using the default rounding method of
'Floor' and overflow action of 'Wrap'.

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
subtr_default = accumneg(a,b)

subtr_default =
 1.6416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Subtract two fi numbers using specified rounding and overflow action

Subtract b from a, where a and b are both fi numbers, using specified rounding method of
'Nearest' and overflow action of 'Saturate'.

4 Functions

4-10

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
subtr_custom = accumneg(a,b,'Nearest','Saturate')

subtr_custom =
 1.6416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Number to subtract from
fi object (default) | double | single | logical | integer

Number from which to subtract. The data type of a is used to compute the output data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

b — Number to subtract
fi object (default) | double | single | logical | integer

Number to subtract.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

RoundingMethod — Rounding method to use
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use if a is a fi object.
Example: c = accumneg(a,b,'Ceiling')
Data Types: string

OverflowAction — Overflow action to take
'Wrap' (default) | 'Saturate'

Overflow action to take if a is a fi object.
Example: c = accumneg(a,b,'Ceiling','Saturate')
Data Types: string

Output Arguments
c — Difference of inputs
fi object | double | single | logical | integer

Result of subtracting input b from input a.

 accumneg

4-11

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
accumpos

Topics
“Avoid Multiword Operations in Generated Code”

4 Functions

4-12

accumpos
Add two fi objects or values

Syntax
c = accumpos(a,b)
c = accumpos(a,b,RoundingMethod)
c = accumpos(a,b,RoundingMethod,OverflowAction)

Description
c = accumpos(a,b) adds a and b using the data type of a. b is cast into the data type of a. If a is a
fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used. The
fimath properties of a and b are ignored.

c = accumpos(a,b,RoundingMethod) adds a and b using the rounding method specified by
RoundingMethod.

c = accumpos(a,b,RoundingMethod,OverflowAction) adds a and b using the rounding
method specified by RoundingMethod and the overflow action specified by OverflowAction.

Examples

Add Two fi Objects or Values

This example shows how to add two fi numbers using accumpos.

Add two fi numbers

Add a and b, where a and b are both fi numbers, using the default rounding method of 'Floor' and
overflow action of 'Wrap'.

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
add_default = accumpos(a,b)

add_default =
 -3.3584

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Add two fi numbers using specified rounding and overflow action

Add a and b, where a and b are both fi numbers, using specified rounding method of 'Nearest'
and overflow action of 'Saturate'.

 accumpos

4-13

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
add_custom = accumpos(a,b,'Nearest','Saturate')

add_custom =
 3.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Number to add
fi object (default) | double | single | logical | integer

Number to add. The data type of a is used to compute the output data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

b — Number to add
fi object (default) | double | single | logical | integer

Number to add.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

RoundingMethod — Rounding method to use
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use if a is a fi object.
Example: c = accumpos(a,b,'Ceiling')
Data Types: string

OverflowAction — Overflow action to take
'Wrap' (default) | 'Saturate'

Overflow action to take if a is a fi object.
Example: c = accumpos(a,b,'Ceiling','Saturate')
Data Types: string

Output Arguments
c — Sum of inputs
fi object | double | single | logical | integer

Result of adding input a and input b.

4 Functions

4-14

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
accumneg

Topics
“Avoid Multiword Operations in Generated Code”

 accumpos

4-15

add
Add two fi objects using fimath object

Syntax
c = add(F,a,b)

Description
c = add(F,a,b) adds fi objects a and b using fimath object F. This is helpful in cases when you
want to override the fimath objects of a and b, or if the fimath properties associated with a and b
are different. The output of fi object c has no local fimath.

Examples

Add Two Fixed-Point Numbers

In this example, c is the 32-bit sum of a and b with a fraction length of 16.

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',16);
c = add(F,a,b)

c =

 5.8599

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

Input Arguments
F — fimath
fimath object

fimath object to use for addition.

a,b — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays.

a and b must both be fi objects and must have the same dimensions unless one is a scalar. If either a
or b is scalar, then c has the dimensions of the nonscalar object.
Data Types: fi

4 Functions

4-16

Complex Number Support: Yes

Algorithms
c = add(F,a,b)

is similar to

a.fimath = F;
b.fimath = F;
c = a + b

but not identical. When you use add, the fimath properties of a and b are not modified, and the
output fi object, c, has no local fimath. When you use the syntax c = a + b, where a and b have
their own fimath objects, the output fi object, c, gets assigned the same fimath object as inputs a
and b.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The syntax F.add(a,b) is not supported. You must use the syntax add(F,a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
divide | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

Topics
“fimath Rules for Fixed-Point Arithmetic”

 add

4-17

assignmentquantizer
Package: embedded

Create quantizer object with fi object attributes

Syntax
q = assignmentquantizer(a)

Description
q = assignmentquantizer(a) creates a quantizer object q that is used in assignment
operations for the fi object a. To use this object to quantize values, use quantize.

Examples

Create quantizer Object from fi Object

Use assignmentquantizer to create a quantizer object with the same quantization attributes as
a fi object.

F = fimath('RoundingMethod','Convergent','OverflowAction','Saturate');
a = fi([],0,16,13,F);
q = assignmentquantizer(a)

q =

 DataMode = ufixed
 RoundMode = convergent
 OverflowMode = saturate
 Format = [16 13]

Input Arguments
a — Properties used for quantization
fi object

Properties used for quantization, specified as a fi object.
Data Types: fi

Version History
Introduced in R2008a

See Also
quantize | quantizer | fi

4 Functions

4-18

atan2
Four-quadrant inverse tangent of fixed-point values

Syntax
z = atan2(y,x)

Description
z = atan2(y,x) returns the four-quadrant arctangent of fi inputs y and x.

Examples

Calculate Arctangent of Fixed-Point Input Values

Use the atan2 function to calculate the arctangent of unsigned and signed fixed-point input values.

Unsigned Input Values

This example uses unsigned, 16-bit word length values.

y = fi(0.125,0,16);
x = fi(0.5,0,16);
z = atan2(y,x)

z =
 0.2450

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 15

Signed Input Values

This example uses signed, 16-bit word length values.

y = fi(-0.1,1,16);
x = fi(-0.9,1,16);
z = atan2(y,x)

z =
 -3.0309

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 atan2

4-19

 WordLength: 16
 FractionLength: 13

Input Arguments
y — y-coordinates
scalar | vector | matrix | multidimensional array

y-coordinates, specified as a scalar, vector, matrix, or multidimensional array.

y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N-dimensional arrays
containing fixed-point angle values in radians. The inputs y and x must be the same size. If they are
not the same size, at least one input must be a scalar value. Valid data types of y and x are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Data Types: fi

x — x-coordinates
scalar | vector | matrix | multidimensional array

x-coordinates, specified as a scalar, vector, matrix, or multidimensional array.

y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N-dimensional arrays
containing fixed-point angle values in radians. The inputs y and x must be the same size. If they are
not the same size, at least one input must be a scalar value. Valid data types of y and x are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Data Types: fi

Output Arguments
z — Four-quadrant arctangent
scalar | vector | matrix | multidimensional array

Four-quadrant arctangent, returned as a scalar, vector, matrix, or multidimensional array.

z is the four-quadrant arctangent of y and x. The numerictype of z depends on the signedness of y
and x:

• If either y or x is signed, then z is a signed, fixed-point number in the range [–pi,pi]. It has a 16-bit
word length and 13-bit fraction length (numerictype(1,16,13)).

• If both y and x are unsigned, then z is an unsigned, fixed-point number in the range [0,pi/2]. It has
a 16-bit word length and 15-bit fraction length (numerictype(0,16,15)).

4 Functions

4-20

The output, z, is always associated with the default fimath.

More About
Four-Quadrant Arctangent

The four-quadrant arctangent is defined as follows, with respect to the atan function:

atan2(y, x) =

atan y
x x > 0

π + atan y
x y ≥ 0, x < 0

−π + atan y
x y < 0, x < 0

π
2 y > 0, x = 0

−π
2 y < 0, x = 0

0 y = 0, x = 0

Algorithms
The atan2 function computes the four-quadrant arctangent of fixed-point inputs using an 8-bit lookup
table as follows:

1 Divide the input absolute values to get an unsigned, fractional, fixed-point, 16-bit ratio between 0
and 1. The absolute values of y and x determine which value is the divisor.

The signs of the y and x inputs determine in what quadrant their ratio lies. The input with the
larger absolute value is used as the denominator, thus producing a value between 0 and 1.

 atan2

4-21

2 Compute the table index, based on the 16-bit, unsigned, stored integer value:

a Use the 8 most-significant bits to obtain the first value from the table.
b Use the next-greater table value as the second value.

3 Use the 8 least-significant bits to interpolate between the first and second values using nearest
neighbor linear interpolation. This interpolation produces a value in the range [0, pi/4).

4 Perform octant correction on the resulting angle, based on the values of the original y and x
inputs.

This arctangent calculation is accurate only to within the top 16 most-significant bits of the input.

fimath Propagation Rules

The atan2 function ignores and discards any fimath attached to the inputs. The output, z, is always
associated with the default fimath.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
atan2 | sin | angle | cos | cordicatan2

4 Functions

4-22

Topics
“Calculate Fixed-Point Arctangent”

 atan2

4-23

autofixexp
Automatically change scaling of fixed-point data types

Syntax
autofixexp

Description
The autofixexp script automatically changes the scaling for model objects that specify fixed-point
data types. However, if an object's Lock output data type setting against changes by the fixed-
point tools parameter is selected, the script refrains from scaling that object.

This script collects range data for model objects, either from design minimum and maximum values
that objects specify explicitly, or from logged minimum and maximum values that occur during
simulation. Based on these values, the tool changes the scaling of fixed-point data types in a model so
as to maximize precision and cover the range.

You can specify design minimum and maximum values for model objects using parameters typically
titled Output minimum and Output maximum. See “Blocks That Allow Signal Range Specification”
for a list of Simulink blocks that permit you to specify these values. In the autoscaling procedure that
the autofixexp script executes, design minimum and maximum values take precedence over the
simulation range.

If you intend to scale fixed-point data types using simulation minimum and maximum values, the
script yields meaningful results when exercising the full range of values over which your design is
meant to run. Therefore, the simulation you run prior to using autofixexp must simulate your
design over its full intended operating range. It is especially important that you use simulation inputs
with appropriate speed and amplitude profiles for dynamic systems. The response of a linear dynamic
system is frequency dependent. For example, a bandpass filter will show almost no response to very
slow and very fast sinusoid inputs, whereas the signal of a sinusoid input with a frequency in the
passband will be passed or even significantly amplified. The response of nonlinear dynamic systems
can have complicated dependence on both the signal speed and amplitude.

Note If you already know the simulation range you need to cover, you can use an alternate
autoscaling technique described in the fixptbestprec reference page.

To control the parameters associated with automatic scaling, such as safety margins, use the Fixed-
Point Tool.

To learn how to use the Fixed-Point Tool, refer to “Propose Fraction Lengths Using Simulation Range
Data”.

Version History
Introduced before R2006a

4 Functions

4-24

See Also
fxptdlg

 autofixexp

4-25

bin
Package: embedded

Unsigned binary representation of stored integer of fi object

Syntax
b = bin(a)

Description
b = bin(a) returns the stored integer of fi object a in unsigned binary format as a character
vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Tip bin returns the unsigned binary representation of the stored integer of a fi object. To obtain the
binary representation of the real-world value of a fi object, use dec2bin.

Examples

View Stored Integer of fi Object in Unsigned Binary Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a =
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the unsigned binary representation of the stored integers of fi object a.

b = bin(a)

4 Functions

4-26

b =
'10000000 01111111'

Input Arguments
a — Input array
fi object

Input array, specified as a fi object.
Data Types: fi

Version History
Introduced before R2006a

See Also
dec | hex | storedInteger | oct | dec2hex | dec2base | dec2bin

 bin

4-27

bin2num
Convert two's complement binary string to number using quantizer object

Syntax
y = bin2num(q,b)

Description
y = bin2num(q,b) converts the binary character vector b to a numeric array y using the properties
of the quantizer object q.

If b is a cell array containing binary strings, then y will be a cell array of the same dimension
containing numeric arrays.

[y1,y2,…] = bin2num(q,b1,b2,…) converts the binary character vectors b1, b2, … to numeric arrays
y1, y2, ….

Examples

Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a
quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The
other properties of the quantizer object take the default values of specifying a signed, fixed-point
data type, rounding towards negative infinity, and saturate on overflow.

q = quantizer([4 3])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [4 3]

Create an array of numeric values.

[a,b] = range(q);
x = (b:-eps(q):a)

x = 1×16

 0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0 -0.1250 -0.2500 -0.3750 -0.5000 -0.6250 -0.7500 -0.8750 -1.0000

4 Functions

4-28

Convert the numeric vector x to binary representation using the properties specified by the
quantizer object q. Note that num2bin always returns the binary representations in a column.

b = num2bin(q,x)

b = 16x4 char array
 '0111'
 '0110'
 '0101'
 '0100'
 '0011'
 '0010'
 '0001'
 '0000'
 '1111'
 '1110'
 '1101'
 '1100'
 '1011'
 '1010'
 '1001'
 '1000'

Use bin2num to perform the inverse operation.

y = bin2num(q,b)

y = 16×1

 0.8750
 0.7500
 0.6250
 0.5000
 0.3750
 0.2500
 0.1250
 0
 -0.1250
 -0.2500
 ⋮

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

q = quantizer([3 2]);
b = ['011 111'
 '010 110'
 '001 101'
 '000 100'];

Use bin2num to view the numeric equivalents of these values.

x = bin2num(q,b)

x = 4×2

 bin2num

4-29

 0.7500 -0.2500
 0.5000 -0.5000
 0.2500 -0.7500
 0 -1.0000

Input Arguments
q — Data type properties to use for conversion
quantizer object

Data type properties to use for conversion, specified as a quantizer object.
Example: q = quantizer([16 15]);

b — Binary string to convert
character vector | character array | cell array

Binary string to convert, specified as a character vector, character array, or cell array containing
binary strings.
Data Types: string | char | cell

Tips
• bin2num and num2bin are inverses of one another. Note that num2bin always returns the binary

representations in a column.

Algorithms
• The fixed-point binary representation is two's complement.
• The floating-point binary representation is in IEEE Standard 754 style.
• If there are fewer binary digits than are necessary to represent the number, then fixed-point zero-

pads on the left, and floating-point zero-pads on the right.

Version History
Introduced before R2006a

See Also
num2bin | quantizer | hex2num | num2hex | num2int

4 Functions

4-30

bitand
Bitwise AND of two fi objects

Syntax
c = bitand(a,b)

Description
c = bitand(a,b) returns the bitwise AND of fi objects a and b in fi object c.

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath object, the fimath objects must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitand only supports fi objects with fixed-point data types.

Examples

Compute Bitwise AND of Two fi Objects

Create a truth table for the logical AND operation.

A = fi([0 1; 0 1]);
B = fi([0 0; 1 1]);
TTable = bitand(A, B)

TTable =

 0 0
 0 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

bitand returns 1 only if both bit-wise inputs are 1.

Input Arguments
a,b — Input values
scalars | vectors | matrices | multidimensional arrays

Input values, specified as scalars, vectors, matrices, or multidimensional arrays.a and b must have
the same dimensions unless one is a scalar. Inputs a and b must be fi objects with fixed-point data
types and identical numerictype properties. If both inputs have a local fimath object, the fimath
objects must be identical.

 bitand

4-31

Data Types: fi

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitcmp | bitget | bitor | bitset | bitxor

4 Functions

4-32

bitandreduce
Reduce consecutive slice of bits to one bit by performing bitwise AND operation

Syntax
c = bitandreduce(a)
c = bitandreduce(a, lidx)
c = bitandreduce(a, lidx, ridx)

Description
c = bitandreduce(a) performs a bitwise AND operation on the entire set of bits in the fixed-point
input, a, and returns the result as an unsigned integer of word length 1.

c = bitandreduce(a, lidx) performs a bitwise AND operation on a consecutive range of bits,
starting at position lidx and ending at the LSB (the bit at position 1).

c = bitandreduce(a, lidx, ridx) performs a bitwise AND operation on a consecutive range of
bits, starting at position lidx and ending at position ridx.

The bitandreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise AND Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise AND operation on the entire set of bits in a.

c = bitandreduce(a)

c =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Because the bits of a do not all have a value of 1, the output has a value of 0.

 bitandreduce

4-33

Perform Bitwise AND Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12, 4, 8, 15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111

Perform a bitwise AND operation on the bits of each element of a, starting at position fi(4).

c = bitandreduce(a, fi(4))

c =
 0 0 0 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

The only element in output c with a value of 1 is the 4th element. This is because it is the only
element of a that had only 1's between positions fi(4) and 1.

Perform Bitwise AND Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7, 8, 1; 5, 9, 5; 8, 37, 2], 0, 8, 0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise AND operation on the bits of each element of matrix a beginning at position 3 and
ending at position 1.

c = bitandreduce(a, 3, 1)

c =
 1 0 0
 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

There is only one element in output c with a value of 1. This condition occurs because the
corresponding element in a is the only element with only 1's between positions 3 and 1.

4 Functions

4-34

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

bitandreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and
scaling properties do not affect the result type and value. bitandreduce performs the operation on
a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position in the range
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
c is unsigned with word length 1.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL®, generates the bitwise AND operator operating on a set of individual slices.

 bitandreduce

4-35

For Verilog®, generates the reduce operator:

&a[lidx:ridx]

See Also
bitconcat | bitorreduce | bitsliceget | bitxorreduce

4 Functions

4-36

bitcmp
Bitwise complement of fi object

Syntax
c = bitcmp(a)

Description
c = bitcmp(a) returns the bitwise complement of fi object a. If a has a signed numerictype, the
bit representation of the stored integer is in two's complement representation.

bitcmp only supports fi objects with fixed-point data types. a can be a scalar fi object or a vector
fi object.

Examples
This example shows how to get the bitwise complement of a fi object. Consider the following
unsigned fixed-point fi object with a value of 10, word length 4, and fraction length 0:

a = fi(10,0,4,0);
disp(bin(a))

1010

Complement the values of the bits in a:

c = bitcmp(a);
disp(bin(c))

0101

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitget | bitor | bitset | bitxor

 bitcmp

4-37

bitconcat
Concatenate bits of fi objects

Syntax
y = bitconcat(a)
y = bitconcat(a, b, ...)

Description
y = bitconcat(a) concatenates the bits of the elements of fixed-point fi input array, a.

y = bitconcat(a, b, ...) concatenates the bits of the fixed–point fi inputs.

Examples

Concatenate the Elements of a Vector

Create a fixed-point vector.

a = fi([1,2,5,7],0,4,0);
disp(bin(a))

0001 0010 0101 0111

Concatenate the bits of the elements of a.

y = bitconcat(a)

y =
 4695

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0

disp(bin(y))

0001001001010111

The word length of the output, y, equals the sum of the word lengths of each element of a.

Concatenate the Bits of Two fi Objects

Create two fixed-point numbers.

a = fi(5,0,4,0);
disp(bin(a))

4 Functions

4-38

0101

b = fi(10,0,4,0);
disp(bin(b))

1010

Concatenate the bits of the two inputs.

y = bitconcat(a,b)

y =
 90

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

disp(bin(y))

01011010

The output, y, is unsigned with a word length equal to the sum of the word lengths of the two inputs,
and a fraction length of 0.

Perform Element-by-Element Concatenation of Two Vectors

When a and b are both vectors of the same size, bitconcat performs element-wise concatenation of
the two vectors and returns a vector.

Create two fixed-point vectors of the same size.

a = fi([1,2,5,7],0,4,0);
disp(bin(a))

0001 0010 0101 0111

b = fi([7,4,3,1],0,4,0);
disp(bin(b))

0111 0100 0011 0001

Concatenate the elements of a and b.

y = bitconcat(a,b)

y =
 23 36 83 113

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

disp(bin(y))

00010111 00100100 01010011 01110001

 bitconcat

4-39

The output, y, is a vector of the same length as the input vectors, and with a word length equal to the
sum of the word lengths of the two input vectors.

Perform Element-by-Element Concatenation of Two Matrices

When the inputs are both matrices of the same size, bitconcat performs element-wise
concatenation of the two matrices and returns a matrix of the same size.

Create two fixed-point matrices.

a = fi([1,2,5;7,4,5;3,1,12],0,4,0);
disp(bin(a))

0001 0010 0101
0111 0100 0101
0011 0001 1100

b = fi([6,1,7;7,8,1;9,7,8],0,4,0);
disp(bin(b))

0110 0001 0111
0111 1000 0001
1001 0111 1000

Perform element-by-element concatenation of the bits of a and b.

y = bitconcat(a,b)

y =
 22 33 87
 119 72 81
 57 23 200

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

disp(bin(y))

00010110 00100001 01010111
01110111 01001000 01010001
00111001 00010111 11001000

The output, y, is a matrix with word length equal to the sum of the word lengths of a and b.

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
bitconcat accepts varargin number of inputs for concatenation.

Data Types: fixed-point fi

4 Functions

4-40

b — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
b is nonscalar, it must have the same dimension as the other inputs.

Data Types: fixed-point fi

Output Arguments
y — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of unsigned fixed-point
fi objects.

The output array has word length equal to the sum of the word lengths of the inputs and a fraction
length of zero. The bit representation of the stored integer is in two's complement representation.
Scaling does not affect the result type and value.

If the inputs are all scalar, then bitconcat concatenates the bits of the inputs and returns a scalar.

If the inputs are all arrays of the same size, then bitconcat performs element-wise concatenation of
the bits and returns an array of the same size.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the concatenation operator: (a & b).

For Verilog, generates the concatenation operator: {a , b}.

See Also
bitand | bitcmp | bitor | bitreplicate | bitget | bitset | bitsliceget | bitxor

 bitconcat

4-41

bitget
Get bits at certain positions

Syntax
c = bitget(a, bit)

Description
c = bitget(a, bit) returns the values of the bits at the positions specified by bit in a as
unsigned integers of word length 1.

Examples

Get Bit When Input and Index Are Both Scalar

Consider the following unsigned fixed-point fi number with a value of 85, word length 8, and fraction
length 0:

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the binary representation of the bit at position 4:

c = bitget(a,4);

bitget returns the bit at position 4 in the binary representation of a.

Get Bit When Input Is a Matrix and the Index Is a fi

Begin with a signed fixed-point 3-by-3 matrix with word length 4 and fraction length 0.

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);
disp(bin(a))

0010 0011 0100
0110 1000 0010
0011 0101 0001

Get the binary representation of the bits at a specified position.

c = bitget(a,fi(2))

c =
 1 1 0
 1 0 1
 1 0 0

4 Functions

4-42

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

MATLAB® returns a matrix of the bits in position fi(2) of a. The output matrix has the same
dimensions as a, and a word length of 1.

Get Bit When Both Input and Index Are Vectors

Begin with a signed fixed-point vector with word length 16, fraction length 4.

a = fi([86 6 53 8 1],0,16,4);
disp(bin(a))

0000010101100000 0000000001100000 0000001101010000 0000000010000000 0000000000010000

Create a vector that specifies the positions of the bits to get.

bit = [1,2,5,7,4]

bit = 1×5

 1 2 5 7 4

Get the binary representation of the bits of a at the positions specified in bit.

c = bitget(a,bit)

c =
 0 0 1 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

bitget returns a vector of the bits of a at the positions specified in bit. The output vector has the
same length as inputs, a and bit, and a word length of 1.

Get Bit When Input Is Scalar and Index Is a Vector

Create a default fi object with a value of pi.

a = fi(pi);
disp(bin(a))

0110010010001000

The default object is signed with a word length of 16.

 bitget

4-43

Create a vector of the positions of the bits you want to get in a, and get the binary representation of
those bits.

bit = fi([15,3,8,2]);
c = bitget(a,bit)

c =
 1 0 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

MATLAB® returns a vector of the bits in a at the positions specified by the index vector, bit.

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a and bit are both nonscalar, they must have the same dimension. If a has a signed numerictype,
the bit representation of the stored integer is in two's complement representation.

Data Types: fixed-point fi

bit — Bit index
scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix or multidimensional array of fi objects or built-in data
types. If a and bit are both nonscalar, they must have the same dimension. bit must contain integer
values between 1 and the word length of a, inclusive. The LSB (right-most bit) is specified by bit
index 1 and the MSB (left-most bit) is specified by the word length of a. bit does not need to be a
vector of sequential bit positions; it can also be a variable index value.

a = fi(pi,0,8);
a.bin

11001001

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

4 Functions

4-44

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as an unsigned scalar, vector, matrix, or multidimensional array with
WordLength 1.

If a is an array and bit is a scalar, c is an unsigned array with word length 1. This unsigned array
comprises the values of the bits at position bit in each fixed-point element in a.

If a is a scalar and bit is an array, c is an unsigned array with word length 1. This unsigned array
comprises the values of the bits in a at the positions specified in bit.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the slice operator: a(idx).

For Verilog, generates the slice operator: a[idx].

See Also
bitand | bitcmp | bitor | bitset | bitxor

 bitget

4-45

bitor
Bitwise OR of two fi objects

Syntax
c = bitor(a,b)

Description
c = bitor(a,b) returns the bitwise OR of fi objects a and b. The output is determined as follows:

• Elements in the output array c are assigned a value of 1 when the corresponding bit in either
input array has a value of 1.

• Elements in the output array c are assigned a value of 0 when the corresponding bit in both input
arrays has a value of 0.

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitor only supports fi objects with fixed-point data types.

Examples
The following example finds the bitwise OR of fi objects a and b.

a = fi(-30,1,6,0);
b = fi(12, 1, 6, 0);
c = bitor(a,b)

c =

 -18

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary_a = a.bin
binary_b = b.bin
binary_c = c.bin

binary_a =

100010

4 Functions

4-46

binary_b =

001100

binary_c =

101110

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitset | bitxor

 bitor

4-47

bitorreduce
Reduce consecutive slice of bits to one bit by performing bitwise OR operation

Syntax
c = bitorreduce(a)
c = bitorreduce(a, lidx)
c = bitorreduce(a, lidx, ridx)

Description
c = bitorreduce(a) performs a bitwise OR operation on the entire set of bits in the fixed-point
input, a, and returns the result as an unsigned integer of word length 1.

c = bitorreduce(a, lidx) performs a bitwise OR operation on a consecutive range of bits,
starting at position lidx and ending at the LSB (the bit at position 1).

c = bitorreduce(a, lidx, ridx) performs a bitwise OR operation on a consecutive range of
bits, starting at position lidx and ending at position ridx.

The bitorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise OR operation on the entire set of bits in a.

c = bitorreduce(a)

c =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Because there is at least one bit in a with a value of 1, the output has a value of 1.

4 Functions

4-48

Perform Bitwise OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a=fi([12,4,8,15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111

Perform a bitwise OR operation on the bits of each element of a, starting at position fi(4).

c=bitorreduce(a,fi(4))

c =
 1 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

All of the entries of output c have a value of 1 because all of the entries of a have at least one bit with
a value of 1 between the positions fi(4) and 1.

Perform Bitwise OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise OR operation on the bits of each element of matrix a beginning at position 5, and
ending at position 2.

c = bitorreduce(a,5,2)

c =
 1 1 0
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

There is only one element in output c that does not have a value of 1. This condition occurs because
the corresponding element in a is the only element of a that does not have any bits with a value of 1
between positions 5 and 2.

 bitorreduce

4-49

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.

bitorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and scaling
properties do not affect the result type and value. bitorreduce performs the operation on a two's
complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position in the range
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
c is unsigned with word length 1.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the bitwise OR operator operating on a set of individual slices.

4 Functions

4-50

For Verilog, generates the reduce operator:

|a[lidx:ridx]

See Also
bitandreduce | bitconcat | bitsliceget | bitxorreduce

 bitorreduce

4-51

bitreplicate
Replicate and concatenate bits of fi object

Syntax
c = bitreplicate(a,n)

Description
c = bitreplicate(a,n) concatenates the bits in fi object a n times and returns an unsigned
fixed-point value. The word length of the output fi object c is equal to n times the word length of a
and the fraction length of c is zero. The bit representation of the stored integer is in two's
complement representation.

The input fi object can be signed or unsigned. bitreplicate concatenates signed and unsigned
bits the same way.

bitreplicate only supports fi objects with fixed-point data types.

bitreplicate does not support inputs with complex data types.

Sign and scaling of the input fi object does not affect the result type and value.

Examples
The following example uses bitreplicate to replicate and concatenate the bits of fi object a.

a = fi(14,0,6,0);
a_binary = a.bin
c = bitreplicate(a,2);
c_binary = c.bin

MATLAB returns the following:

a_binary =

001110

c_binary =

001110001110

Version History
Introduced in R2008a

4 Functions

4-52

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitconcat | bitget | bitset | bitor | bitsliceget | bitxor

 bitreplicate

4-53

bitrol
Bitwise rotate left

Syntax
c = bitrol(a, k)

Description
c = bitrol(a, k) returns the value of the fixed-point fi object, a, rotated left by k bits. bitrol
rotates bits from the most significant bit (MSB) side into the least significant bit (LSB) side. It
performs the rotate left operation on the stored integer bits of a.

bitrol does not check overflow or underflow. It ignores fimath properties such as RoundingMode
and OverflowAction.

a and c have the same fimath and numerictype properties.

Examples

Rotate the Bits of a fi Object Left

Create an unsigned fixed-point fi object with a value of 10, word length 4, and fraction length 0.

a = fi(10,0,4,0);
disp(bin(a))

1010

Rotate a left 1 bit.

disp(bin(bitrol(a,1)))

0101

Rotate a left 2 bits.

disp(bin(bitrol(a,2)))

1010

Rotate Bits in a Vector Left

Create a vector of fi objects.

a = fi([1,2,5,7],0,4,0)

a =
 1 2 5 7

4 Functions

4-54

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 4
 FractionLength: 0

disp(bin(a))

0001 0010 0101 0111

Rotate the bits in vector a left 1 bit.

disp(bin(bitrol(a,1)))

0010 0100 1010 1110

Rotate Bits Left Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 10, word length 4, and fraction length 0.

a = fi(10,0,4,0);

disp(bin(a))

1010

Rotate a left 1 bit where k is a fi object.

disp(bin(bitrol(a,fi(1))))

0101

Input Arguments
a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi
objects. a can be signed or unsigned.

Data Types: fixed-point fi

Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in
numeric type. k can be greater than the word length of a. This value is always normalized to
mod(a.WordLength,k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

 bitrol

4-55

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the rol operator.

For Verilog, generates the following expression (where wl is the word length of a:

a << idx || a >> wl - idx

See Also
bitconcat | bitror | bitshift | bitsliceget | bitsll | bitsra | bitsrl

4 Functions

4-56

bitror
Bitwise rotate right

Syntax
c = bitror(a, k)

Description
c = bitror(a, k) returns the value of the fixed-point fi object, a, rotated right by k bits. bitror
rotates bits from the least significant bit (LSB) side into the most significant bit (MSB) side. It
performs the rotate right operation on the stored integer bits of a.

bitror does not check overflow or underflow. It ignores fimath properties such as RoundingMode
and OverflowAction.

a and c have the same fimath and numerictype properties.

Examples

Rotate Bits of a fi Object Right

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right 1 bit.

disp(bin(bitror(a,1)))

1010

Rotate a right 2 bits.

disp(bin(bitror(a,2)))

0101

Rotate Bits in a Vector Right

Create a vector of fi objects.

a = fi([1,2,5,7],0,4,0);
disp(bin(a))

0001 0010 0101 0111

 bitror

4-57

Rotate the bits in vector a right 1 bit.

disp(bin(bitror(a,fi(1))))

1000 0001 1010 1011

Rotate Bits Right Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right 1 bit where k is a fi object.

disp(bin(bitror(a,fi(1))))

1010

Input Arguments
a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi
objects. a can be signed or unsigned.

Data Types: fixed-point fi

Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in
numeric type. k can be greater than the word length of a. This value is always normalized to
mod(a.WordLength,k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-58

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the ror operator.

For Verilog, generates the following expression (where wl is the word length of a:

a >> idx || a << wl - idx

See Also
bitrol | bitconcat | bitshift | bitsliceget | bitsll | bitsra | bitsrl

 bitror

4-59

bitset
Package: embedded

Set bit at specific location

Syntax
C = bitset(A,bit)
C = bitset(A,bit,V)

Description
C = bitset(A,bit) returns the value of A with position bit set to 1 (on).

C = bitset(A,bit,V) returns the value of A with position bit set to V.

Examples

Set Bit at Certain Position

Begin with an unsigned fixed-point fi number with a value of 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Set the bit at position 4 to 1 (on).

c = bitset(a,4);
disp(bin(c))

1101

Set Bit at Certain Position in Vector

Consider the following fixed-point vector with word length 4 and fraction length 0.

a = fi([0 1 8 2 4],0,4,0);
disp(bin(a))

0000 0001 1000 0010 0100

In each element of vector a, set the bits at position 2 to 1.

c = bitset(a,2,1);
disp(bin(c))

0010 0011 1010 0010 0110

4 Functions

4-60

Set Bit at Certain Position with Fixed Point Index

Consider the following fixed-point scalar with a value of 5.

a = fi(5,0,4,0);
disp(bin(a))

0101

Set the bit at position fi(2) to 1.

c = bitset(a,fi(2),1);
disp(bin(c))

0111

Set Bit When Index Is Vector

Create a fi object with a value of pi.

a = fi(pi);
disp(bin(a))

0110010010001000

In this case, a is signed with a word length of 16.

Create a vector of the bit positions in a that you want to set to on. Then, get the binary
representation of the resulting fi vector.

bit = fi([15,3,8,2]);
c = bitset(a,bit);
disp(bin(c))

0110010010001000 0110010010001100 0110010010001000 0110010010001010

Input Arguments
A — Input values
scalar | vector | matrix | multidimensional array

Input values, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
If any of A, bit, or V are nonscalar, the other inputs must be scalar or arrays of the same size. If A
has a signed numerictype, the bit representation of the stored integer is in two's complement
representation.
Data Types: fi
Complex Number Support: Yes

bit — Bit position
integer | integer array

 bitset

4-61

Bit position, specified as an integer or integer array of fi objects or built-in data types. If any of A,
bit, or V are nonscalar, the other inputs must be scalar or arrays of the same size. The values of bit
must be between 1 and the word length of A, inclusive. The LSB, the right-most bit, is specified by bit
index 1. The MSB, the left-most bit, is specified by the word length of A.

a = fi(pi,0,8);
a.bin

ans =

 '11001001'

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

V — Bit value
scalar | vector | matrix | multidimensional array

Bit value of A at index bit, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in data types. If any of A, bit, or V are nonscalar, the other inputs must be scalar or
arrays of the same size. V can have values of 0 or 1. Any value other than 0 is automatically set to 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Output Arguments
C — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

• If A, bit, and V are all scalars, then C is also a scalar.
• If any of A, bit, or V is an array, then C is the same size as that array.

Version History
Introduced before R2006a

Scalar expansion support for fi bitset
Behavior changed in R2022a

Prior to R2022a, fi bitset required that the second and third input arguments be the same size,
otherwise an error would occur.

4 Functions

4-62

A = fi(pi);
disp(bin(A))

bit = fi([15,3,8,2]);
C = bitset(A,bit,1);
disp(bin(C))

0110010010001000
The Second and third arguments to BITSET must be the same size.

Starting in R2022a, the input arguments A, bit, and V support scalar expansion. That is, if any of A,
bit, or V are nonscalar, the other inputs can be scalar or arrays of the same size.

A = fi(pi);
disp(bin(A))

bit = fi([15,3,8,2]);
C = bitset(A,bit,1);
disp(bin(C))

0110010010001000
0110010010001000 0110010010001100 0110010010001000 0110010010001010

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitxor

 bitset

4-63

bitshift
Shift bits specified number of places

Syntax
c = bitshift(a,k)

Description
c = bitshift(a,k) returns the value of fi object a shifted by k bits.

The shift is arithmetic and behaves like b = a.*2^k with the value of b cast to the type of input a.
The cast of b may involve overflow or loss of precision.

The OverflowAction property of a is obeyed, but the RoundingMethod is always Floor. If obeying
the RoundingMethod property of a is important, try using the pow2 function.

When the overflow action of a is Saturate, the sign bit is always preserved. When the overflow
action of a is Wrap and k is negative, the sign bit is preserved. When the overflow action of a is Wrap
and k is positive, the sign bit may change.

• When k is positive, 0-valued bits are shifted in on the right.
• When k is negative and a is unsigned, or a signed and positive fi object, 0-valued bits are shifted

in on the left.
• When k is negative and a is a signed and negative fi object, 1-valued bits are shifted in on the

left.

Examples

Use OverflowAction Settings to Change Results of bitshift

This example highlights how changing the OverflowAction property of the fimath object can
change the results returned by the bitshift function. Consider the following signed fixed-point fi
object with a value of 3, word length 16, and fraction length 0.

a = fi(3,1,16,0);

By default, the OverflowAction fimath property is Saturate. When a is shifted such that it
overflows, it is saturated to the maximum possible value.

for k=0:16
 b=bitshift(a,k);
 disp([num2str(k,'%02d'),'. ',bin(b)]);
end

00. 0000000000000011
01. 0000000000000110
02. 0000000000001100
03. 0000000000011000

4 Functions

4-64

04. 0000000000110000
05. 0000000001100000
06. 0000000011000000
07. 0000000110000000
08. 0000001100000000
09. 0000011000000000
10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 0111111111111111
15. 0111111111111111
16. 0111111111111111

Now change OverflowAction to Wrap. In this case, most significant bits shift off the "top" of a until
the value is zero.

a = fi(3,1,16,0,'OverflowAction','Wrap');
for k=0:16
 b=bitshift(a,k);
 disp([num2str(k,'%02d'),'. ',bin(b)]);
end

00. 0000000000000011
01. 0000000000000110
02. 0000000000001100
03. 0000000000011000
04. 0000000000110000
05. 0000000001100000
06. 0000000011000000
07. 0000000110000000
08. 0000001100000000
09. 0000011000000000
10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 1100000000000000
15. 1000000000000000
16. 0000000000000000

Input Arguments
a — Input fi object
scalar | vector

Input fi object, specified as a scalar or vector. a can be any fixed-point numeric type.
Data Types: fi

k — Number of bits to shift by
scalar

Number of bits to shift by, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 bitshift

4-65

Output Arguments
c — Result of shifting a by k bits
fi object

Result of shifting a by k bits, returned as a fi object. The output fi object c has the same
numerictype as a.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For efficient HDL code generation, use bitsll, bitsrl, or bitsra instead of bitshift.

See Also
bitand | bitcmp | bitget | bitor | bitset | bitsll | bitsra | bitsrl | bitxor | pow2

4 Functions

4-66

bitsliceget
Get consecutive slice of bits

Syntax
c = bitsliceget(a)
c = bitsliceget(a, lidx)
c = bitsliceget(a, lidx, ridx)

Description
c = bitsliceget(a) returns the entire set of bits in the fixed-point input a.

c = bitsliceget(a, lidx) returns a consecutive slice of bits from a, starting at position lidx
and ending at the LSB (the bit at position 1).

c = bitsliceget(a, lidx, ridx) returns a consecutive slice of bits from a, starting at position
lidx and ending at position ridx.

The bitsliceget arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Get Entire Set of Bits

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the entire set of bits of a.

c = bitsliceget(a);
disp(bin(c))

01010101

Get a Slice of Consecutive Bits with Unspecified Endpoint

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

 bitsliceget

4-67

Get the binary representation of the consecutive bits, starting at position 6.

c = bitsliceget(a,6);
disp(bin(c))

010101

Get a Slice of Consecutive Bits with Fixed-Point Indexes

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the binary representation of the consecutive bits from fi(6) to fi(2).

c = bitsliceget(a,fi(6),fi(2));
disp(bin(c))

01010

Get a Specified Set of Consecutive Bits from Each Element of a Matrix

Begin with the following unsigned fixed-point 3-by-3 matrix.

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);
disp(bin(a))

0010 0011 0100
0110 1000 0010
0011 0101 0001

Get the binary representation of a consecutive set of bits of matrix a. For each element, start at
position 4 and end at position 2.

c = bitsliceget(a,4,2);
disp(bin(c))

001 001 010
011 100 001
001 010 000

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a has a signed numerictype, the bit representation of the stored integer is in two’s complement
representation.

4 Functions

4-68

Data Types: fixed-point fi

lidx — Start position for slice
scalar

Start position of slice specified as a scalar of built-in type. lidx represents the position in the slice
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position for slice
scalar

End position of slice specified as a scalar of built-in type. ridx represents the position in the slice
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Fixed-point fi output, specified as a scalar, vector, matrix, or multidimensional array with no scaling.
The word length is equal to slice length, lidx-ridx+1.

If lidx and ridx are equal, bitsliceget only slices one bit, and bitsliceget(a, lidx, ridx)
is the same as bitget(a, lidx).

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitset | bitxor

 bitsliceget

4-69

bitsll
Bit shift left logical

Syntax
c = bitsll(a, k)

Description
c = bitsll(a, k) returns the result of a logical left shift by k bits on input a for fixed-point
operations. bitsll shifts zeros into the positions of bits that it shifts left. The function does not
check overflow or underflow. For floating-point operations, bitsll performs a multiply by 2k.

bitsll ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype objects.

Examples

Shift Left a Signed fi Input

Shift a signed fi input left by 1 bit.

Create a fi object, and display its binary value.

a = fi(10,0,4,0);
disp(bin(a))

1010

Shift a left by 1 bit, and display its binary value.

disp(bin(bitsll(a,1)))

0100

Shift a left by 1 more bit.

disp(bin(bitsll(a,2)))

1000

Shift Left Using a fi Shift Value

Shift left a built-in int8 input using a fi shift value.

k = fi(2);
a = int8(16);
bitsll(a,k)

4 Functions

4-70

ans = int8
 64

Shift Left a Built-in int8 Input

Use bitsll to shift an int8 input left by 2 bits.

a = int8(4);
bitsll(a,2)

ans = int8
 16

Shift Left a Floating-Point Input

Scale a floating-point double input by 23.

a = double(16);
bitsll(a,3)

ans = 128

Input Arguments
a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in numeric types.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric
type.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Version History
Introduced in R2007b

 bitsll

4-71

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates sll operator in VHDL code.

Generates << operator in Verilog code.

See Also
bitsrl | bitsra | bitshift | pow2 | bitconcat | bitrol | bitror

4 Functions

4-72

bitsra
Bit shift right arithmetic

Syntax
c=bitsra(a,k)

Description
c=bitsra(a,k) returns the result of an arithmetic right shift by k bits on input a for fixed-point
operations. For floating-point operations, it performs a multiply by 2-k.

If the input is unsigned, bitsra shifts zeros into the positions of bits that it shifts right. If the input is
signed, bitsra shifts the most significant bit (MSB) into the positions of bits that it shifts right.

bitsra ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype objects.

Examples

Shift Right a Signed fi Input

Create a signed fixed-point fi object with a value of –8, word length 4, and fraction length 0. Then
display the binary value of the object.

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by 1 bit.

disp(bin(bitsra(a,1)))

1100

bitsra shifts the MSB into the position of the bit that it shifts right.

Shift Right a Built-in int8 Input

Use bitsra to shift an int8 input right by 2 bits.

a = int8(64);
bitsra(a,2)

ans = int8
 16

 bitsra

4-73

Shift Right Using a fi Shift Value

Shift right a built-in int8 input using a fi shift value.

k = fi(2);
a = int8(64);
bitsra(a,k)

ans = int8
 16

Shift Right a Floating-Point Input

Scale a floating-point double input by 2−3.

a = double(128);
bitsra(a,3)

ans = 16

Input Arguments
a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in numeric types.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric
type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Version History
Introduced in R2007b

4 Functions

4-74

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates sra operator in VHDL code.

Generates >>> operator in Verilog code.

See Also
bitsll | bitsrl | bitshift | pow2

 bitsra

4-75

bitsrl
Bit shift right logical

Syntax
c = bitsrl(a, k)

Description
c = bitsrl(a, k) returns the result of a logical right shift by k bits on input a for fixed-point
operations. bitsrl shifts zeros into the positions of bits that it shifts right. It does not check
overflow or underflow.

bitsrl ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype objects.

Examples

Shift right a signed fi input

Shift a signed fi input right by 1 bit.

Create a signed fixed-point fi object with a value of -8, word length 4, and fraction length 0 and
display its binary value.

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by 1 bit, and display the binary value.

disp(bin(bitsrl(a,1)))

0100

bitsrl shifts a zero into the position of the bit that it shifts right.

Shift right using a fi shift value

Shift right a built-in int8 input using a fi shift value.

k = fi(2);
a = int8(64);
bitsrl(a,k)

ans = int8
 16

4 Functions

4-76

Shift right a built-in uint8 input

Use bitsrl to shift a uint8 input right by 2 bits.

a = uint8(64);
bitsrl(a,2)

ans = uint8
 16

Input Arguments
a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 bitsrl

4-77

Generates srl operator in VHDL.

Generates >> operator in Verilog.

See Also
bitconcat | bitrol | bitror | bitshift | bitsliceget | bitsll | bitsra | pow2

4 Functions

4-78

bitxor
Bitwise exclusive OR of two fi objects

Syntax
c = bitxor(a,b)

Description
c = bitxor(a,b) returns the bitwise exclusive OR of fi objects a and b. The output is determined
as follows:

• Elements in the output array c are assigned a value of 1 when exactly one of the corresponding
bits in the input arrays has a value of 1.

• Elements in the output array c are assigned a value of 0 when the corresponding bits in the input
arrays have the same value (e.g. both 1's or both 0's).

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitxor only supports fi objects with fixed-point data types.

Examples
The following example finds the bitwise exclusive OR of fi objects a and b.

a = fi(-28,1,6,0);
b = fi(12, 1, 6, 0);
c = bitxor(a,b)

c =

 -24

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary_a = a.bin
binary_b = b.bin
binary_c = c.bin

binary_a =

100100

 bitxor

4-79

binary_b =

001100

binary_c =

101000

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitset

4 Functions

4-80

bitxorreduce
Reduce consecutive slice of bits to one bit by performing bitwise exclusive OR operation

Syntax
c = bitxorreduce(a)
c = bitxorreduce(a, lidx)
c = bitxorreduce(a, lidx, ridx)

Description
c = bitxorreduce(a) performs a bitwise exclusive OR operation on the entire set of bits in the
fixed-point input, a. It returns the result as an unsigned integer of word length 1.

c = bitxorreduce(a, lidx) performs a bitwise exclusive OR operation on a consecutive range of
bits. This operation starts at position lidx and ends at the LSB (the bit at position 1).

c = bitxorreduce(a, lidx, ridx) performs a bitwise exclusive OR operation on a consecutive
range of bits, starting at position lidx and ending at position ridx.

The bitxorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise Exclusive OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise exclusive OR operation on the entire set of bits in a.

c = bitxorreduce(a)

c =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

 bitxorreduce

4-81

Perform Bitwise Exclusive OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12,4,8,15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111

Perform a bitwise exclusive OR operation on the bits of each element of a, starting at position fi(4).

c = bitxorreduce(a,fi(4))

c =
 0 1 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Perform a Bitwise Exclusive OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise exclusive OR operation on the bits of each element of matrix a beginning at position
5 and ending at position 2.

c = bitxorreduce(a,5,2)

c =
 0 1 0
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.

4 Functions

4-82

bitxorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and
scaling properties do not affect the result type and value. bitxorreduce performs the operation on
a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position in the range
closest to the MSB.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
c is unsigned with word length 1.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

^a[lidx:ridx]

See Also
bitandreduce | bitconcat | bitorreduce | bitsliceget

 bitxorreduce

4-83

buildInstrumentedMex
Generate compiled C code function including logging instrumentation

Syntax
buildInstrumentedMex fcn -options
buildInstrumentedMex fcn_1... fcn_n -options -coder

Description
buildInstrumentedMex fcn -options translates the MATLAB file fcn.m to a MEX function and
enables instrumentation for logging minimum and maximum values of all named and intermediate
variables. Optionally, you can enable instrumentation for log2 histograms of all named, intermediate
and expression values. The general syntax and options of buildInstrumentedMex and fiaccel are
the same, except buildIntstrumentedMex has no fi object restrictions and supports the '-
coder' option.

buildInstrumentedMex fcn_1... fcn_n -options -coder translates the MATLAB functions
fcn_1 through fcn_n to a MEX function and enables instrumentation for logging minimum and
maximum values of all named and intermediate variables. Generating a MEX function for multiple
entry-point functions requires the '-coder' option.

Examples

Create an Instrumented MEX Function

Create an instrumented MEX function. Run a test bench, then view logged results.

Create a temporary directory, then import an example function from Fixed-Point Designer.

tempdirObj=fidemo.fiTempdir('buildInstrumentedMex')
copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...
 'fidemos','fi_m_radix2fft_withscaling.m'),...
 'testfft.m','f')

Define prototype input arguments.

n = 128;
x = complex(zeros(n,1));
W = coder.Constant(fidemo.fi_radix2twiddles(n));

Generate an instrumented MEX function. Use the -o option to specify the MEX function name. Use
the -histogram option to compute histograms. (If you have a MATLAB Coder license, you may want
to also add the -coder option. In this case, use buildInstrumentedMex testfft -coder -o
testfft_instrumented -args {x,W} instead of the following line of code.)

Note Like fiaccel, buildInstrumentedMex generates a MEX function. To generate C code, see
the MATLAB Coder codegen function.

4 Functions

4-84

buildInstrumentedMex testfft -o testfft_instrumented...
-args {x,W} -histogram

Run a test file to record instrumentation results. Call showInstrumentationResults to open the
report. View the simulation minimum and maximum values and whole number status by pausing over
a variable in the report. You can also see proposed data types for double precision numbers in the
table.

for i=1:20
 y = testfft_instrumented(randn(size(x)));
end

showInstrumentationResults testfft_instrumented

View the histogram for a variable by clicking in the Variables tab.

 buildInstrumentedMex

4-85

Close the histogram display and then, clear the results log.

clearInstrumentationResults testfft_instrumented;

Clear the MEX function, then delete temporary files.

clear testfft_instrumented;
tempdirObj.cleanUp;

Build an Instrumented MEX Function for Multiple Entry Point Functions

In a local writable folder, create the functions ep1.m and ep2.m.

function y1 = ep1(u) %#codegen
y1 = u;
end

function y2 = ep2(u, v) %#codegen
y2 = u + v;
end

Generate an instrumented MEX function for the two entry-point functions. Use the -o option to
specify the name of the MEX function. Use the -histogram option to compute histograms. Use the -
coder option to enable generating multiple entry points with the buildInstrumentedMex function.

u = 1:100;
v = 5:104;
buildInstrumentedMex -o sharedmex ...
ep1 -args {u} ... % Entry point 1
ep2 -args {u, v} ... % Entry point 2
-histogram -coder

Call the first entry-point function using the generated MEX function.

y1 = sharedmex('ep1', u);

Call the second entry-point function using the generated MEX function.

y2 = sharedmex('ep2', u, v);

4 Functions

4-86

Show the instrumentation results.

showInstrumentationResults sharedmex

Note Generating a MEX function for multiple entry-point functions using the
buildInstrumentedMex function requires a MATLAB Coder license.

Input Arguments
fcn — Entry-point functions to instrument
function name

MATLAB entry-point functions to be instrumented, specified as a function existing in the current
working folder or on the path. The entry-point functions must be suitable for code generation. For
more information, see “Make the MATLAB Code Suitable for Code Generation” (MATLAB Coder).

options — Compiler options
option value | space delimited list of option values

Choice of compiler options. buildInstrumentedMex gives precedence to individual command-line
options over options specified using a configuration object. If command-line options conflict, the
rightmost option prevails.

 buildInstrumentedMex

4-87

-args example_inputs Define the size, class, and complexity of all
MATLAB function inputs. Use the values in
example_inputs to define these properties.
example_inputs must be a cell array that
specifies the same number and order of inputs as
the MATLAB function.

-coder Use MATLAB Coder software to compile the MEX
file, instead of the default Fixed-Point Designer
fiaccel function. This option removes fiaccel
restrictions and allows for full code generation
support. You must have a MATLAB Coder license
to use this option.

-config config_object Specify MEX generation parameters, based on
config_object, defined as a MATLAB variable
using coder.mexconfig. For example:

cfg = coder.mexconfig;
-d out_folder Store generated files in the absolute or relative

path specified by out_folder. If the folder
specified by out_folder does not exist,
buildInstrumentedMex creates it for you.

If you do not specify the folder location,
buildInstrumentedMex generates files in the
default folder:

fiaccel/mex/fcn.

fcn is the name of the MATLAB function
specified at the command line.

The function does not support the following
characters in folder names: asterisk (*), question-
mark (?), dollar ($), and pound (#).

-g Compiles the MEX function in debug mode, with
optimization turned off. If not specified,
buildinstrumentedMex generates the MEX
function in optimized mode.

4 Functions

4-88

-global global_values Specify initial values for global variables in
MATLAB file. Use the values in cell array
global_values to initialize global variables in
the function you compile. The cell array should
provide the name and initial value of each global
variable. You must initialize global variables
before compiling with buildInstrumentedMex.
If you do not provide initial values for global
variables using the -global option,
buildInstrumentedMex checks for the variable
in the MATLAB global workspace. If you do not
supply an initial value, buildInstrumentedMex
generates an error.

The generated MEX code and MATLAB each have
their own copies of global data. To ensure
consistency, you must synchronize their global
data whenever the two interact. If you do not
synchronize the data, their global variables might
differ.

-histogram Compute the log2 histogram for all named,
intermediate and expression values. A histogram
column appears in the code generation report
table.

-I include_path Add include_path to the beginning of the code
generation path.

buildInstrumentedMex searches the code
generation path first when converting MATLAB
code to MEX code.

-launchreport Generate and open a code generation report. If
you do not specify this option,
buildInstrumentedMex generates a report
only if error or warning messages occur or you
specify the -report option.

-o output_file_name Generate the MEX function with the base name
output_file_name plus a platform-specific
extension.

output_file_name can be a file name or
include an existing path.

If you do not specify an output file name, the base
name is fcn_mex, which allows you to run the
original MATLAB function and the MEX function
and compare the results.

 buildInstrumentedMex

4-89

-O optimization_option Optimize generated MEX code, based on the
value of optimization_option:

• enable:inline — Enable function inlining
• disable:inline — Disable function inlining

If not specified, buildInstrumentedMex uses
inlining for optimization.

-report Generate a code generation report. If you do not
specify this option, buildInstrumentedMex
generates a report only if error or warning
messages occur or you specify the -
launchreport option.

Tips
• You cannot instrument MATLAB functions provided with the software. If your top-level function is

such a MATLAB function, nothing is logged. You also cannot instrument scripts.
• Instrumentation results are accumulated every time the instrumented MEX function is called. Use

clearInstrumentationResults to clear previous results in the log.
• Some coding patterns pass a significant amount of data, but only use a small portion of that data.

In such cases, you may see degraded performance when using buildInstrumentedMex. In the
following pattern, subfun only uses one element of input array, A. For normal execution, the
amount of time to execute subfun once remains constant regardless of the size of A. The function
topfun calls subfun N times, and thus the total time to execute topfun is proportional to N.
When instrumented, however, the time to execute subfun once becomes proportional to N^2. This
change occurs because the minimum and maximum data are calculated over the entire array.
When A is large, the calculations can lead to significant performance degradation. Therefore,
whenever possible, you should pass only the data that the function actually needs.

function A = topfun(A)
 N = numel(A);
 for i=1:N
 A(i) = subfun(A,i);
 end
end
function b = subfun(A,i)
 b = 0.5 * A(i);
end

function A = topfun(A)
 N = numel(A);
 for i=1:N
 A(i) = subfun(A(i));
 end
end
function b = subfun(a)
 b = 0.5 * a;
end

Version History
Introduced in R2011b

4 Functions

4-90

See Also
fiaccel | clearInstrumentationResults | showInstrumentationResults |
NumericTypeScope | codegen | mex

 buildInstrumentedMex

4-91

cast
Cast variable to different data type

Syntax
b = cast(a,'like',p)

Description
b = cast(a,'like',p) converts a to the same numerictype, complexity (real or complex), and
fimath as p. If a and p are both real, then b is also real. Otherwise, b is complex.

Examples

Convert an int8 Value to Fixed Point

Define a scalar 8–bit integer.

a = int8(5);

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Convert a to fixed point with numerictype, complexity (real or complex), and fimath of the
specified fi object, p.

b = cast(a, 'like', p)

b =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Convert an Array to Fixed Point

Define a 2-by-3 matrix of ones.

A = ones(2,3);

Create a signed fi object with word length of 16 and fraction length of 8.

p = fi([],1,16,8);

Convert A to the same data type and complexity (real or complex) as p.

4 Functions

4-92

B = cast(A,'like',p)

B =
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)
 % Cast the coefficients to the coefficient type
 b = cast(b,'like',T.coeffs);
 a = cast(a,'like',T.coeffs);
 % Create the output using zeros with the data type
 y = zeros(size(x),'like',T.data);
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

 % Define coefficients for a filter with specification
 % [b,a] = butter(2,0.25)
 b = [0.097631072937818 0.195262145875635 0.097631072937818];
 a = [1.000000000000000 -0.942809041582063 0.333333333333333];

 % Define floating-point types
 T_float.coeffs = double([]);
 T_float.data = double([]);

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);

 cast

4-93

 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);

 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);

 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);

 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);

 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);

 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
end

Input Arguments
a — Variable that you want to cast to a different data type
fi object | numeric variable

Variable, specified as a fi object or numeric variable.

Complex Number Support: Yes

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

4 Functions

4-94

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

Version History
Introduced in R2013a

See Also
ones | zeros | cast

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

 cast

4-95

cast64BitFiToInt
Cast fi object types that can be exactly represented to a 64-bit integer data type

Syntax
y = cast64BitFiToInt(u)

Description
y = cast64BitFiToInt(u) casts the input u to an equivalent 64-bit integer data type when
possible.

If the input u is a fi object that can be represented exactly by an int64 or uint64 data type, then
the output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Integer Type

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer
data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt
function.

u = fi(25,1,16,0);
y1 = castFiToInt(u)

y1 =

 int16

 25

The cast64BitFiToInt function casts only 64-bit word length fi objects with zero fraction length
to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64-bit word length fi, the output is the same as the input.

y2 = cast64BitFiToInt(u)

y2 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

4 Functions

4-96

When you pass a fi object with a 64-bit word length and zero fraction length into the
cast64BitFiToInt function, the output is an int64.

u = fi(25,1,64,0)
y3 = cast64BitFiToInt(u)

y3 =

 int64

 25

When the input is a fi object with a non-zero fraction length, both functions return the original fi
object because the input cannot be represented by an integer data type.

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)

y4 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

y5 = castFiToInt(u)

y5 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

 cast64BitFiToInt

4-97

If the input u is a fi object that can be represented exactly by an int64 or uint64 data type, then
the output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Version History
Introduced in R2020a

See Also
cast64BitIntToFi | castFiToInt | castFiToMATLAB | castIntToFi

4 Functions

4-98

cast64BitIntToFi
Cast 64-bit integer types to an equivalent fi object type

Syntax
y = cast64BitIntToFi(u)

Description
y = cast64BitIntToFi(u) casts the input variable u to an equivalent 64-bit fi object when the
data type of u is a 64-bit integer type. Otherwise, the output has the same data type as the input.

Examples

Cast an Integer to a fi Object

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to
equivalent fi objects.

Create a variable with a signed 16-bit integer data type. Cast the variable to an equivalent fi object
using the castIntToFi function.

u = int16(25);
y1 = castIntToFi(u)

y1 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

The output fi object has the same word length and signedness as the input, and zero fraction length.

The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All
other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an
int16.

y2 = cast64BitIntToFi(u)

y2 =

 int16

 25

 cast64BitIntToFi

4-99

When you pass an int64 into the cast64BitIntToFi function, the output is a fi object with a 64-
bit word length and zero fraction length.

u = int64(25);
y3 = castIntToFi(u)

y3 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 0

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

When the data type of u is a 64-bit integer type, the output is a fi object with a 64-bit word length,
fraction length of zero, and the same signedness as the input. Otherwise, the output has the same
data type as the input.

Version History
Introduced in R2020a

See Also
cast64BitFiToInt | castFiToInt | castFiToMATLAB | castIntToFi

4 Functions

4-100

castFiToInt
Cast fi object to equivalent integer data type

Syntax
y = castFiToInt(u)

Description
y = castFiToInt(u) casts the input u to an equivalent MATLAB integer data type when possible.

If the input u is a fi object type that can be represented exactly by an integer data type, then the
output is this integer data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Integer Type

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer
data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt
function.

u = fi(25,1,16,0);
y1 = castFiToInt(u)

y1 =

 int16

 25

The cast64BitFiToInt function casts only 64-bit word length fi objects with zero fraction length
to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64-bit word length fi, the output is the same as the input.

y2 = cast64BitFiToInt(u)

y2 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

 castFiToInt

4-101

When you pass a fi object with a 64-bit word length and zero fraction length into the
cast64BitFiToInt function, the output is an int64.

u = fi(25,1,64,0)
y3 = cast64BitFiToInt(u)

y3 =

 int64

 25

When the input is a fi object with a non-zero fraction length, both functions return the original fi
object because the input cannot be represented by an integer data type.

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)

y4 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

y5 = castFiToInt(u)

y5 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

4 Functions

4-102

Version History
Introduced in R2020a

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToMATLAB | castIntToFi

 castFiToInt

4-103

castFiToMATLAB
Cast fi object type to an equivalent built-in MATLAB data type

Syntax
y = castFiToMATLAB(u)

Description
y = castFiToMATLAB(u) casts the input u to an equivalent MATLAB built-in data type when
possible.

If the input u is a fi object type that can be represented exactly by a built-in MATLAB data type, then
the output is this built-in data type. If u is a fi object type that cannot be exactly represented by a
built-in data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Built-In MATLAB Type

Use the castFiToMATLAB function to cast fi objects to equivalent built-in MATLAB data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent MATLAB data type using the
castFiToMATLAB function.

u = fi(25,1,16,0);
y1 = castFiToMATLAB(u)

y1 =

 int16

 25

When the input is a fi object with a non-zero fraction length, the function returns the original fi
object because the input cannot be represented by a built-in data type.

u = fi(pi,1,64,32);
y2 = castFiToMATLAB(u)

y2 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

When the input is a double-precision fi object, the function returns a double with the same value.

4 Functions

4-104

T = numerictype('Double');
u = fi(25,T)

u =

 25

 DataTypeMode: Double

y3 = castFiToMATLAB(u)
class(y3)

y3 =

 25

ans =

 'double'

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

If the input u is a fi object that can be represented exactly by a built-in MATLAB data type, then the
output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Version History
Introduced in R2020a

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToInt | castIntToFi

 castFiToMATLAB

4-105

castIntToFi
Cast an integer data type to equivalent fi type

Syntax
y = castIntToFi(u)

Description
y = castIntToFi(u) casts the input variable u to an equivalent fi object when u is one of the
built-in MATLAB integer data types (int8, uint8, int16, uint16, int32, uint32, int64, uint64).

When u is not one of the built-in integer data types, the output has the same data type as the input.

Examples

Cast an Integer to a fi Object

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to
equivalent fi objects.

Create a variable with a signed 16-bit integer data type. Cast the variable to an equivalent fi object
using the castIntToFi function.

u = int16(25);
y1 = castIntToFi(u)

y1 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

The output fi object has the same word length and signedness as the input, and zero fraction length.

The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All
other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an
int16.

y2 = cast64BitIntToFi(u)

y2 =

 int16

 25

4 Functions

4-106

When you pass an int64 into the cast64BitIntToFi function, the output is a fi object with a 64-
bit word length and zero fraction length.

u = int64(25);
y3 = castIntToFi(u)

y3 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 0

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Fixed-point output
fi object | scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

When the data type of u is an integer type, the output is a fi object with the same word length and
signedness as the input, and a fraction length of zero. Otherwise, the output has the same data type
as the input.

Version History
Introduced in R2020a

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToInt | castFiToMATLAB

 castIntToFi

4-107

ceil
Rounds toward positive infinity

Syntax
y = ceil(a)

Description
y = ceil(a) rounds fi object a to the nearest integer in the direction of positive infinity and
returns the result in fi object y.

Examples

Use ceil on a Signed fi Object

The following example demonstrates how the ceil function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = ceil(a)

y =
 4

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the ceil function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

4 Functions

4-108

y = ceil(a)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity.
• The fix function rounds values to the nearest integer toward zero.
• The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]

y =
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.7500 -1.0000 -1.0000 -2.0000
 -1.2500 -1.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 1.0000 0 0
 1.2500 2.0000 1.0000 1.0000
 1.7500 2.0000 1.0000 1.0000
 2.5000 3.0000 2.0000 2.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

 ceil

4-109

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

ceil does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.

4 Functions

4-110

• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
convergent | fix | floor | nearest | round

 ceil

4-111

ceilDiv
Round the result of division toward positive infinity

Syntax
y = ceilDiv(x,d)
y = ceilDiv(x,d,m)

Description
y = ceilDiv(x,d) returns the result of x/d rounded to the nearest integer value in the direction of
positive infinity.

y = ceilDiv(x,d,m) returns the result of x/d rounded to the nearest multiple of m in the direction
of positive infinity.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Examples

Divide and Round to Ceil

Perform a division operation and round to the nearest integer value in the direction of positive
infinity.

ceilDiv(int16(201),10)

ans =
 21

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

Perform a division operation and round to the nearest multiple of 5 in the direction of positive infinity.

ceilDiv(int16(201),10,5)

ans =
 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 14
 FractionLength: 0

4 Functions

4-112

Divide and Generate Code

Define a function that uses ceilDiv.

function y = ceilDiv_example(x,d)
y = ceilDiv(x,d);
end

Define inputs and execute the function in MATLAB®.

x = fi(pi);
d = fi(2);
y = ceilDiv_example(x,d)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

To generate code for this function, the denominator d must be defined as a constant.

codegen ceilDiv_example -args {x, coder.Constant(d)}

Code generation successful.

Alternatively, you can define the denominator, d, as constant in the body of the code.

function y = ceilDiv10(x)
y = ceilDiv(x,10);
end

x = fi(5*pi);
y = ceilDiv10(x)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

codegen ceilDiv10 -args {x}

Code generation successful.

Input Arguments
x — Dividend
scalar

Dividend, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

 ceilDiv

4-113

d — Divisor
scalar

Divisor, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

m — Value to round to nearest multiple of
1 (default) | scalar

Value to round to nearest multiple of, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
y — Result of division and round to ceiling
scalar

Result of division and round to ceiling, returned as a scalar.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

To generate code, the denominator d must be declared as constant.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
fixDiv | floorDiv | nearestDiv

4 Functions

4-114

clearInstrumentationResults
Clear results logged by instrumented, compiled C code function

Syntax
clearInstrumentationResults('mex_fcn')
clearInstrumentationResults mex_fcn
clearInstrumentationResults all

Description
clearInstrumentationResults('mex_fcn') clears the results logged from calling the
instrumented MEX function, mex_fcn.

clearInstrumentationResults mex_fcn is an alternative syntax for clearing the log.

clearInstrumentationResults all clears the results from all instrumented MEX functions.

Examples

Clear Logged Results

Run a test bench to log instrumentation, then use clearInstrumentationResults to clear the log.

Create a temporary directory, then import an example function from Fixed-Point Designer.

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')
copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...
 'fidemos','fi_m_radix2fft_withscaling.m'),...
 'testfft.m','f')

Define prototype input arguments.

n = 128;
x = complex(fi(zeros(n,1),'DataType','ScaledDouble'));
W = coder.Constant(fi(fidemo.fi_radix2twiddles(n)));

Generate an instrumented MEX function. Use the -o option to specify the MEX function name.

buildInstrumentedMex testfft -o testfft_instrumented -args {x,W}

Run a test bench to record instrumentation results. Call showInstrumentationResults to open a
report. View the simulation minimum and maximum values and whole number status by pausing over
a variable in the report.

for i=1:20
 y = testfft_instrumented(cast(2*rand(size(x))-1,'like',x));
end

showInstrumentationResults testfft_instrumented

 clearInstrumentationResults

4-115

Clear the results log.

clearInstrumentationResults testfft_instrumented

Run a different test bench, then view the new instrumentation results.

for i=1:20
 y = testfft_instrumented(cast(rand(size(x))-0.5,'like',x));
end

showInstrumentationResults testfft_instrumented

4 Functions

4-116

Clear the MEX function and delete temporary files.

clear testfft_instrumented;
tempdirObj.cleanUp;

Input Arguments
mex_fcn — Instrumented MEX function
instrumented MEX function

Instrumented MEX function created using buildInstrumentedMex.

Version History
Introduced in R2011b

See Also
fiaccel | showInstrumentationResults | buildInstrumentedMex | codegen | mex

 clearInstrumentationResults

4-117

coder.approximation
Create function replacement configuration object

Syntax
q = coder.approximation(function_name)
q = coder.approximation('Function',function_name,Name,Value)

Description
q = coder.approximation(function_name) creates a function replacement configuration
object for use during code generation or fixed-point conversion. The configuration object specifies
how to create a lookup table approximation for the MATLAB function specified by function_name.
To associate this approximation with a coder.FixptConfig object for use with thefiaccel
function, use the coder.FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace automatically. These
functions are listed in the function_name argument description.

q = coder.approximation('Function',function_name,Name,Value) creates a function
replacement configuration object using additional options specified by one or more name-value pair
arguments.

Examples

Replace log Function with Default Lookup Table

Create a function replacement configuration object using the default settings. The resulting lookup
table in the generated code uses 1000 points.

logAppx = coder.approximation('log');

Replace log Function with Uniform Lookup Table

Create a function replacement configuration object. Specify the input range and prefix to add to the
replacement function name. The resulting lookup table in the generated code uses 1000 points.

logAppx = coder.approximation('Function','log','InputRange',[0.1,1000],...
'FunctionNamePrefix','log_replace_');

Replace log Function with Optimized Lookup Table

Create a function replacement configuration object using the 'OptimizeLUTSize' option to specify
to replace the log function with an optimized lookup table. The resulting lookup table in the
generated code uses less than the default number of points.

4 Functions

4-118

 logAppx = coder.approximation('Function','log','OptimizeLUTSize', true,...
'InputRange',[0.1,1000],'InterpolationDegree',1,'ErrorThreshold',1e-3,...
'FunctionNamePrefix','log_optim_','OptimizeIterations',25);

Replace Custom Function with Optimized Lookup Table

Create a function replacement configuration object that specifies to replace the custom function,
saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.

saturateExp = @(x) 1/(1+exp(-x));

Create a function replacement configuration object that specifies to replace the saturateExp
function with an optimized lookup table. Because the saturateExp function is not listed as a
function for which coder.approximation can generate an approximation automatically, you must
specify the CandidateFunction property.

saturateExp = @(x) 1/(1+exp(-x));
custAppx = coder.approximation('Function','saturateExp',...
'CandidateFunction', saturateExp,...
'NumberOfPoints',50,'InputRange',[0,10]);

Input Arguments
function_name — Name of the function to replace
'acos' | 'acosd' | 'acosh' | 'acoth' | 'asin' | 'asind' | 'asinh' | 'atan' | 'atand' |
'atanh' | 'cos' | 'cosd' | 'cosh' | 'erf ' | 'erfc' | 'exp' | 'log' | 'normcdf' | 'reallog'
| 'realsqrt' | 'reciprocal' | 'rsqrt' | 'sin' | 'sinc' | 'sind' | 'sinh' | 'sqrt' | 'tan' |
'tand'

Name of function to replace, specified as a string. The function must be one of the listed functions.
Example: 'sqrt'
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Function', 'log'

Architecture — Architecture of lookup table approximation
'LookupTable' (default) | 'Flat'

Architecture of the lookup table approximation, specified as the comma-separated pair consisting of
'Architecture' and a string. Use this argument when you want to specify the architecture for the
lookup table. The Flat architecture does not use interpolation.
Data Types: char

 coder.approximation

4-119

CandidateFunction — Function handle of the replacement function
function handle | string

Function handle of the replacement function, specified as the comma-separated pair consisting of
'CandidateFunction' and a function handle or string referring to a function handle. Use this
argument when the function that you want to replace is not listed under function_name. Specify
the function handle or string referring to a function handle of the function that you want to replace.
You can define the function in a file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using the Function
property is set as the CandidateFunction.
Example: 'CandidateFunction', @(x) (1./(1+x))
Data Types: function_handle | char

ErrorThreshold — Error threshold value used to calculate optimal lookup table size
0.001 (default) | nonnegative scalar

Error threshold value used to calculate optimal lookup table size, specified as the comma-separated
pair consisting of 'ErrorThreshold' and a nonnegative scalar. If 'OptimizeLUTSize' is true,
this argument is required.

Function — Name of function to replace with a lookup table approximation
function_name

Name of function to replace with a lookup table approximation, specified as the comma-separated
pair consisting of 'Function' and a string. The function must be continuous and stateless. If you
specify one of the functions that is listed under function_name, the conversion process
automatically provides a replacement function. Otherwise, you must also specify the
'CandidateFunction' argument for the function that you want to replace.
Example: 'Function','log'
Example: 'Function', 'my_log','CandidateFunction',@my_log
Data Types: char

FunctionNamePrefix — Prefix for generated fixed-point function names
'replacement_' (default) | string

Prefix for generated fixed-point function names, specified as the comma-separated pair consisting of
'FunctionNamePrefix' and a string. The name of a generated function consists of this prefix,
followed by the original MATLAB function name.
Example: ‘log_replace_’

InputRange — Range over which to replace the function
[] (default) | 2x1 row vector | 2xN matrix

Range over which to replace the function, specified as the comma-separated pair consisting of
'InputRange' and a 2-by-1 row vector or a 2-by-N matrix.
Example: [-1 1]

InterpolationDegree — Interpolation degree
1 (default) | 0 | 2 | 3

4 Functions

4-120

Interpolation degree, specified as the comma-separated pair consisting of 'InterpolationDegree'
and1 (linear), 0 (none), 2 (quadratic), or 3 (cubic).

NumberOfPoints — Number of points in lookup table
1000 (default) | positive integer

Number of points in lookup table, specified as the comma-separated pair consisting of
'NumberOfPoints' and a positive integer.

OptimizeIterations — Number of iterations
25 (default) | positive integer

Number of iterations to run when optimizing the size of the lookup table, specified as the comma-
separated pair consisting of 'OptimizeIterations' and a positive integer.

OptimizeLUTSize — Optimize lookup table size
false (default) | true

Optimize lookup table size, specified as the comma-separated pair consisting of
'OptimizeLUTSize' and a logical value. Setting this property to true generates an area-optimal
lookup table, that is, the lookup table with the minimum possible number of points. This lookup table
is optimized for size, but might not be speed efficient.

PipelinedArchitecture — Option to enable pipelining
false (default) | true

Option to enable pipelining, specified as the comma-separated pair consisting of
'PipelinedArchitecture' and a logical value.

Output Arguments
q — Function replacement configuration object, returned as a
coder.mathfcngenerator.LookupTable or a coder.mathfcngenerator.Flat configuration
object
coder.mathfcngenerator.LookupTable configuration object |
coder.mathfcngenerator.Flat configuration object

Function replacement configuration object that specifies how to create an approximation for a
MATLAB function. Use the coder.FixptConfig configuration object addApproximation method
to associate this configuration object with a coder.FixptConfig object. Then use the fiaccel
function -float2fixed option with coder.FixptConfig to convert floating-point MATLAB code to
fixed-point MATLAB code.

Property Default Value
Auto-replace function ''
InputRange []
FunctionNamePrefix 'replacement_'
Architecture LookupTable (read only)
NumberOfPoints 1000
InterpolationDegree 1

 coder.approximation

4-121

Property Default Value
ErrorThreshold 0.001
OptimizeLUTSize false
OptimizeIterations 25

Version History
Introduced in R2014b

See Also
Classes
coder.FixPtConfig

Functions
fiaccel

Topics
“Replace the exp Function with a Lookup Table”
“Replace a Custom Function with a Lookup Table”
“Replacing Functions Using Lookup Table Approximations”

4 Functions

4-122

coder.allowpcode
Package: coder

Control code generation from P-code files

Syntax
coder.allowpcode('plain')

Description
coder.allowpcode('plain') allows you to generate P-code files that you can then compile into
optimized MEX functions or embeddable C/C++ code. This function does not obfuscate the generated
MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as P-code files that provide code generation
optimizations.

Call this function in the top-level function before control-flow statements, such as if, while,
switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the same folder, the
P-code file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples

Generate optimized embeddable code from P-code file

Write a function p_abs that returns the absolute value of its input:

function out = p_abs(in) %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation
coder.allowpcode('plain');
out = abs(in);

Generate P-code file. In the MATLAB Command Window, enter:

pcode p_abs

The P-code file, p_abs.p, appears in the current folder.

Generate a MEX function for p_abs.p, using the -args option to specify the size, class, and
complexity of the input parameter (requires a MATLAB Coder license).

codegen p_abs -args { int32(0) }

codegen generates a MEX function in the current folder.

 coder.allowpcode

4-123

If you have MATLAB Coder, generate embeddable C code for p_abs.p.

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\lib\p_abs folder.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
pcode | codegen

4 Functions

4-124

coder.ArrayType class
Package: coder
Superclasses: coder.Type

Represent set of MATLAB arrays acceptable for input specification

Description
Objects of the coder.ArrayType class specify array types that the generated code accepts. Use
objects of this class only with the -args option of the fiaccel function. Do not pass as an input to a
generated MEX function.

Creation

Note You can create and edit coder.Type objects interactively by using the Coder Type Editor. See
“Create and Edit Input Types by Using the Coder Type Editor”.

coder.ArrayType is an abstract class. You cannot create instances of this class directly. You can
create coder.EnumType, coder.FiType, coder.PrimitiveType, and coder.StructType
objects that derive from this class.

Properties
ClassName — Value class name
coder.EnumType | coder.FiType | coder.PrimitiveType | coder.StructType

Value class name, specified as one of these class object names.

• coder.EnumType
• coder.FiType
• coder.PrimitiveType
• coder.StructType

SizeVector — Upper bound on array size
positive integer

Upper bound on array size, specified as a positive integer.

VariableDims — Option to specify variable-size
1 | 0

Option to specify whether each dimension of the array has a variable size specified as a boolean
vector. A value of 1 indicates that the dimension has variable-size. A value of 0 indicates that the
dimension has fixed-size

 coder.ArrayType class

4-125

Version History
Introduced in R2011a

See Also
coder.ClassType | coder.Type | coder.EnumType | coder.FiType | coder.PrimitiveType |
coder.StructType | coder.CellType | coder.newtype | coder.typeof | coder.resize |
fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

4 Functions

4-126

coder.config
Create configuration object for fixed-point or single-precision conversion

Syntax
config_obj = coder.config('fixpt')
config_obj = coder.config('single')

Description
config_obj = coder.config('fixpt') creates a coder.FixptConfig configuration object.
Use this object with the fiaccel function when converting floating-point MATLAB code to fixed-
point MATLAB code.

config_obj = coder.config('single') creates a coder.SingleConfig configuration object
for use with the convertToSingle function when generating single-precision MATLAB code from
double-precision MATLAB code.

Examples

Convert Floating-Point MATLAB Code to Fixed-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Convert your floating-point MATLAB design to fixed point. In this example, the MATLAB function
name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Double-Precision MATLAB Code to Single-Precision MATLAB Code

Create a coder.SingleConfig object, scfg.

scfg = coder.config('single');

Set the test bench name. In this example, the test bench function name is myfun_test. Enable
numerics testing and data logging for comparison plotting of input and output variables.

scfg.TestBenchName = 'myfun_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

 coder.config

4-127

Convert the double-precision MATLAB code to single-precision MATLAB code. In this example, the
MATLAB function name is myfun.

convertToSingle -config scfg myfun

Version History
Introduced in R2014b

See Also
coder.FixPtConfig | fiaccel | coder.SingleConfig | convertToSingle

4 Functions

4-128

coder.const
Fold expressions into constants in generated code

Syntax
out = coder.const(expression)
[out1,...,outN] = coder.const(handle,arg1,...,argN)

Description
out = coder.const(expression) evaluates expression and replaces out with the result of the
evaluation in generated code.

[out1,...,outN] = coder.const(handle,arg1,...,argN) evaluates the multi-output
function having handle handle. It then replaces out1,...,outN with the results of the evaluation
in the generated code.

Examples

Specify Constants in Generated Code

This example shows how to specify constants in generated code using coder.const.

Write a function AddShift that takes an input Shift and adds it to the elements of a vector. The
vector consists of the square of the first 10 natural numbers. AddShift generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element of the
vector during vector creation. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int k;
 for (k = 0; k < 10; k++) {
 y[k] = (double)((1 + k) * (1 + k)) + Shift;
 }
}

Replace the expression (1:10).^2 with coder.const((1:10).^2), and then generate code for
AddShift again using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

 coder.const

4-129

The code generator creates the vector containing the squares of the first 10 natural numbers. In the
generated code, it adds Shift to each element of this vector. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int i;
 static const signed char iv[10] = { 1, 4, 9, 16, 25, 36,
 49, 64, 81, 100 };

 for (i = 0; i < 10; i++) {
 y[i] = (double)iv[i] + Shift;
 }
}

Create Lookup Table in Generated Code

This example shows how to fold a user-written function into a constant in generated code.

Write a function getsine that takes an input index and returns the element referred to by index
from a lookup table of sines. The function getsine creates the lookup table using another function
gettable.

function y = getsine(index) %#codegen
 assert(isa(index, 'int32'));
 persistent tbl;
 if isempty(tbl)
 tbl = gettable(1024);
 end
 y = tbl(index);

function y = gettable(n)
 y = zeros(1,n);
 for i = 1:n
 y(i) = sin((i-1)/(2*pi*n));
 end

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

codegen -config:lib -launchreport getsine -args int32(0)

The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

4 Functions

4-130

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not contain
instructions for the evaluation. The generated code contains the result of the evaluation itself.

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output function in a
coder.const statement.

Write a function MultiplyConst that takes an input factor and multiplies every element of two
vectors vec1 and vec2 with factor. The function generates vec1 and vec2 using another function
EvalConsts.

function [y1,y2] = MultiplyConst(factor) %#codegen
 [vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);
 y1=vec1.*factor;
 y2=vec2.*factor;

function [f1,f2]=EvalConsts(z,n)
 f1=z.^(2*n)/factorial(2*n);
 f2=z.^(2*n+1)/factorial(2*n+1);

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator produces code for creating the vectors.

Replace the statement

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

with

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator does not generate code for creating the vectors. Instead, it calculates the vectors
and specifies the calculated vectors in generated code.

Read Constants by Processing XML File

This example shows how to call an extrinsic function using coder.const.

Write an XML file MyParams.xml containing the following statements:

<params>
 <param name="hello" value="17"/>
 <param name="world" value="42"/>
</params>

 coder.const

4-131

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies the XML tag
param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field name of a
structure s. The function also assigns the value of attribute value to the value of the field.

function s = xml2struct(file)

s = struct();
doc = xmlread(file);
els = doc.getElementsByTagName('params');
for i = 0:els.getLength-1
 it = els.item(i);
 ps = it.getElementsByTagName('param');
 for j = 0:ps.getLength-1
 param = ps.item(j);
 paramName = char(param.getAttribute('name'));
 paramValue = char(param.getAttribute('value'));
 paramValue = evalin('base', paramValue);
 s.(paramName) = paramValue;
 end
end

Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a structure s using the
function xml2struct. Declare xml2struct as extrinsic using coder.extrinsic and call it in a
coder.const statement.

function y = MyFunc(u) %#codegen
 assert(isa(u, 'double'));
 coder.extrinsic('xml2struct');
 s = coder.const(xml2struct('MyParams.xml'));
 y = s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation Report.

codegen -config:dll -launchreport MyFunc -args 0

The code generator executes the call to xml2struct during code generation. It replaces the
structure fields s.hello and s.world with the values 17 and 42 in generated code.

Input Arguments
expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant arguments
only. For instance, the following code leads to a code generation error, because x is not a compile-
time constant.

function y=func(x)
 y=coder.const(log10(x));

4 Functions

4-132

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code generation, you
can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)

Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin
Data Types: function_handle

arg1,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to a code
generation error, because x and y are not compile-time constants.

function y=func(x,y)
 y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments
out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of out with the
value of expression.

out1,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle. MATLAB Coder evaluates the function and replaces
occurrences of out1,...,outN with constants in the generated code.

Tips
• When possible, the code generator constant-folds expressions automatically. Typically, automatic

constant-folding occurs for expressions with scalars only. Use coder.const when the code
generator does not constant-fold expressions on its own.

• When constant-folding computationally intensive function calls, to reduce code generation time,
make the function call extrinsic. The extrinsic function call causes evaluation of the function call
by MATLAB instead of by the code generator. For example:

 coder.const

4-133

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).
• If coder.const is unable to constant-fold a function call, try to force constant-folding by making

the function call extrinsic. The extrinsic function call causes evaluation of the function call by
MATLAB instead of by the code generator. For example:

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interp1(y,xi);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Topics
“Fold Function Calls into Constants” (MATLAB Coder)
“Use coder.const with Extrinsic Function Calls” (MATLAB Coder)

4 Functions

4-134

coder.Constant class
Package: coder
Superclasses: coder.Type

Specification of constant value for code generation

Description
Use a coder.Constant object to define input values that are constant during code generation. Use
this object with the fiaccel -args and -globals options to specify the properties of the input
arguments and the global variables, respectively. Do not pass it as an input to a generated MEX
function.

You can use a coder.Constant object in place of a coder.Type object to specify a given constant
value in an entry-point input or global variable.

Creation
const_type = coder.Constant(v) creates a coder.Constant type from the value v.

const_type = coder.newtype('constant', v) creates a coder.Constant type from the
value v.

Note After you have created a coder.Constant object, you can create a constant global variable g
that has the value v by using the codegen command: codegen -globals {'g',
coder.Constant(v)}.

Properties
Value — Actual value of constant
constant

The actual value of the constant. Also indicates the input argument value v that is used to construct
the input argument type.

Here, in the first example, when k is passed in codegen with value v as 42, the corresponding input
type is inferred as double. Similarly, in the second example, when k is passed in codegen with value
v as 42, the corresponding input type is inferred as uint8.
Example: k = coder.Constant(42);
Example: k = coder.Constant(uint8(42));

Examples

 coder.Constant class

4-135

Create a Constant with Value 42

k = coder.Constant(42);

Create a new constant type for use in code generation

k = coder.newtype('constant', 42);

Limitations
• You cannot use coder.Constant on sparse matrices, or on structures, cell arrays, or classes that

contain sparse matrices.

Version History
Introduced in R2011a

See Also
coder.Type | coder.newtype | fiaccel | coder.Constant

4 Functions

4-136

coder.EnumType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB enumerations acceptable for input specification

Description
Objects of the coder.EnumType class specify the MATLAB enumerations that the generated code
accepts. Use objects of this class only with the -args option of the fiaccel command. Do not pass
as an input to a generated MEX function.

Creation
t = coder.typeof(enumValue) creates a coder.EnumType object that represents a set of
enumeration values of class enumValue.

t = coder.typeof(enumValue,sz,variableDims) creates a coder.EnumType type object with
upper bound sizes sz and variable dimensions indicated in variableDims. If sz specifies inf for a
dimension, then the size of the dimension is unbounded and the dimension has a variable size. When
sz is [], the upper bound sizes of v do not change. If you do not specify variableDims, the
bounded dimensions of the type are fixed and the unbounded dimensions have a variable size. When
variableDims is a scalar, the function applies this value to bounded dimensions that are not 1 or 0,
which are fixed.

t = coder.newtype(enumName,sz,variableDims) creates a coder.EnumType object that has
a variable size with upper bound sizes sz and variable dimensions variableDims. If sz specifies
inf for a dimension, then the size of the dimension is unbounded and the dimension has a variable
size. If you do not specify variableDims, the bounded dimensions of the type are fixed. When
variableDims is a scalar, the function applies this value to bounded dimensions that are not 1 or 0,
which are fixed.

Input Arguments

enumValue — Enumeration value
enumeration object

Enumeration value defined on the MATLAB path, specified as an enumeration object.

sz — Dimensions of type object
[1 1] for coder.newtype (default) | integer vector | integer

Dimension of type object, specified as a vector of positive integers or scalar positive integer.

variableDims — Option to specify variable size
boolean vector

Option to specify whether each dimension has a variable size, specified as a boolean vector. If you
specify an element of this vector as 1, the corresponding dimension has a variable size. Otherwise,
the dimension has a fixed size.

 coder.EnumType class

4-137

enumName — Name of enumeration
string scalar | character vector

Name of enumeration defined on the MATLAB path, specified as a string scalar or character vector.

Properties
ClassName — Class of values
string scalar | character vector

Class of values in the set, returned as a string scalar or character vector.

SizeVector — Upper bound size of arrays
integer vector

Upper bound size of the arrays in the set, specified as a vector of integers.

VariableDims — Indication of whether dimensions have variable size
boolean vector

Indication of whether each dimension of the array has fixed or variable size. If a vector element is 1,
the corresponding dimension has variable size. Otherwise, the dimension has a fixed-size.

Examples

Create Enumeration Type Object

On the MATLAB® path, define an enumeration named MyColors.

type MyColors.m

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

Create a coder.EnumType object from this enumeration by using coder.typeof.

t = coder.newtype('MyColors')

t =
coder.EnumType
 1×1 MyColors

 Edit Type Object

Version History
Introduced in R2011a

4 Functions

4-138

See Also
coder.ClassType | coder.Type | coder.ArrayType | coder.typeof | coder.newtype |
coder.resize | fiaccel

Topics
“Enumerations”
“Create and Edit Input Types by Using the Coder Type Editor”

 coder.EnumType class

4-139

coder.extrinsic
Declare a function as extrinsic and execute it in MATLAB

Syntax
coder.extrinsic(function)
coder.extrinsic(function1, ... ,functionN)

coder.extrinsic('-sync:on', function1, ... ,functionN)
coder.extrinsic('-sync:off', function1, ... ,functionN)

Description
coder.extrinsic(function) declares function as an extrinsic function. The code generator
does not produce code for the body of the extrinsic function and instead uses the MATLAB engine to
execute the call. This functionality is available only when the MATLAB engine is available during
execution. Examples of situations where the MATLAB engine is available include execution of MEX
functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

During standalone code generation, the code generator attempts to determine whether an extrinsic
function only has a side effect (for example, by displaying a plot) or whether it affects the output of
the function in which it is called (for example, by returning a value to an output variable). If there is
no change to the output, the code generator proceeds with code generation, but excludes the
extrinsic function from the generated code. Otherwise, the code generator produces a compilation
error.

You cannot use coder.ceval on functions that you declare as extrinsic by using coder.extrinsic.
Also, the coder.extrinsic directive is ignored outside of code generation.

See “Use MATLAB Engine to Execute a Function Call in Generated Code”.

Note The code generator automatically treats many common MATLAB visualization functions, such
as plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic.

coder.extrinsic(function1, ... ,functionN) declares function1 through functionN as
extrinsic functions.

coder.extrinsic('-sync:on', function1, ... ,functionN) enables synchronization of
global data between MATLAB execution and generated code execution or Simulink simulation before
and after calls to the extrinsic functions function1 through functionN. If only a few extrinsic calls
use or modify global data, turn off synchronization before and after all extrinsic function calls by
setting the global synchronization mode to At MEX-function entry and exit. Use the '-
sync:on' option to turn on synchronization for only the extrinsic calls that do modify global data.

If you use MATLAB Coder to generate a MEX function, the '-sync:on' option enables verification of
consistency of constant global data between MATLAB and MEX functions after calls to the extrinsic
functions.

4 Functions

4-140

See “Generate Code for Global Data” (MATLAB Coder).

coder.extrinsic('-sync:off', function1, ... ,functionN) disables synchronization of
global data between MATLAB execution and generated code execution before and after calls to the
extrinsic functions function1 through functionN. If most extrinsic calls use or modify global data,
but a few do not, use the '-sync:off' option to turn off synchronization for the extrinsic calls that
do not modify global data.

If you use MATLAB Coder to generate a MEX function, the '-sync:off' option disables verification
of consistency of constant global data between MATLAB and MEX functions after calls to the extrinsic
functions.

See “Generate Code for Global Data” (MATLAB Coder).

Examples

Declare a Function That Returns No Output as Extrinsic

The MATLAB function patch is not supported for code generation. This example shows how you can
still use the functionality of patch in your generated MEX function by declaring patch as extrinsic
your MATLAB function.

This MATLAB code declares patch as extrinsic in the local function create_plot. By declaring
patch as extrinsic, you instruct the code generator not to produce code for patch. Instead, the code
generator dispatches patch to MATLAB for execution.

The code generator automatically treats many common MATLAB visualization functions, such as the
function axis this code uses, as extrinsic.

function c = pythagoras(a,b,color) %#codegen
% Calculate the hypotenuse of a right triangle
% and display the triangle as a patch object.
c = sqrt(a^2 + b^2);
create_plot(a, b, color);
end

function create_plot(a, b, color)
%Declare patch as extrinsic
coder.extrinsic('patch');
x = [0;a;a];
y = [0;0;b];
patch(x,y,color);
axis('equal');
end

Note This code calls patch without requesting any output arguments. When generating standalone
code, the code generator ignores such calls.

Generate a MEX function for pythagoras. Also, generate the code generation report.

codegen pythagoras -args {1, 1, [.3 .3 .3]} -report

In the report, view the MATLAB code for create_plot.

 coder.extrinsic

4-141

The report highlights the patch and axis functions to indicate that they are treated as extrinsic
functions.

Run the MEX function.

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays the plot of the right triangle as a red patch object.

Note Instead of generating a MEX file by using the codegen command, you can also place the
function pythagoras inside a MATLAB Function block in a Simulink model. When you simulate the
model, the MATLAB Function block has similar behavior as pythagoras_mex.

4 Functions

4-142

Return Output of Extrinsic Function to MATLAB at Run Time

The output that an extrinsic function returns at run time is an mxArray, also known as a MATLAB
array. The only valid operations for an mxArray are storing it in a variable, passing it to another
extrinsic function, or returning it to MATLAB. To perform any other opeation on an mxArray value,
such as using it in an expression in your code, you must convert the mxArray to a known type at run
time. To perform this action, assign the mxArray to a variable whose type is already defined by a
prior assignment.

This example shows how to return an mxArray output from an extrinsic function directly to MATLAB.
The next example shows how to convert the same mxArray output to a known type, and then use it in
an expression inside your MATLAB function.

Define Entry-Point Function

Define a MATLAB function return_extrinsic_output that accepts source and target node indices
for a directed graph as inputs and determines if the graph is acyclic by using the hascycles
function. The hascycles function is not supported for code generation and is declared as extrinsic.

type return_extrinsic_output.m

function hasCycles = return_extrinsic_output(source,target)
coder.extrinsic('hascycles');
assert(numel(source) == numel(target))
G = digraph(source,target);
hasCycles = hascycles(G);
end

Generate and Call MEX Function

Generate MEX code for return_extrinsic_output. Specify the inputs to be unbounded vectors of
type double.

codegen return_extrinsic_output -args {coder.typeof(0,[1 Inf]),coder.typeof(0,[1 Inf])} -report

Code generation successful: To view the report, open('codegen\mex\return_extrinsic_output\html\report.mldatx')

Call the generated MEX function return_extrinsic_output_mex with suitable inputs:

return_extrinsic_output([1 2 4 4],[2 3 3 1])

ans = logical
 0

To visually inspect if the directed graph has cycles, plot the directed graph in MATLAB.

plot(digraph([1 2 4 4],[2 3 3 1]))

 coder.extrinsic

4-143

Use Output of Extrinsic Function in an Expression at Run Time

The output that an extrinsic function returns is an mxArray, also known as a MATLAB array. The only
valid operations for an mxArray are storing it in a variable, passing it to another extrinsic function,
or returning it to MATLAB. To perform any other operation on an mxArray value, such as using it in
an expression in your code, convert the mxArray to a known type at run time. To perform this action,
assign the mxArray to a variable whose type is already defined by a prior assignment.

This example shows how to convert the mxArray output of an extrinsic function to a known type, and
then use the output in an expression inside your MATLAB function.

Define Entry-Point Function

Define a MATLAB function use_extrinsic_output that accepts source and target node indices for
a directed graph as inputs and determines if the graph is acyclic by using the hascycles function.
The hascycles function is not supported for code generation and is declared as extrinsic. The entry-
point function displays a message based on the output of the hascycles function.

type use_extrinsic_output

function use_extrinsic_output(source,target) %#codegen
assert(numel(source) == numel(target))
G = digraph(source,target);

coder.extrinsic('hascycles');

4 Functions

4-144

hasCycles = true;

hasCycles = hascycles(G);
if hasCycles == true
 disp('The graph has cycles')
else
 disp('The graph does not have cycles')
end
end

The local variable hasCycles is first preassigned the Boolean value true before the assignment
hasCycles = hascycles(G) occurs. This preassignment enables the code generator to convert the
mxArray that the extrinsic function hascycles returns to a Bsoolean before assigning it to the
hasCycles variable. This conversion in turn enables you to compare hasCycles with the Boolean
true in the condition of the if statement.

Generate and Call MEX Function

Generate MEX code for use_extrinsic_output. Specify the inputs to be unbounded vectors of
type double.

codegen use_extrinsic_output -args {coder.typeof(0,[1 Inf]),coder.typeof(0,[1 Inf])} -report

Code generation successful: To view the report, open('codegen\mex\use_extrinsic_output\html\report.mldatx')

Call the generated MEX function use_extrinsic_output_mex with suitable inputs:

use_extrinsic_output_mex([1 2 4 4],[2 3 3 1])

The graph does not have cycles

To see if the directed graph has cycles, plot the graph in MATLAB.

plot(digraph([1 2 4 4],[2 3 3 1]))

 coder.extrinsic

4-145

Evaluate Extrinsic Function Call at Compile Time by Using coder.const

This example shows how to call an extrinsic function at the time of code generation (also known as
compile time) by using coder.const. Because the MATLAB engine is always available during the
evaluation of the expression inside coder.const, you can use this coding pattern when generating
either MEX or standalone code. Unlike the previous two examples that show run-time execution, you
do not need to explicitly convert the output of the extrinsic function to a known type if its evaluation
happens at compile time.

In this example, the entry-point function rotate_complex invokes another function xml2struct
that uses the MATLAB API for XML processing. Because code generation does not support the
MATLAB API for XML processing, the xml2struct function is declared as extrinsic in the body of the
entry-point function. Also, the call to xml2struct inside the entry-point function returns a compile-
time constant. So, this output is constant-folded by placing the function call inside the coder.const
directive.

Inspect XML File Containing Parameters

The supporting file complex.xml contains the values of real and imaginary parts of a complex
number.

type complex.xml

<params>
 <param name="real" value="3"/>

4 Functions

4-146

 <param name="imaginary" value="4"/>
</params>

Define xml2struct Function

The MATLAB function xml2struct reads an XML file that uses the format of complex.xml to store
parameter names and values, stores this information as structure fields, and returns this structure.

type xml2struct.m

function s = xml2struct(file)
s = struct();
import matlab.io.xml.dom.*
doc = parseFile(Parser,file);
els = doc.getElementsByTagName("params");
for i = 0:els.getLength-1
 it = els.item(i);
 ps = it.getElementsByTagName("param");
 for j = 0:ps.getLength-1
 param = ps.item(j);
 paramName = char(param.getAttribute("name"));
 paramValue = char(param.getAttribute("value"));
 paramValue = evalin("base", paramValue);
 s.(paramName) = paramValue;
 end
end

Define Entry-Point Function

Your MATLAB entry-point function rotate_complex first calls xml2struct to read the file
complex.xml. It then rotates the complex number by an angle that is equal to the input argument
theta in degrees and returns the resulting complex number.

type rotate_complex.m

function y = rotate_complex(theta) %#codegen
coder.extrinsic("xml2struct");
s = coder.const(xml2struct("complex.xml"));

comp = s.real + 1i * s.imaginary;
magnitude = abs(comp);
phase = angle(comp) + deg2rad(theta);
y = magnitude * cos(phase) + 1i * sin(phase);

end

The xml2struct function is declared as extrinsic and its output is constant-folded by placing the
function inside the coder.const directive.

Generate and Inspect Static Library

Generate a static library for read_complex by using the codegen (MATLAB Coder) command.
Specify the input type to be a scalar double.

codegen -config:lib rotate_complex -args {0} -report

Code generation successful: To view the report, open('codegen\lib\rotate_complex\html\report.mldatx')

 coder.extrinsic

4-147

Inspect the generated C++ file rotate_complex.c. Observe that the output of the xml2struct
function is hardcoded in the generated code.

type codegen/lib/rotate_complex/rotate_complex.c

/*
 * rotate_complex.c
 *
 * Code generation for function 'rotate_complex'
 *
 */

/* Include files */
#include "rotate_complex.h"
#include <math.h>

/* Function Definitions */
creal_T rotate_complex(double theta)
{
 creal_T y;
 double y_tmp;
 y_tmp = 0.017453292519943295 * theta + 0.92729521800161219;
 y.re = 5.0 * cos(y_tmp);
 y.im = sin(y_tmp);
 return y;
}

/* End of code generation (rotate_complex.c) */

Input Arguments
function — MATLAB function name
character vector

Name of the MATLAB function that is declared as extrinsic.
Example: coder.extrinsic('patch')
Data Types: char

Limitations
• Extrinsic function calls have some overhead that can affect performance. Input data that is passed

in an extrinsic function call must be provided to MATLAB, which requires making a copy of the
data. If the function has any output data, this data must be transferred back into the MEX function
environment, which also requires a copy.

• The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

• The code generator does not support the use of coder.extrinsic to call local functions.

Tips
• The code generator automatically treats many common MATLAB visualization functions, such as

plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic.

4 Functions

4-148

• Use the coder.screener function to detect which functions you must declare as extrinsic. This
function runs the Code Generation Readiness Tool that screens the MATLAB code for features and
functions that are not supported for code generation.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.screener

Topics
“Use MATLAB Engine to Execute a Function Call in Generated Code”
“Generate Code for Global Data” (MATLAB Coder)
“Resolution of Function Calls for Code Generation”

 coder.extrinsic

4-149

coder.FiType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB fixed-point arrays acceptable for input specification

Description
Objects of coder.FiType specify the fixed-point array values that the generated code accepts. Use
objects of this class only with the -args options of the fiaccel command. Do not pass as an input to
the generated MEX function.

Creation
t = coder.typeof(v) creates a coder.FiType object representing a set of fixed-point values
whose properties are the same as the fixed-point input v.

t = coder.typeof(v,sz, variableDims) creates a coder.FiType object with upper bound
sizes specified by sz and variable dimensions indicated in variableDims. If sz specifies Inf for a
dimension, then the size of the dimension is unbounded and variable size. When sz is [], the upper
bound sizes of v do not change. If you do not specify the variableDims, the bounded dimensions of
the type are fixed. When variableDims is a scalar, this function applies this value to the bounded
dimensions that are not 1 or 0, which are fixed.

t = coder.newtype('embedded.fi',numerictype,sz,variableDims) creates a
coder.FiType object representing a set of fixed-point values with numerictype and upper bound
sizes sz and variable dimensions indicated in variableDims. If sz specifies Inf for a dimension,
then the size of the dimension is unbounded and the dimension is variable size. If you do not specify
the variableDims, the bounded dimensions of the type are fixed. When variableDims is a scalar,
this function applies this value to the bounded dimensions that are not 1 or 0, which are fixed.

t = coder.newtype('embedded.fi',numerictype,sz,variableDims,Name=Value) creates
a coder.FiType object representing a set of fixed-point values with additional options specified by
one or more name-value pair arguments. Name is a property name and Value is the corresponding
value. You can specify several name-value arguments in any order as Name1=Value1,
…,NameN=ValueN.

Note You can create and edit coder.Type objects interactively by using the Coder Type Editor. See
“Create and Edit Input Types by Using the Coder Type Editor”.

Input Arguments

v — Input variable
fixed-point numeric value

Input variable, specified as a fixed-point numeric value.

4 Functions

4-150

sz — Size of type object dimensions
integer vector

Size of type object dimensions, specified as a vector of integers.

variableDims — Option to specify variable size
boolean vector

Option to specify whether each dimension has a variable size, specified as a boolean vector. If you
specify an element of this vector as 1, the corresponding dimension has a variable size. Otherwise,
the dimension has a fixed size.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

complex — Option to represent complex values
falseor 0 (default) | trueor 1

Option to create a coder.FiType object that can represent complex values, specified as a numeric
or logical 1 (true) or 0 (false).

fimath — Fixed-point math option
fimath object

Fixed-point math option, specified as a fimath object. If you do not specify this input, the
coder.FiType object uses a fimath with default property values.

Properties
ClassName — Value class name
string scalar | character vector

Value class name, returned as a string scalar.

Complex — Indication of whether fixed-point arrays are complex
0 | 1

Indication of whether the fixed-point arrays in the set are real or complex.

Fimath — Fixed-point math option
fimath object

Fixed-point math option that the fixed-point arrays in the set use, returned as a fimath object.

NumericType — Fixed-point representation option
numerictype object

Fixed-point representation option that the fixed-point arrays in the set use, returned as a
numerictype object.

 coder.FiType class

4-151

SizeVector — Upper bound size of arrays
integer vector

Upper-bound size of the arrays in the set, returned as vector of integers.

VariableDims — Option to specify variable-size
boolean vector

Option to specify whether each dimension of the array has a fixed or variable size. A value of 1
indicates that the corresponding element has a variable size. A value of 0 indicates that the
corresponding element has a fixed size.

Examples

Create Fixed-Point Type Object

Create the fixed-point type t.

t = coder.typeof(fi(1))

t =
coder.FiType
 1×1 embedded.fi
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

 Edit Type Object

Create a fixed-point type for use in code generation. The fixed-point type uses the default fimath
object.

t = coder.newtype('embedded.fi',numerictype(1, 16, 15), [1 2])

t =
coder.FiType
 1×2 embedded.fi
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

 Edit Type Object

Version History
Introduced in R2011a

4 Functions

4-152

See Also
coder.ClassType | coder.Type | coder.ArrayType | coder.typeof | coder.resize |
coder.newtype | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

 coder.FiType class

4-153

coder.FixPtConfig class
Package: coder

Floating-point to fixed-point conversion configuration object

Description
A coder.FixPtConfig object contains the configuration parameters that the fiaccel function
requires to convert floating-point MATLAB code to fixed-point MATLAB code. Use the -float2fixed
option to pass this object to the fiaccel function.

Creation
fixptcfg = coder.config('fixpt') creates a coder.FixPtConfig object for floating-point to
fixed-point conversion.

Properties
ComputeDerivedRanges — Enable derived range analysis
false (default) | true

Enable derived range analysis, specified as true or false.

ComputeSimulationRanges — Enable collection and reporting of simulation range data
true (default) | false

Enable collection and reporting of simulation range data, specified as true or false. If you need to
run a long simulation to cover the complete dynamic range of your design, consider disabling
simulation range collection and running derived range analysis instead.

DefaultFractionLength — Default fixed-point fraction length
4 (default) | positive integer

Default fixed-point fraction length, specified as a positive integer.

DefaultSignedness — Default signedness of variables in the generated code
'Automatic' (default) | 'Signed' | 'Unsigned'

Default signedness of variables in the generated code, specified as 'Automatic', 'Signed', or
'Unsigned'.

DefaultWordLength — Default fixed-point word length
14 (default) | positive integer

Default fixed-point word length, specified as a positive integer.

DetectFixptOverflows — Enable detection of overflows using scaled doubles
false (default) | true

Enable detection of overflows using scaled doubles, specified as true or false.

4 Functions

4-154

fimath — fimath properties to use for conversion
fimath('RoundingMethod','Floor','OverflowAction','Wrap','ProductMode','FullPr
ecision','SumMode','FullPrecision') (default) | fimath object

fimath properties to use for conversion, specified as a fimath object.

FixPtFileNameSuffix — Suffix for fixed-point file names
'_fixpt' (default) | string

Suffix for fixed-point file names, specified as a string.

LaunchNumericTypesReport — View the numeric types report after the software has
proposed fixed-point types
true (default) | false

View the numeric types report after the software has proposed fixed-point types, specified as true or
false.

LogIOForComparisonPlotting — Enable simulation data logging to plot the data
differences introduced by fixed-point conversion
true (default) | false

Enable simulation data logging to plot the data differences introduced by fixed-point conversion,
specified as true or false.

OptimizeWholeNumber — Optimize the word lengths of variables that are always whole
numbers
true (default) | false

Optimize the word lengths of variables whose simulation min/max logs indicate that they are always
whole numbers, specified as true or false.

PlotFunction — Name of function to use for comparison plots
'' (default) | string

Name of function to use for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. This option
takes precedence over PlotWithSimulationDataInspector.

The plot function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

PlotWithSimulationDataInspector — Use the Simulation Data Inspector for comparison
plots
false (default) | true

Use the Simulation Data Inspector for comparison plots, specified as true or false.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

 coder.FixPtConfig class

4-155

ProposeFractionLengthsForDefaultWordLength — Propose fixed-point types based on
DefaultWordLength
true (default) | false

Propose fixed-point types based on DefaultWordLength, specified as true or false.

ProposeTargetContainerTypes — Whether to propose target container types
false (default) | true

By default (false), propose data types with the minimum word length needed to represent the value.
When set to true, propose data type with the smallest word length that can represent the range and is
suitable for C code generation (8, 16, 32, 64, …). For example, for a variable with range [0..7],
propose a word length of 8 rather than 3.

ProposeWordLengthsForDefaultFractionLength — Propose fixed-point types based on
DefaultFractionLength
false (default) | true

Propose fixed-point types based on DefaultFractionLength, specified as true or false.

ProposeTypesUsing — Propose data types based on simulation range data, derived ranges,
or both
'BothSimulationAndDerivedRanges' (default) | 'SimulationRanges' | 'DerivedRanges'

Propose data types based on simulation range data, derived ranges, or both, specified as
'BothSimulationAndDerivedRanges', 'SimulationRanges', or 'DerivedRanges'.

SafetyMargin — Safety margin percentage by which to increase the simulation range when
proposing fixed-point types
0 (default) | real number greater than -100

Safety margin percentage by which to increase the simulation range when proposing fixed-point
types, specified as a real number greater than -100.
Data Types: double

StaticAnalysisQuickMode — Perform faster static analysis
false (default) | true

Perform faster static analysis, specified as true or false.

StaticAnalysisTimeoutMinutes — Abort analysis if timeout is reached
'' (default) | positive integer

Abort analysis if timeout is reached, specified as a positive integer.

TestBenchName — Test bench function name or names
'' (default) | string | cell array of strings

Test bench function name or names, specified as a string or cell array of strings. You must specify at
least one test bench. If you do not explicitly specify input parameter data types, the conversion uses
the first test bench function to infer these data types.
Data Types: string | cell

4 Functions

4-156

TestNumerics — Enable numerics testing
false (default) | true

Enable numerics testing, specified as true or false.

Examples

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation Ranges

Create a coder.FixPtConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test. The conversion
process uses the test bench to infer input data types and collect simulation range data.

fixptcfg.TestBenchName = 'dti_test';

Select to propose data types based on simulation ranges only. By default, proposed types are based
on both simulation and derived ranges.

fixptcfg.ProposeTypesUsing = 'SimulationRanges';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation and Derived
Ranges

Create a coder.FixPtConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the name of the test bench to use to infer input data types. In this example, the test bench
function name is dti_test. The conversion process uses the test bench to infer input data types.

fixptcfg.TestBenchName = 'dti_test';

Select to propose data types based on derived ranges.

fixptcfg.ProposeTypesUsing = 'DerivedRanges';
fixptcfg.ComputeDerivedRanges = true;

Add design ranges. In this example, the dti function has one scalar double input, u_in. Set the
design minimum value for u_in to -1 and the design maximum to 1.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

Convert the floating-point MATLAB function, dti, to fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg dti

 coder.FixPtConfig class

4-157

Enable Overflow Detection

When you select to detect potential overflows, fiaccel generates a scaled double version of the
generated fixed-point MEX function. Scaled doubles store their data in double-precision floating-
point, so they carry out arithmetic in full range. They also retain their fixed-point settings, so they are
able to report when a computation goes out of the range of the fixed-point type.

Create a coder.FixPtConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Enable numerics testing with overflow detection.

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Alternatives
You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Converter
app. Open the app using one of these methods:

• On the Apps tab, in the Code Generation section, select Fixed-Point Converter.
• Use the fixedPointConverter command.

Version History
Introduced in R2014b

See Also
fiaccel | coder.mexconfig

Topics
“Propose Data Types Based on Simulation Ranges”
“Propose Data Types Based on Derived Ranges”
“Detect Overflows”

4 Functions

4-158

coder.ignoreConst
Prevent use of constant value of expression for function specializations

Syntax
coder.ignoreConst(expression)

Description
coder.ignoreConst(expression) prevents the code generator from using the constant value of
expression to create function specializations on page 4-161. coder.ignoreConst(expression)
returns the value of expression.

Examples

Prevent Function Specializations Based on Constant Input Values

Use coder.ignoreConst to prevent function specializations for a function that is called with
constant values.

Write the function call_myfn, which calls myfcn.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, 'mode1');
y = myfcn(n, 'mode2');
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;
end
end

Generate standalone C code. For example, generate a static library. Enable the code generation
report.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you see two function specializations for call_myfcn.

 coder.ignoreConst

4-159

The code generator creates call_myfcn>myfcn>1 for mode with a value of 'mode1'. It creates
call_myfcn>myfcn>2 for mode with a value of 'mode2'.

In the generated C code, you see the specializations my_fcn and b_my_fcn.

static double b_myfcn(double n)
{
 return -n;
}

static double myfcn(double n)
{
 return n;
}

To prevent the function specializations, instruct the code generator to ignore that values of the mode
argument are constant.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, coder.ignoreConst('mode1'));
y = myfcn(n, coder.ignoreConst('mode2'));
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;
end
end

Generate the C code.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you do not see multiple function specializations.

In the generated C code, you see one function for my_fcn.

Input Arguments
expression — Expression whose value is to be treated as a nonconstant
MATLAB expression

Expression whose value is to be treated as a nonconstant, specified as a MATLAB expression.

4 Functions

4-160

More About
Function Specialization

Version of a function in which an input type, size, complexity, or value is customized for a particular
invocation of the function.

Function specialization produces efficient C code at the expense of code duplication. The code
generation report shows all MATLAB function specializations that the code generator creates.
However, the specializations might not appear in the generated C/C++ code due to later
transformations or optimizations.

Tips
• For some recursive function calls, you can use coder.ignoreConst to force run-time recursion.

See “Force Code Generator to Use Run-Time Recursion”.
• coder.ignoreConst(expression) prevents the code generator from using the constant value

of expression to create function specializations. It does not prevent other uses of the constant
value during code generation.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.inline

Topics
“Force Code Generator to Use Run-Time Recursion”
“Compile-Time Recursion Limit Reached”

 coder.ignoreConst

4-161

coder.inline
Package: coder

Control inlining of a specific function in generated code

Syntax
coder.inline('always')
coder.inline('never')
coder.inline('default')

Description
coder.inline('always') forces inlining on page 4-163 of the current function in the generated
code. Place the coder.inline directive inside the function that you want to inline. The code
generator does not inline entry-point functions and recursive functions. Also, the code generator does
not inline functions into parfor loops, or inline functions called from parfor loops.

coder.inline('never') prevents inlining of the current function in the generated code. Prevent
inlining when you want to simplify the mapping between the MATLAB source code and the generated
code.

Note If you use the codegen or the fiaccel command, you can disable inlining for all functions by
using the -O disable:inline option.

If you generate C/C++ code by using the codegen command or the MATLAB Coder app, you might
have different speed and readability requirements for the code generated for functions that you write
and the code generated for MathWorks® functions. Certain additional global settings enable you to
separately control the inlining behavior for these two parts of the generated code base and at the
boundary between them. See .

coder.inline('default') instructs the code generator to use internal heuristics to determine
whether to inline the current function. Usually, the heuristics produce highly optimized code. Use
coder.inline explicitly in your MATLAB functions only when you need to fine-tune these
optimizations.

Examples

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)
 coder.inline('never');
 y = x;
end

4 Functions

4-162

Use coder.inline in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and issues a
warning.

Suppose that you want to generate code for a division function that runs on a system with limited
memory. To optimize memory use in the generated code, the inline_division function manually
controls inlining based on whether it performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)
 coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.
 coder.inline('never');
end

if any(divisor == 0)
 error('Cannot divide by 0');
end

y = dividend / divisor;

More About
Inlining

Technique that replaces a function call with the contents (body) of that function. Inlining eliminates
the overhead of a function call, but can produce larger C/C++ code. Inlining can create opportunities
for further optimization of the generated C/C++ code.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
fiaccel

 coder.inline

4-163

coder.load
Load compile-time constants from MAT-file or ASCII file

Syntax
S = coder.load(filename)
S = coder.load(filename,var1,...,varN)
S = coder.load(filename,'-regexp',expr1,...,exprN)
S = coder.load(filename,'-ascii')
S = coder.load(filename,'-mat')
S = coder.load(filename,'-mat',var1,...,varN)
S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

Description
S = coder.load(filename) loads compile-time constants from filename.

• If filename is a MAT-file, then coder.load loads variables from the MAT-file into a structure
array.

• If filename is an ASCII file, then coder.load loads data into a double-precision array.

coder.load loads data at code generation time, also referred to as compile time. If you change the
content of filename after you generate code, the change is not reflected in the behavior of the
generated code.

S = coder.load(filename,var1,...,varN) loads only the specified variables from the MAT-file
filename.

S = coder.load(filename,'-regexp',expr1,...,exprN) loads only the variables that match
the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless of the file
extension.

S = coder.load(filename,'-mat') treats filename as a MAT-file, regardless of the file
extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-file and loads
only the specified variables from the file.

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats filename as a
MAT-file and loads only the variables that match the specified regular expressions.

Examples

4 Functions

4-164

Load compile-time constants from MAT-file

Generate code for a function edgeDetect1 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect1 uses coder.load to load
the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.mat k

Write the function edgeDetect1.

function edgeImage = edgeDetect1(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

S = coder.load('sobel.mat','k');
H = conv2(double(originalImage),S.k, 'same');
V = conv2(double(originalImage),S.k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect1.

codegen -report -config cfg edgeDetect1

codegen generates C code in the codegen\lib\edgeDetect1 folder.

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect2 uses coder.load to load
the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k = [1 2 1; 0 0 0; -1 -2 -1];
save sobel.dat k -ascii

Write the function edgeDetect2.

function edgeImage = edgeDetect2(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = coder.load('sobel.dat');
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');

 coder.load

4-165

E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect2.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\lib\edgeDetect2 folder.

Input Arguments
filename — Name of file
character vector | string scalar

Name of file. filename must be a compile-time constant.

filename can include a file extension and a full or partial path. If filename has no extension, load
looks for a file named filename.mat. If filename has an extension other than .mat, load treats
the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of elements in each
row. The file delimiter (the character between elements in each row) can be a blank, comma,
semicolon, or tab character. The file can contain MATLAB comments (lines that begin with a percent
sign, %).
Example: 'myFile.mat'

var1,...,varN — Names of variables to load
character vector | string scalar

Names of variables, specified as one or more character vectors or string scalars. Each variable name
must be a compile-time constant. Use the * wildcard to match patterns.
Example: coder.load('myFile.mat','A*') loads all variables in the file whose names start with
A.

expr1,...,exprN — Regular expressions indicating which variables to load
character vector | string scalar

Regular expressions indicating which variables to load specified as one or more character vectors or
string scalars. Each regular expression must be a compile-time constant.
Example: coder.load('myFile.mat', '-regexp', '^A') loads only variables whose names
begin with A.

Output Arguments
S — Loaded variables or data
structure array | m-by-n array

If filename is a MAT-file, S is a structure array.

4 Functions

4-166

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of lines in the file
and n is the number of values on a line.

Limitations
• Arguments to coder.load must be compile-time constants.
• The output S must be the name of a structure or array without any subscripting. For example,

S(i) = coder.load('myFile.mat') is not allowed.
• You cannot use save to save workspace data to a file inside a function intended for code

generation. The code generator does not support the save function. Furthermore, you cannot use
coder.extrinsic with save. Prior to generating code, you can use save to save workspace
data to a file.

Tips
• coder.load(filename) loads data at compile time, not at run time. If you change the content of

filename after you generate code, the change is not reflected in the behavior of the generated
code. If you are generating MEX code or code for Simulink simulation, you can use the MATLAB
function load to load run-time values.

• If the MAT-file contains unsupported constructs, use coder.load(filename,var1,...,varN)
to load only the supported constructs.

• If you generate code in a MATLAB Coder project, the code generator practices incremental code
generation for the coder.load function. When the MAT-file or ASCII file used by coder.load
changes, the software rebuilds the code.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
matfile | regexp | save

Topics
“Regular Expressions”

 coder.load

4-167

coder.newtype
Package: coder

Create coder.Type object to represent type of an entry-point function input

Syntax
t = coder.newtype(numeric_class,sz,variable_dims)
t = coder.newtype(numeric_class,sz,variable_dims, Name,Value)
t = coder.newtype('constant',value)
t = coder.newtype('struct',struct_fields,sz,variable_dims)
t = coder.newtype('cell',cells,sz,variable_dims)
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims, Name,Value)
t = coder.newtype(enum_value,sz,variable_dims)
t = coder.newtype('class_name')
t = coder.newtype('string')

Description
The coder.newtype function is an advanced function that you can use to control the coder.Type
object. Consider using coder.typeof instead of coder.newtype. The function coder.typeof
creates a type from a MATLAB example. By default, t = coder.newtype('class_name') does not
assign any properties of the class, class_name to the object t.

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t = coder.newtype(numeric_class,sz,variable_dims) creates a coder.Type object
representing values of class numeric_class, sizes sz (upper bound), and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded
and the dimension is variable-size. When variable_dims is not specified, the dimensions of the type
are fixed except for those that are unbounded. When variable_dims is a scalar, it is applied to type
dimensions that are not 1 or 0, which are fixed.

t = coder.newtype(numeric_class,sz,variable_dims, Name,Value) creates a
coder.Type object by using additional options specified as one or more Name, Value pair
arguments.

t = coder.newtype('constant',value) creates a coder.Constant object representing a
single value. Use this type to specify a value that must be treated as a constant in the generated
code.

t = coder.newtype('struct',struct_fields,sz,variable_dims) creates a
coder.StructType object for an array of structures that has the same fields as the scalar structure
struct_fields. The structure array type has the size specified by sz and variable-size dimensions
specified by variable_dims.

t = coder.newtype('cell',cells,sz,variable_dims) creates a coder.CellType object for
a cell array that has the cells and cell types specified by cells. The cell array type has the size

4 Functions

4-168

specified by sz and variable-size dimensions specified by variable_dims. You cannot change the
number of cells or specify variable-size dimensions for a heterogeneous cell array.

t = coder.newtype('embedded.fi',numerictype,sz,variable_dims, Name,Value)
creates a coder.FiType object representing a set of fixed-point values that have numerictype and
additional options specified by one or more Name, Value pair arguments.

t = coder.newtype(enum_value,sz,variable_dims) creates a coder.Type object
representing a set of enumeration values of class enum_value.

t = coder.newtype('class_name') creates a coder.ClassType object for an object of the
class class_name. The new object does not have any properties of the class class_name.

t = coder.newtype('string') creates a coder.StringType object for a string scalar. A string
scalar contains one piece of text represented as a character vector. To specify the size of the
character vector and whether the second dimension is variable-size, set the StringLength property
to the required size and set VariableStringLength to true. For example, t.StringLength =
10 and t.VariableStringLength = true specifies that the string scalar is variable-size with an
upper bound of 10.

Examples

Create Type for a Matrix

Create a type for a variable-size matrix of doubles.

t = coder.newtype('double',[2 3 4],[1 1 0])

t =

coder.PrimitiveType
 :2×:3×4 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with fixed
size.

t = coder.newtype('double',[inf,3])

t =

coder.PrimitiveType
 :inf×3 double

t = coder.newtype('double',[inf,3],[1 0])

% also returns
t =

coder.PrimitiveType
 :inf×3 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with
variable-size that has an upper bound of 3.

 coder.newtype

4-169

t = coder.newtype('double',[inf,3],[0 1])

t =

coder.PrimitiveType
 :inf×:3 double

% ':' indicates variable-size dimensions

Create Type for a Structure

Create a type for a structure with a variable-size field.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('struct',struct('a',ta,'b',tb),[1 1],[1 1])

t =

coder.StructType
 :1×:1 struct
 a: 1×1 int8
 b: :1×:2 double
% ':' indicates variable-size dimensions

Create Type for a Cell Array

Create a type for a heterogeneous cell array.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb})

t =

coder.CellType
 1×2 heterogeneous cell
 f1: 1×1 int8
 f2: :1×:2 double
% ':' indicates variable-size dimensions

Create a type for a homogeneous cell array.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('int8',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb},[1,1],[1,1])

t =

coder.CellType
 :1×:1 homogeneous cell
 base: :1×:2 int8
% ':' indicates variable-size dimensions

4 Functions

4-170

Create Type for a Constant

Create a new constant type to use in code generation.

t = coder.newtype('constant',42)

t =

coder.Constant
 42

Create a coder.EnumType Object

Create a coder.EnumType object by using the name of an existing MATLAB enumeration.

1. Define an enumeration MyColors. On the MATLAB path, create a file named MyColors containing:

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

2. Create a coder.EnumType object from this enumeration.

t = coder.newtype('MyColors')

t =

coder.EnumType
 1×1 MyColors

Create a Fixed-Point Type

Create a fixed-point type for use in code generation.

The fixed-point type uses default fimath values.

t = coder.newtype('embedded.fi',numerictype(1, 16, 15),[1 2])

t =

coder.FiType
 1×2 embedded.fi
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Create a Type for an Object

Create a type for an object to use in code generation.

 coder.newtype

4-171

1. Create this value class:

classdef mySquare
 properties
 side;
 end

 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end

 function a = calcarea(obj)
 a = obj.side * obj.side;
 end

 end
end

2. Create a type for an object that has the same properties as mySquare.

t = coder.newtype('mySquare');

3. The previous step creates a coder.ClassType type for t, but does not assign any properties of
mySquare to it. To ensure t has all the properties of mySquare, change the type of the property
side by using t.Properties.

t.Properties.side = coder.typeof(int8(3))

t =

coder.ClassType
 1×1 mySquare
 side: 1×1 int8

Create Type for a String Scalar

Create a type for a string scalar to use in code generation.

1. Create the string scalar type.

t = coder.newtype('string');

2. Specify the size.

t.StringLength = 10;

3. Make the string variable-size.

t.VariableStringLength = true;

4. To make the string variable-size with no upper bound, set StringLength to Inf.

t.StringLength = Inf;

4 Functions

4-172

Note Setting StringLength to Inf implicitly sets VariableStringLength to true.

Input Arguments
numeric_class — Class of values of type object
numeric (default)

Class of the set of values represented by the type object.
Example: coder.newtype('double',[6,3]);
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char | string | struct | table | cell | function_handle | categorical |
datetime | duration | calendarDuration | fi
Complex Number Support: Yes

struct_fields — Indicates fields in a new structure type
struct (default)

Scalar structure used to specify the fields in a new structure type.
Example: coder.newtype('struct',struct('a',ta,'b',tb));
Data Types: struct

cells — Specify types of cells in a new cell array type
cell array (default)

Cell array of coder.Type objects that specify the types of the cells in a new cell array type.
Example: coder.newtype('cell',{ta,tb});
Data Types: cell

sz — Dimension of type object
row vector of integer values

Size vector specifying each dimension of type object. The sz dimension cannot change the number of
cells for a heterogeneous cell array.
Example: coder.newtype('int8',[1 2]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

'class_name' — Name of the class
character vector | string scalar

Name of the class from which the coder.ClassType is created. Specify as a character vector or
string scalar. class_name must be the name of a value class.
Example: coder.newtype('mySquare')
Data Types: char | string

variable_dims — Variable- or fixed-dimension
row vector of logical values

 coder.newtype

4-173

The value of variable_dims is true for dimensions for which sz specifies an upper bound of inf;
false for all other dimensions.

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false). You
cannot specify variable-size dimensions for a heterogeneous cell array.
Example: coder.newtype('char',[1,10],[0,1]);
Data Types: logical

value — Value of the constant
constant value (default)

Specifies the actual value of the constant.
Example: coder.newtype('constant',41);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell

enum_value — Enumeration values of class
enum (default)

Enumeration values of a class.
Example: coder.newtype('MyColors');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: coder.newtype('embedded.fi',numerictype(1,16,15),[1 2])

complex — Type representing complex values
true

Set complex to true to create a coder.Type object that can represent complex values. The type
must support complex data.

fimath — Type representing fimath values
numeric (default)

Specify local fimath. If you do not specify fimath, the code generator uses default fimath values.

Use with only
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims,Name,Value)

sparse — Type representing sparse data
false (default)

4 Functions

4-174

Set sparse to true to create a coder.Type object representing sparse data. The type must support
sparse data.

Not for use with
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims,Name,Value)

gpu — Type representing GPU inputs
false (default)

Set gpu to true to create a coder.Type object that can represent the GPU input type. This option
requires GPU Coder™.

Output Arguments
t — New type object
coder.Type object

A new coder.Type object.

Limitations
• For sparse matrices, coder.newtype drops upper bounds for variable-size dimensions.
• For GPU input types, only bounded numeric and logical base types are supported. Scalar GPU

arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-point
data types are not supported.

• When using coder.newtype to represent GPU inputs, the memory allocation (malloc) mode
property of the GPU code configuration object to 'discrete'.

Tips
• The coder.newtype function fixes the size of a singleton dimension unless the variable_dims

argument explicitly specifies that the singleton dimension has a variable size.

For example, this code specifies a 1-by-:10 double. The first dimension (the singleton dimension)
has a fixed size. The second dimension has a variable size.

t = coder.newtype('double',[1 10],1)

By contrast, this code specifies a :1-by-:10 double. Both dimensions have a variable size.

t = coder.newtype('double',[1 10],[1 1])
• For a MATLAB Function block, singleton dimensions of input or output signals cannot have a

variable size.

Alternatives
coder.typeof

Version History
Introduced in R2011a

 coder.newtype

4-175

See Also
coder.resize | coder.Type | coder.ArrayType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.CellType | fiaccel |
coder.OutputType

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

4 Functions

4-176

coder.nullcopy
Package: coder

Declare uninitialized variables in code generation

Syntax
X = coder.nullcopy(A)

Description
X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy element
values. The function preallocates memory for X without incurring the overhead of initializing memory.
In code generation, the coder.nullcopy function declares uninitialized variables. In MATLAB,
coder.nullcopy returns the input such that X is equal to A.

If X is a structure or a class containing variable-sized arrays, then you must assign the size of each
array. coder.nullcopy does not copy sizes of arrays or nested arrays from its argument to its
result.

Note Before you use X in a function or a program, ensure that the data in X is completely initialized.
Declaring a variable through coder.nullcopy without assigning all the elements of the variable
results in nondeterministic program behavior. For more information, see “How to Eliminate
Redundant Copies by Defining Uninitialized Variables”.

Examples

Declare a Variable Without Initialization

This example shows how to declare an array type variable without initializing any value in the array.

To generate code for the following function, you must fully declare the output variable outp as a n-
by-n array of real doubles before subscripting into outp. To perform this declaration without
initializing all the values in the array, use coder.nullcopy.

function outp = foo(n) %#codegen

outp = coder.nullcopy(ones(n));
for idx = 1:n*n
 if mod(idx,2) == 0
 outp(idx) = idx;
 else
 outp(idx) = idx + 1;
 end
end

Run this codegen command to generate code and launch report.

codegen -config:lib -c foo -args {0} -launchreport

 coder.nullcopy

4-177

In the code generation report, click Trace Code to see the mapping between the MATLAB code and
the generated code. To use the code traceability feature, you must have Embedded Coder®.

The following figures show the comparison between the code generated with and without
coder.nullcopy. Using coder.nullcopy with ones can specify the size of array outp without
initializing each element to one.

If you do not use coder.nullcopy, the generated code explicitly initializes every element in outp to
one (see lines 32 to 35).

Note In some situations, the code generator automatically performs the optimization corresponding
to coder.nullcopy, even if you do not explicitly include the coder.nullcopy directive in your
MATLAB code.

Input Arguments
A — Variable to copy
scalar | vector | matrix | class | multidimensional array

Variable to copy, specified as a scalar, vector, matrix, or multidimensional array.

4 Functions

4-178

Example: coder.nullcopy(A);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | class
Complex Number Support: Yes

Limitations
• You cannot use coder.nullcopy on sparse matrices.
• You cannot use coder.nullcopy with classes that support overloaded parentheses or require

indexing methods to access their data, such as table.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Topics
“Eliminate Redundant Copies of Variables in Generated Code”

 coder.nullcopy

4-179

coder.PrimitiveType class
Package: coder
Superclasses: coder.ArrayType

Represent set of logical, numeric, or character arrays acceptable for input specification

Description
Objects of coder.PrimitiveType specify logical, numeric, or character values that the generated
code accepts. Supported types are half, double, single, int8, uint8, int16, uint16, int32,
uint32, int64, uint64, char, and logical. Use objects of this class only with the -args option of
the fiaccel command. Do not pass as an input to a generated MEX function.

Creation
t = coder.typeof(v) creates a coder.PrimitiveType object denoting the smallest non-
constant type that contains v. v must be a MATLAB numeric, logical or character.

t = coder.typeof(v,sz,variableDims) creates a coder.PrimitiveType object with upper
bound sizes specified by sz and variable dimensions indicated in variableDims. If sz specifies Inf
for a dimension, then the size of the dimension is unbounded and variable sized. When sz is [], the
upper bound sizes of v remain unchanged. If you do not specify the variableDims, the bounded
dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to
the bounded dimensions that are not 1 or 0, which are fixed.

t = coder.newtype(numericClass,sz,variableDims) creates a coder.PrimitiveType
object representing values of class numericClass with upper bound sizes sz and variable
dimensions indicated in variableDims. If sz specifies Inf for a dimension, then the size of the
dimension is unbounded and variable sized. If you do not specify the variableDims, the bounded
dimensions of the type are fixed. When variableDims is a scalar, this function applies this value to
the bounded dimensions that are not 1 or 0, which are fixed.

t = coder.newtype(numericClass,sz,variableDims,Name=Value) creates a
coder.PrimitiveType object with additional options specified by one or more name,-value
arguments. Name is a property name and Value is the corresponding value. Specify Name as
character vector or string scalar. You can specify several name-value arguments in any order as
Name1=Value1,…,NameN=ValueN.

Note You can create and edit coder.Type objects interactively by using the Coder Type Editor. See
“Create and Edit Input Types by Using the Coder Type Editor”.

Input Arguments

v — Input variable
numeric | logical | character

Input variable, specified as a numeric, logical, or character value.

4 Functions

4-180

sz — Size of type object dimensions
integer vector

Size of type object dimensions, specified as a vector of integers.

variableDims — Option to specify variable size
boolean vector

Option to specify whether each dimension has a variable size, specified as a boolean vector. If you
specify an element of this vector as 1, the corresponding dimension has a variable size. Otherwise,
the dimension has a fixed size.

numericClass — Primitive class type
string scalar | character vector

Primitive class type, specified as a string scalar or character vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

complex — Option to represent complex values
falseor 0 (default) | trueor 1

Option to create a coder.PrimitiveType object that can represent complex values, specified as a
numeric or logical 1 (true) or 0 (false).

sparse — Option to represent sparse data
falseor 0 | true or 1

Option to create a coder.PrimitiveType object that can represent sparse values, specified as a
numeric or logical 1 (true) or 0 (false).

gpu — Option to represent GPU data
falseor 0 | true or 1

Option to create a coder.PrimitiveType object that can represent GPU data values, specified as a
numeric or logical 1 (true) or 0 (false).

Properties
complex — Option to represent complex values
1 (default) | 0

Option to represent complex values, specified as a 0 or 1. The type must support complex data.
Character arrays do not support complex data.

sparse — Option to represent sparse data
1 | 0

 coder.PrimitiveType class

4-181

Option to represent sparse data, specified as a 0 or 1. The type must support sparse data. Character
and half-precision data types do not support sparse data.

gpu — Option to represent GPU data
1 | 0

Option to represent the GPU input type, specified as a 0 or 1. This option requires a GPU Coder
license. The type must support GPU data. Character and half-precision data types do not support GPU
arrays.

Examples

Create Primitive Type Object

Use coder.typeof and specify the input variable, dimensions, and variable-size flag.

z = coder.typeof(0,[2 3 4],[1 1 0])

z =
coder.PrimitiveType
 :2×:3×4 double

 Edit Type Object

Use Primitive Type Object for Code Generation

Create a coder.PrimitiveType object.

z = coder.typeof(0,[2 3 4],[1 1 0])

Generate a C library for a MATLAB function that has one input parameter of type z.

codegen -config:lib fcn -args {z}

Version History
Introduced in R2011a

See Also
coder.ClassType | coder.Type | coder.ArrayType | coder.newtype | coder.typeof |
coder.resize | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

4 Functions

4-182

coder.resize
Package: coder

Resize coder.Type object

Syntax
t_out = coder.resize(t,sz)
t_out = coder.resize(t,sz,variable_dims)
t_out = coder.resize(t,[],variable_dims)
t_out = coder.resize(t,sz,variable_dims,Name,Value)
t_out = coder.resize(t,'sizelimits',limits)

Description
t_out = coder.resize(t,sz) resizes t to have size sz.

t_out = coder.resize(t,sz,variable_dims) returns a modified copy of coder.Type t with
(upper-bound) size sz and variable dimensions variable_dims. If variable_dims or sz are
scalars, the function applies the scalars to all dimensions of t. By default, variable_dims does not
apply to dimensions where sz is 0 or 1, which are fixed. Use the 'uniform' option to override this
special case. The coder.resize function ignores variable_dims for dimensions with size inf.
These dimensions are variable size. t can be a cell array of types, in which case, coder.resize
resizes all elements of the cell array.

t_out = coder.resize(t,[],variable_dims) changes t to have variable dimensions
variable_dims while leaving the size unchanged.

t_out = coder.resize(t,sz,variable_dims,Name,Value) resizes t by using additional
options specified by one or more Name, Value pair arguments.

t_out = coder.resize(t,'sizelimits',limits) resizes the individual dimensions of t based
on the threshold values in the limits vector. The limits vector is a row vector containing two
positive integer elements. Each dimension of t is individually resized according to the thresholds in
the limits vector.

• When the size S of a dimension is lesser than both thresholds defined in limits, the dimension
remains the same.

• When the size S of a dimension is greater than or equal to the first threshold and less than the
second threshold defined in limits, the dimension becomes variable size with upper bound S.

• However, when the size S of a dimension is also greater than or equal to the second threshold
defined in limits, the dimension becomes an unbounded variable size.

If the value of limits is scalar, the threshold gets scalar-expanded to represent both thresholds. For
example, if limits is defined as 4, it is interpreted as [4 4].

The 'sizelimits' option allows you to dynamically allocate memory to large arrays in your
generated code.

 coder.resize

4-183

Examples

Change Fixed-Size Array to an Unbounded, Variable-Size Array

Change a fixed-size array to an unbounded, variable-size array.

t = coder.typeof(ones(3,3))

t =

coder.PrimitiveType
 3×3 double

coder.resize(t,inf)

ans =

coder.PrimitiveType
 :inf×:inf double
% ':' indicates variable-size dimensions

Change Fixed-Size Array to a Bounded, Variable-Size Array

Change a fixed-size array to a bounded, variable-size array.

t = coder.typeof(ones(3,3))

t =

coder.PrimitiveType
 3×3 double

coder.resize(t,[4 5],1)

ans =

coder.PrimitiveType
 :4×:5 double
% ':' indicates variable-size dimensions

Resize Structure Field

Resize a structure field.

ts = coder.typeof(struct('a',ones(3, 3)))

ts =

coder.StructType
 1×1 struct
 a: 3×3 double

coder.resize(ts,[5, 5],'recursive',1)

4 Functions

4-184

ans =

coder.StructType
 5×5 struct
 a: 5×5 double

Resize Cell Array

Resize a cell array.

tc = coder.typeof({1 2 3})

tc =

coder.CellType
 1×3 homogeneous cell
 base: 1×1 double

coder.resize(tc,[5, 5],'recursive',1)

ans =

coder.CellType
 5×5 homogeneous cell
 base: 1×1 double

Change Fixed-Sized Array to Variable-Size Based on Bounded and Unbounded Thresholds

Change a fixed-sized array to a variable size based on bounded and unbounded thresholds.

t = coder.typeof(ones(100,200))

t =

coder.PrimitiveType
 100×200 double

coder.resize(t,'sizelimits',[99 199])

ans =

coder.PrimitiveType
 :100×:inf double
% ':' indicates variable-size dimensions

Input Arguments
limits — Vector that defines the threshold
row vector of integer values

A row vector of variable-size thresholds. If the value of limits is scalar, the threshold gets scalar-
expanded. If the size sz of a dimension of t is greater than or equal to the first threshold and less
than the second threshold defined in limits, the dimension becomes variable size with upper bound

 coder.resize

4-185

sz. If the size sz of a dimension of t is also greater than or equal to the second threshold, the
dimension becomes an unbounded variable size.

However, if the size sz is lesser than both thresholds, the dimension remains the same.
Example: coder.resize(t,'sizelimits',[99 199]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — New size for object type
row vector of integer values

New size for coder.Type object, t_out
Example: coder.resize(t,[3,4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

t — coder.Type object that you want to resize
coder.Type object

If t is a coder.CellType object, the coder.CellType object must be homogeneous.
Example: coder.resize(t,inf);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

variable_dims — Variable or fixed dimension
row vector of logical values

Specify whether each dimension of t_out is fixed size or variable size.
Example: coder.resize(t,[4 5],1);
Data Types: logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: coder.resize(t,[5, 5],'recursive', 1);

recursive — Resize t and all types contained within it
false (default) | true

Setting recursive to true resizes t and all types contained within it.
Data Types: logical

uniform — Resize t by applying the heuristic for dimensions of size one
false (default) | true

Setting uniform to true resizes t and applies the heuristic for dimensions of size one.

4 Functions

4-186

The heuristic works in the following manner:

• If variable_dims is a scalar true, all dimensions are resized to upper bound variable sizes
specified in sz. This includes dimensions of size one. For example:

t = coder.typeof(1, [1 5]);
tResize = coder.resize(t,[1 7],true,'uniform',true);

This generates an object tResize as shown:

tResize =

coder.PrimitiveType
 :1×:7 double

 Edit Type Object
• If you set uniform to true with the 'sizelimits' option, the dimensions of size one are also

resized to variable size, according to the 'sizelimits' heuristics. For example:

t = coder.typeof(1, [1 5]);
tResize = coder.resize(t,[],'sizelimits',[0 6],'uniform',true);

These commands generate an object tResize as shown:

tResize =

coder.PrimitiveType
 :1×:5 double

 Edit Type Object
• If variable_dims is specified as a non-scalar logical, the uniform setting has no effect.

However, if variable_dims is scalar and uniform is set to false, only dimensions of size
greater than one are resized.

Data Types: logical

sizelimits — Resize individual dimensions of t according to thresholds provided in the
limits vector
limits (default)

Using the sizelimits options with limits vector resizes individual dimensions of t.

t = coder.typeof(1, [1 5]);
tResize = coder.resize(t,[],'sizelimits',[0 6],'uniform',true);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
t_out — Resized type object
coder.Type object

Resized coder.Type object
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi

 coder.resize

4-187

Complex Number Support: Yes

Limitations
• For sparse matrices, coder.resize drops the upper bounds for variable-size dimensions.

Version History
Introduced in R2011a

See Also
coder.typeof | coder.newtype | fiaccel

4 Functions

4-188

coder.screener
Package: coder

Determine if function is suitable for code generation

Syntax
coder.screener(fcn)
coder.screener(fcn,'-gpu')
coder.screener(fcn_1,...,fcn_n)
info = coder.screener(___)

Description
coder.screener(fcn) analyzes the entry-point MATLAB function fcn to identify unsupported
functions and language features as code generation compliance issues. The code generation
compliance issues are displayed in the readiness report.

If fcn calls other functions directly or indirectly that are not MathWorks functions (MATLAB built-in
functions and toolbox functions), coder.screener analyzes these functions. It does not analyze the
MathWorks functions.

It is possible that coder.screener does not detect all code generation issues. Under certain
circumstances, it is possible that coder.screener reports false errors.

To avoid undetected code generation issues and false errors, before generating code, verify that your
MATLAB code is suitable for code generation by performing these additional checks:

• Before using coder.screener, fix issues that the Code Analyzer identifies.
• After using coder.screener, and before generating C/C++ code, verify that your MATLAB code

is suitable for code generation by generating and verifying a MEX function.

The coder.screener function does not report functions that the code generator treats as extrinsic.
Examples of such functions are plot, disp, and figure. See “Use MATLAB Engine to Execute a
Function Call in Generated Code”.

coder.screener(fcn,'-gpu') analyzes the entry-point MATLAB function fcn to identify
unsupported functions and language features for GPU code generation.

coder.screener(fcn_1,...,fcn_n) analyzes multiple entry-point MATLAB functions.

info = coder.screener(___) returns a coder.ScreenerInfo object. The properties of this
object contain the code generation readiness analysis results. Use info to access the code
generation readiness results programmatically. For a list of properties, see coder.ScreenerInfo
Properties.

Examples

 coder.screener

4-189

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for code
generation. It checks the entry-point function, foo1, and the function, foo2, that foo1 calls.

Write the function foo2 and save it in the file foo2.m.

function [tf1,tf2] = foo2(source,target)
G = digraph(source,target);
tf1 = hascycles(G);
tf2 = isdag(G);
end

Write the function foo1 that calls foo2. Save foo1 in the file foo1.m.

function [tf1,tf2] = foo1(source,target)
assert(numel(source)==numel(target))
[tf1,tf2] = foo2(source,target);
end

Analyze foo1.

coder.screener('foo1')

The Code Generation Readiness report displays a summary of the unsupported MATLAB function
calls. The report Issues tab indicates that foo2.m contains one call to the isdag function and one
call to the hascycles, which are not supported for code generation.

4 Functions

4-190

The function foo2 calls two unsupported MATLAB functions. To generate a MEX function, modify the
code to make the calls to hascycles and isdag extrinsic by using the coder.extrinsic directive,
and then rerun the code generation readiness tool.

function [tf1,tf2] = foo2(source,target)
coder.extrinsic('hascycles','isdag');
G = digraph(source,target);
tf1 = hascycles(G);
tf2 = isdag(G);
end

Rerun coder.screener on the entry-point function foo1.

coder.screener('foo1')

The report no longer flags that code generation does not support the hascycles and isdag
functions. When you generate a MEX function for foo1, the code generator dispatches these two
functions to MATLAB for execution.

Access Code Generation Readiness Results Programmatically

You can call the coder.screener function with an optional output argument. If you use this syntax,
the coder.screener function returns a coder.ScreenerInfo object that contains the results of

 coder.screener

4-191

the code generation readiness analysis for your MATLAB code base. See coder.ScreenerInfo
Properties.

This example uses the files foo1.m and foo2.m defined in the previous example. Call the
coder.screener function:

info = coder.screener('foo1.m')

info =

 ScreenerInfo with properties:

 Files: [2×1 coder.CodeFile]
 Messages: [2×1 coder.Message]
 UnsupportedCalls: [2×1 coder.CallSite]

 View Screener Report

To access information about the first unsupported call, index into the UnsupportedCalls property,

firstCall = info.UnsupportedCalls(1)

firstCall =

 CallSite with properties:

 CalleeName: 'hascycles'
 File: [1×1 coder.CodeFile]
 StartIndex: 78
 EndIndex: 86

View the text of the file that contains this unsupported call to hascycles.

firstCall.File.Text

ans =

 'function [tf1,tf2] = foo2(source,target)
 G = digraph(source,target);
 tf1 = hascycles(G);
 tf2 = isdag(G);
 end
 '

To export the entire code generation readiness report to a MATLAB string, use the textReport
function.

reportString = textReport(info)

reportString =

 'Code Generation Readiness (Text Report)
 =======================================

 2 Code generation readiness issues
 2 Unsupported functions
 2 Files analyzed

 Configuration

4 Functions

4-192

 =============

 Language: C/C++ (MATLAB Coder)

 Code Generation Issues
 ======================

 Unsupported function: digraph (2)
 - foo2.m (Line 3)
 - foo2.m (Line 4)

 '

Identify Unsupported Data Types

The coder.screener function identifies MATLAB data types that code generation does not support.

Write the function myfun1 that contains a MATLAB calendar duration array data type.

function out = myfun1(A)
out = calyears(A);
end

Analyze myfun1.

coder.screener('myfun1');

The code generation readiness report indicates that the calyears data type is not supported for
code generation. Before generating code, fix the reported issue.

Input Arguments
fcn — Name of entry-point function
character vector | string scalar

Name of entry-point MATLAB function for analysis. Specify as a character vector or a string scalar.
Example: coder.screener('myfun');
Data Types: char | string

fcn_1,...,fcn_n — List of entry-point function names
character vector | string scalar

Comma-separated list of entry-point MATLAB function names for analysis. Specify as character
vectors or string scalars.
Example: coder.screener('myfun1','myfun2');
Data Types: char | string

Alternatives
• “Run the Code Generation Readiness Tool From the Current Folder Browser”

 coder.screener

4-193

Version History
Introduced in R2012b

See Also
coder.extrinsic | fiaccel

Topics
“Functions Supported for Code Acceleration or C Code Generation”
“Code Generation Readiness Tool”

4 Functions

4-194

coder.StructType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB structure arrays acceptable for input specification

Description
Objects of coder.StructType specify the structure arrays that the generated code should accept.
Use objects of this class only with the -args option of the fiaccel command. Do not pass as an
input to a generated MEX function.

Creation
t = coder.typeof(structV) creates a coder.StructType object for a structure with the same
fields as the scalar structure struct_v.

t = coder.typeof(structV,sz,variableDims) creates a coder.StructType with upper
bound sizes specified by sz and variable dimensions indicated by variableDims. If sz specifies Inf
for a dimension, then the size of the dimension unbounded and variable size. When sz is [], the
upper bound sizes of structV remain unchanged. If you do not specify the variableDims, the
bounded dimensions of the type are fixed. When variableDims is a scalar, this function applies this
value to the bounded dimensions that are not 1 or 0, which are fixed.

t = coder.newtype('struct',structV,sz,variableDims) creates a coder.StructType
object for an array of structures with the same fields as the scalar structure structV and upper
bound size sz and variable dimensions indicated in variableDims. If sz specifies Inf for a
dimension, then the size of the dimension is assumed to be unbounded and the dimension is assumed
to be variable sized. If you do not specify the variableDims, the bounded dimensions of the type are
fixed. When variableDims is a scalar, this function applies this value to the bounded dimensions
that are not 1 or 0, which are fixed.

Note You can create and edit coder.Type objects interactively by using the Coder Type Editor. See
“Create and Edit Input Types by Using the Coder Type Editor”.

Input Arguments

structV — Input structure variable
scalar structure

Input structure variable that specifies the fields in a new structure type, specified as a scalar
structure.

sz — Size of type object dimensions
integer vector

Size of type object dimensions, specified as a vector of integers.

 coder.StructType class

4-195

variableDims — Option to specify variable size
boolean vector

Option to specify whether each dimension has a variable size, specified as a boolean vector. If you
specify an element of this vector as 1, the corresponding dimension has a variable size. Otherwise,
the dimension has a fixed size.

Properties
Alignment — Run-time memory alignment
-1 | power of 2 no greater than 128

The run-time memory alignment of structures of this type in bytes.

If you have an Embedded Coder license and use code replacement libraries (CRLs), you can align
data objects that are specified as inputs to a replacement function to a specified boundary. Use this
capability to take advantage of target-specific function implementations that require data to be
aligned. By default, the class does not align the structure to a specific boundary, which means that
CRL functions that require alignment do not match the default structure.

ClassName — Value class name
character vector | string scalar

Value class name, returned as a string scalar.

Extern — Indication of whether structure is defined externally
1 | 0

Indication of whether structure is defined externally, returned as a 1 or 0. A value of 1 indicates that
the structure is defined externally. A value of 0 indicates that the structure is defined internally.

Fields — Field types
scalar structure

Types of fields in the structure, specified as a structure.

HeaderFile — External header file name
character vector

External header file name, returned as a nonempty character vector or string scalar. If the structure
type is externally defined, name of the header file that contains the external definition of the
structure, for example, "mystruct.h".

By default, the generated code contains #include statements for custom header files after the
standard header files. If a standard header file refers to the custom structure type, then the
compilation fails. By specifying the HeaderFile property, MATLAB Coder includes the header file in
the required location.

SizeVector — Upper bound of type object
integer vector | integer scalar

Upper bound of type object, specified as a vector of integer or scalar integer.

VariableDims — Option to specify variable-size
boolean vector

4 Functions

4-196

Option to specify whether each dimension of the array has a fixed or variable size. A value of 1
indicates that the corresponding element has a variable size. A value of 0 indicates that the
corresponding element has a fixed size.

Examples

Create coder.StructType Type Object

This example shows how to create a type for a structure with a variable-size field.

Create a type object by using coder.typeof.

x.a = coder.typeof(0,[3 5],1);
x.b = magic(3);
t = coder.typeof(x)

t =
coder.StructType
 1×1 struct
 a: :3×:5 double
 b: 3×3 double

 Edit Type Object

Create Externally Defined Structure Type

Create an externally defined structure type.

S.a = coder.typeof(double(0));
S.b = coder.typeof(single(0));
T = coder.typeof(S);
T = coder.cstructname(T,'mytype','extern',HeaderFile='myheader.h');

View the types of the structure fields.

T.Fields

ans = struct with fields:
 a: [1x1 coder.PrimitiveType]
 b: [1x1 coder.PrimitiveType]

Specify coder.StructType Object to Generate Code

Create a structure type.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
z = coder.newtype('struct',struct('a',ta,'b',tb))

coder.StructType
 1x1 struct
 a: 1x1 int8
 b: :1x:2 double

 coder.StructType class

4-197

Generate a C library for a MATLAB function fcn.m that has one input parameter of this type.

codegen -config:lib fcn -args {z}

Version History
Introduced in R2011a

See Also
coder.ClassType | coder.Type | coder.PrimitiveType | coder.EnumType | coder.FiType |
coder.Constant | coder.ArrayType | coder.newtype | coder.typeof | coder.resize |
fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

4 Functions

4-198

coder.target
Determine if code generation target is specified target

Syntax
tf = coder.target(target)

Description
tf = coder.target(target) returns true (1) if the code generation target is target. Otherwise,
it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at class loading time
before code generation. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true.

Examples

Use coder.target to Parametrize a MATLAB Function

Parametrize a MATLAB function so that it works in MATLAB or in generated code. When the function
runs in MATLAB, it calls the MATLAB function myabsval. The generated code, however, calls a C
library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u)
%#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size, type, and
complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

The codegen function creates the library file myabsval.lib and header file myabsval.h in the
folder \codegen\lib\myabsval. (The library file extension can change depending on your
platform.) It generates the functions myabsval_initialize and myabsval_terminate in the
same folder.

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);
else

 coder.target

4-199

 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)\codegen\lib\myabsval');
 coder.cinclude('myabsval_initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');

 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);

 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end

Generate the MEX function callmyabsval_mex. Provide the generated library file at the command
line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use coder.updateBuildInfo to
specify the library within the function. Use this option to preconfigure the build. Add this line to the
else block:

coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,true,true);

Note The START_DIR macro is only supported for generating code with MATLAB Coder.

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex(-2.75)

ans =

 2.7500

Call the MATLAB function callmyabsval.

callmyabsval(-2.75)

ans =

 2.7500

The callmyabsval function exhibits the desired behavior for execution in MATLAB and in code
generation.

Input Arguments
target — code generation target
'MATLAB' | 'C' | 'C++' | 'CUDA' | 'OpenCL' | 'SystemC' | 'SystemVerilog' | 'Verilog' |
'VHDL' | 'MEX' | 'Sfun' | 'Rtw' | 'HDL ' | 'Custom'

4 Functions

4-200

Code generation target, specified as a character vector or a string scalar. Specify one of these
targets.

'MATLAB' Running in MATLAB (not generating code)
'C', 'C++', 'CUDA',
'OpenCL' 'SystemC',
'SystemVerilog',
'Verilog', 'VHDL'

Supported target languages for code generation

'MEX' Generating a MEX function
'Sfun' Simulating a Simulink model. Also used for running in Accelerator mode.
'Rtw' Generating a LIB, DLL, or EXE target. Also used for running in Simulink

Coder and Rapid Accelerator mode.
'HDL' Generating an HDL target
'Custom' Generating a custom target

Example: tf = coder.target('MATLAB')
Example: tf = coder.target("MATLAB")

Note In case of CUDA or SystemC code generation, coder.target('C++') is always true.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

 coder.target

4-201

coder.Type class
Package: coder

Represent set of MATLAB values acceptable for input specification

Description
Objects of coder.Type specify the values that the generated code accepts. Use objects of this class
only with the -args option of the fiaccel command. Do not pass as an input to a generated MEX
function.

Creation

Note You can create and edit coder.Type objects interactively by using the Coder Type Editor. See
“Create and Edit Input Types by Using the Coder Type Editor”.

coder.Type is an abstract class. To create objects of this class, use the coder.typeof and
coder.newtype functions.

These classes are the instances of the coder.Type class.

• coder.CellType
• coder.ClassType
• coder.Constant
• coder.EnumType
• coder.FiType
• coder.OutputType
• coder.PrimitiveType
• coder.StructType

Properties
ClassName — Value class name
coder.CellType | coder.ClassType | coder.Constant | coder.EnumType | coder.FiType |
coder.OutputType | coder.PrimitiveType | coder.StructType

Value class name, returned as an object of one of these classes.

• coder.CellType
• coder.ClassType
• coder.Constant
• coder.EnumType
• coder.FiType

4 Functions

4-202

• coder.OutputType
• coder.PrimitiveType
• coder.StructType

Version History
Introduced in R2011a

See Also
fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

 coder.Type class

4-203

coderTypeEditor
Launch the Coder Type Editor dialog

Syntax
coderTypeEditor
coderTypeEditor var1 ... varN
coderTypeEditor -all
coderTypeEditor -close

Description
coderTypeEditor opens an empty Coder Type Editor dialog. If a dialog is already open, this
command brings it to the front of the screen.

You can use the Coder Type Editor to create and edit coder.Type objects interactively. See “Create
and Edit Input Types by Using the Coder Type Editor”.

coderTypeEditor var1 ... varN opens a Coder Type Editor dialog pre-populated with
coder.Type objects corresponding to the workspace variables var1 through varN. For a variable
var, the name of the generated coder.Type object is varType.

coderTypeEditor -all opens a Coder Type Editor dialog pre-populated with coder.Type objects
corresponding to all compatible variables in the current workspace.

coderTypeEditor -close closes an open Coder Type Editor dialog.

Examples

Open Coder Type Editor Populated with Types for Existing Variables

In your MATLAB workspace, define variables var1, var2, and var3.

myArray = magic(4);
myCharVector = 'Hello, World!';
myStruct = struct('a',5,'b','mystring');

Open the type editor pre-populated with types for var1, var2, and var3.

coderTypeEditor myArray myCharVector myStruct

The Coder Type Editor dialog opens. The Type Browser pane displays the name, class (data type),
and size for coder.Type objects myArrayType, myCharVectorType, and myStructType for the
three workspace variables.

Inspect the created types and check that they are consistent with the variables in the workspace.

• myArrayType represents a 4-by-4 array of type double.
• myCharVectorType represents a 1-by-13 character row vector.

4 Functions

4-204

• myStructType represents a scalar of type struct. Expand the tree corresponding to
myStructType in the Type Browser. The field a represents a scalar double. The field b
represents a 1-by-8 character vector.

To save these types in the base workspace, in the Coder Type Editor toolstrip, click Save. The
variables myArrayType, myCharVectorType, and myStructType appear in the base workspace.

Input Arguments
var1 ... varN — Workspace variables whose types you intend to view in the type editor
value belonging to a fundamental MATLAB class that supports code generation | value object | handle
object | coder.Type object

Workspace variables whose types you intend to view in the type editors. They can store any value that
is compatible with code generation.

The value can also be a coder.Type object. In that case, the coder.Type object itself opens in the
type editor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | categorical | datetime | duration |
timetable | fi | value object | coder.Type object
Complex Number Support: Yes

Version History
Introduced in R2020a

See Also
coder.typeof | coder.newtype

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

 coderTypeEditor

4-205

coder.typeof
Package: coder

Create coder.Type object to represent the type of an entry-point function input

Syntax
type_obj = coder.typeof(v)
type_obj = coder.typeof(v,sz,variable_dims)
type_obj = coder.typeof(v,'Gpu', true)
type_obj = coder.typeof(type_obj)

Description

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

type_obj = coder.typeof(v) creates an object that is derived from coder.Type to represent
the type of v for code generation. Use coder.typeof to specify only input parameter types. For
example, use it with the fiaccel function -args option. Do not use it in MATLAB code from which
you intend to generate a MEX function.

type_obj = coder.typeof(v,sz,variable_dims) returns a modified copy of type_obj =
coder.typeof(v) with upper bound size specified by sz and variable dimensions specified by
variable_dims.

type_obj = coder.typeof(v,'Gpu', true) creates an object that is derived from coder.Type
to represent v as a GPU input type for code generation. This option requires a valid GPU Coder
license.

type_obj = coder.typeof(type_obj) returns type_obj itself.

Examples

Create Type for a Matrix

Create a type for a simple fixed-size 5x6 matrix of doubles.

coder.typeof(ones(5,6))

ans =

coder.PrimitiveType
 5×6 double

coder.typeof(0,[5 6])

ans =

4 Functions

4-206

coder.PrimitiveType
 5×6 double

Create a type for a variable-size matrix of doubles.

coder.typeof(ones(3,3),[],1)

ans =

coder.PrimitiveType
 :3×:3 double
% ':' indicates variable-size dimensions

Create a type for a matrix with fixed-size and variable-size dimensions.

coder.typeof(0,[2,3,4],[1 0 1])

ans =

coder.PrimitiveType
 :2×3×:4 double

coder.typeof(10,[1 5],1)

ans =

coder.PrimitiveType
 1×:5 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with fixed size.

coder.typeof(10,[inf,3])

ans =

coder.PrimitiveType
 :inf×3 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with variable size
that has an upper bound of 3.

coder.typeof(10,[inf,3],[0 1])

ans =

coder.PrimitiveType
 :inf×:3 double

Convert a fixed-size matrix to a variable-size matrix.

coder.typeof(ones(5,5),[],1)

 ans =

coder.PrimitiveType

 coder.typeof

4-207

 :5×:5 double
% ':' indicates variable-size dimensions

Create Type for a Structure

Create a type for a structure with a variable-size field.

x.a = coder.typeof(0,[3 5],1);
x.b = magic(3);
coder.typeof(x)

ans =

coder.StructType
 1×1 struct
 a: :3×:5 double
 b: 3×3 double
% ':' indicates variable-size dimensions

Create a nested structure (a structure as a field of another structure).

S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S);
SuperS.y = single(0);
coder.typeof(SuperS)

ans =

coder.StructType
 1×1 struct
 x: 1×1 struct
 a: 1×1 double
 b: 1×1 single
 y: 1×1 single

Create a structure containing a variable-size array of structures as a field.

S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S,[1 inf],[0 1]);
SuperS.y = single(0);
coder.typeof(SuperS)

ans =

coder.StructType
 1×1 struct
 x: 1×:inf struct
 a: 1×1 double
 b: 1×1 single
 y: 1×1 single
% ':' indicates variable-size dimensions

Create Type for a Cell Array

Create a type for a homogeneous cell array with a variable-size field.

4 Functions

4-208

a = coder.typeof(0,[3 5],1);
b = magic(3);
coder.typeof({a b})

ans =

coder.CellType
 1×2 homogeneous cell
 base: :3×:5 double
% ':' indicates variable-size dimensions

Create a type for a heterogeneous cell array.

a = coder.typeof('a');
b = coder.typeof(1);
coder.typeof({a b})

ans =

coder.CellType
 1×2 heterogeneous cell
 f1: 1×1 char
 f2: 1×1 double

Create a variable-size homogeneous cell array type from a cell array that has the same class but
different sizes.

1. Create a type for a cell array that contains two character vectors with different sizes. The cell
array type is heterogeneous.

coder.typeof({'aa','bbb'})

ans =

coder.CellType
 1×2 heterogeneous cell
 f1: 1×2 char
 f2: 1×3 char

2. Create a type by using the same cell array input. This time, specify that the cell array type has
variable-size dimensions. The cell array type is homogeneous.

coder.typeof({'aa','bbb'},[1,10],[0,1])

ans =

coder.CellType
 1×:10 locked homogeneous cell
 base: 1×:3 char
% ':' indicates variable-size dimensions

Create Type for a Value Class Object

Change a fixed-size array to a bounded, variable-size array.

Create a type for a value class object.

 coder.typeof

4-209

1. Create this value class:

classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end

2. Create an object of mySquare.

sq_obj = coder.typeof(mySquare(4))

sq_obj =

coder.ClassType
 1×1 mySquare
 side: 1×1 double

3. Create a type for an object that has the same properties as sq_obj.

t = coder.typeof(sq_obj)

t =

coder.ClassType
 1×1 mySquare
 side: 1×1 double

Alternatively, you can create the type from the class definition:

t = coder.typeof(mySquare(4))

t =

coder.ClassType
 1×1 mySquare
 side: 1×1 double

Create Type for a String Scalar

Define a string scalar. For example:

s = "mystring";

Create a type from s.

t = coder.typeof(s);

4 Functions

4-210

Assign the StringLength property of the type object the upper bound of the string length and set
VariableStringLength to true. Specify that type object t is variable-size with an upper bound of
10.

t.StringLength = 10;
t.VariableStringLength = true;

To specify that t is variable-size without an upper bound:

t.StringLength = Inf;

This automatically sets the VariableStringLength property to true.

Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Input Arguments
v — Set of values representing input parameter types
numeric array | character vector | string | struct | cell array

v can be a MATLAB numeric, logical, char, enumeration, or fixed-point array. v can also be a cell
array, structure, or value class that contains the previous types.

When v is a cell array whose elements have the same classes but different sizes, if you specify
variable-size dimensions, coder.typeof creates a homogeneous cell array type. If the elements
have different classes, coder.typeof reports an error.
Example: coder.typeof(ones(5,6));
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char | string | struct | table | cell | function_handle | categorical |
datetime | duration | calendarDuration | fi
Complex Number Support: Yes

sz — Dimension of type object
row vector of integer values

Size vector specifying each dimension of type object.

If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is
variable size. When sz is [], the upper bounds of v do not change.

If size is not specified, sz takes the default dimension of v.
Example: coder.typeof(0,[5,6]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

variable_dims — Variable or fixed dimension
row vector of logical values

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false). For a
cell array, if the elements have different classes, you cannot specify variable-size dimensions.

If you do not specify the variable_dims input parameter, the bounded dimensions of the type are
fixed.

 coder.typeof

4-211

A scalar variable_dims applies to all dimensions. However, if variable_dims is 1, the size of a
singleton dimension remains fixed.
Example: coder.typeof(0,[2,3,4],[1 0 1]);
Data Types: logical

type_obj — Type object
coder.Type object

coder.Type object to represent the type of v for code generation.
Example: type_obj = coder.typeof(ones(5,6));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Output Arguments
type_obj — Type object
coder.Type object

coder.Type object to represent the type of v for code generation.
Example: type_obj = coder.typeof(ones(5,6));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Limitations
• For sparse matrices, coder.typeof drops upper bounds for variable-size dimensions.
• For representing GPU arrays, only bounded numeric and logical base types are supported. Scalar

GPU arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-
point data types are not supported.

• When using coder.typeof to represent GPU arrays, the memory allocation (malloc) mode
property of the GPU code configuration object must be set to be 'discrete'.

Tips
• coder.typeof fixes the size of a singleton dimension unless the variable_dims argument

explicitly specifies that the singleton dimension has a variable size.

For example, the following code specifies a 1-by-:10 double. The first dimension (the singleton
dimension) has a fixed size. The second dimension has a variable size.

t = coder.typeof(5,[1 10],1)

By contrast, this code specifies a :1-by-:10 double. Both dimensions have a variable size.

t = coder.typeof(5,[1 10],[1 1])

4 Functions

4-212

Note For a MATLAB Function block, singleton dimensions of input or output signals cannot have
a variable size.

• If you are already specifying the type of an input variable by using a type function, do not use
coder.typeof unless you also want to specify the size. For instance, instead of
coder.typeof(single(0)), use the syntax single(0).

• For cell array types, coder.typeof determines whether the cell array type is homogeneous or
heterogeneous.

If the cell array elements have the same class and size, coder.typeof returns a homogeneous
cell array type.

If the elements have different classes, coder.typeof returns a heterogeneous cell array type.

For some cell arrays, classification as homogeneous or heterogeneous is ambiguous. For example,
the type for {1 [2 3]} can be a 1x2 heterogeneous type where the first element is double and the
second element is 1x2 double. The type can also be a 1x3 homogeneous type in which the
elements have class double and size 1x:2. For these ambiguous cases, coder.typeof uses
heuristics to classify the type as homogeneous or heterogeneous. If you want a different
classification, use the coder.CellType makeHomogeneous or makeHeterogeneous methods to
make a type with the classification that you want. The makeHomogeneous method makes a
homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a
type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as heterogeneous and homogeneous. You cannot later use one of these methods to create a copy
that has a different classification.

• During code generation with GPU array types, if one input to the entry-point function is of the
GPU array type, then the output variables are all GPU array types, provided they are supported
for GPU code generation. For example. if the entry-point function returns a struct and because
struct is not supported, the generated code returns a CPU output. However, if a supported
matrix type is returned, then the generated code returns a GPU output.

Version History
Introduced in R2011a

See Also
coder.newtype | coder.resize | coder.Type | coder.ArrayType | coder.EnumType |
coder.FiType | coder.PrimitiveType | coder.StructType | coder.CellType | fiaccel |
coder.OutputType

Topics
“Define Input Properties by Example at the Command Line”
“Specify Cell Array Inputs at the Command Line”
“Specify Objects as Inputs”
“Define String Scalar Inputs”
“Create and Edit Input Types by Using the Coder Type Editor”

 coder.typeof

4-213

coder.unroll
Unroll for-loop by making a copy of the loop body for each loop iteration

Syntax
coder.unroll()
coder.unroll(flag)

Description
coder.unroll() unrolls a for-loop. The coder.unroll call must be on a line by itself immediately
preceding the for-loop that it unrolls.

Instead of producing a for-loop in the generated code, loop unrolling produces a copy of the for-
loop body for each loop iteration. In each iteration, the loop index becomes constant. To unroll a loop,
the code generator must be able to determine the bounds of the for-loop.

For small, tight loops, unrolling can improve performance. However, for large loops, unrolling can
increase code generation time significantly and generate inefficient code.

coder.unroll is ignored outside of code generation.

coder.unroll(flag) unrolls a for-loop if flag is true. flag is evaluated at code generation
time. The coder.unroll call must be on a line by itself immediately preceding the for-loop that it
unrolls.

Examples

Unroll a for-loop

To produce copies of a for-loop body in the generated code, use coder.unroll.

In one file, write the entry-point function call_getrand and a local function getrand. getrand
unrolls a for-loop that assigns random numbers to an n-by-1 array. call_getrand calls getrand
with the value 3.

function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
coder.unroll();
for i = 1:n
 y(i) = rand();
end
end

4 Functions

4-214

Generate a static library.

codegen -config:lib call_getrand -report

In the generated code, the code generator produces a copy of the for-loop body for each of the three
loop iterations.

static void getrand(double y[3])
{
 y[0] = b_rand();
 y[1] = b_rand();
 y[2] = b_rand();
}

Control for-loop Unrolling with Flag

Control loop unrolling by using coder.unroll with the flag argument.

In one file, write the entry-point function call_getrand_unrollflag and a local function
getrand_unrollflag. When the number of loop iterations is less than 10, getrand_unrollflag
unrolls the for-loop. call_getrand calls getrand with the value 50.

function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
coder.unroll(unrollflag)
for i = 1:n
 y(i) = rand();
end
end

Generate a static library.

codegen -config:lib call_getrand_unrollflag -report

static void getrand_unrollflag(double y[50])
{
 int i;
 for (i = 0; i < 50; i++) {
 y[i] = b_rand();
 }
}

The number of iterations is not less than 10. Therefore, the code generator does not unroll the for-
loop. It produces a for-loop in the generated code.

 coder.unroll

4-215

Use Legacy Syntax to Unroll for-Loop

• function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
for i = coder.unroll(1:n)
 y(i) = rand();
end
end

Use Legacy Syntax to Control for-Loop Unrolling

• function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
for i = coder.unroll(1:n, unrollflag)
 y(i) = rand();
end
end

Input Arguments
flag — Indicates whether to unroll the for-loop
true (default) | false

When flag is true, the code generator unrolls the for-loop. When flag is false, the code
generator produces a for-loop in the generated code. flag is evaluated at code generation time.

Tips
• Sometimes, the code generator unrolls a for-loop even though you do not use coder.unroll.

For example, if a for-loop indexes into a heterogeneous cell array or into varargin or
varargout, the code generator unrolls the loop. By unrolling the loop, the code generator can
determine the value of the index for each loop iteration. The code generator uses heuristics to
determine when to unroll a for-loop. If the heuristics fail to identify that unrolling is warranted,
or if the number of loop iterations exceeds a limit, code generation fails. In these cases, you can
force loop unrolling by using coder.unroll. See “Nonconstant Index into varargin or varargout
in a for-Loop”.

Version History
Introduced in R2011a

4 Functions

4-216

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
coder.inline

Topics
“Nonconstant Index into varargin or varargout in a for-Loop”

 coder.unroll

4-217

coder.varsize
Package: coder

Declare variable-size data

Syntax
coder.varsize(varName1,...,varNameN)
coder.varsize(varName1,...,varNameN,ubounds)
coder.varsize(varName1,...,varNameN,ubounds,dims)

Description
coder.varsize(varName1,...,varNameN) declares that the variables named
varName1,...,varNameN have a variable size. The declaration instructs the code generator to
allow the variables to change size during execution of the generated code. With this syntax, you do
not specify the upper bounds of the dimensions of the variables or which dimensions can change size.
The code generator computes the upper bounds. All dimensions, except singleton dimensions on page
4-223, are allowed to change size.

Use coder.varsize according to these restrictions and guidelines:

• Use coder.varsize inside a MATLAB function intended for code generation.
• The coder.varsize declaration must precede the first use of a variable. For example:

...
x = 1;
coder.varsize('x');
disp(size(x));
...

• Use coder.varsize to declare that an output argument has a variable size or to address size
mismatch errors. Otherwise, to define variable-size data, use the methods described in “Define
Variable-Size Data for Code Generation”.

Note For MATLAB Function blocks, to declare variable-size output variables, use the Symbols pane
and Property Inspector. See “Declare Variable-Size MATLAB Function Block Variables”. If you provide
upper bounds in a coder.varsize declaration, the upper bounds must match the upper bounds in
the Property Inspector.

For more restrictions and guidelines, see “Limitations” on page 4-221 and “Tips” on page 4-223.

coder.varsize(varName1,...,varNameN,ubounds) also specifies an upper bound for each
dimension of the variables. All variables must have the same number of dimensions. All dimensions,
except singleton dimensions on page 4-223, are allowed to change size.

coder.varsize(varName1,...,varNameN,ubounds,dims) also specifies an upper bound for
each dimension of the variables and whether each dimension has a fixed size or a variable size. If a
dimension has a fixed size, then the corresponding ubound element specifies the fixed size of the
dimension. All variables have the same fixed-size dimensions and the same variable-size dimensions.

4 Functions

4-218

Examples

Address Size Mismatch Error by Using coder.varsize

After a variable is used (read), changing the size of the variable can cause a size mismatch error. Use
coder.varsize to specify that the size of the variable can change.

Code generation for the following function produces a size mismatch error because x = 1:10
changes the size of the second dimension of x after the line y = size(x) that uses x.

function [x,y] = usevarsize(n)
%#codegen
x = 1;
y = size(x);
if n > 10
 x = 1:10;
end

To declare that x can change size, use coder.varsize.

function [x,y] = usevarsize(n)
%#codegen
x = 1;
coder.varsize('x');
y = size(x);
if n > 10
 x = 1:10;
end

If you remove the line y = size(x), you no longer need the coder.varsize declaration because x
is not used before its size changes.

Declare Variable-Size Array with Upper Bounds

Specify that A is a row vector whose second dimension has a variable size with an upper bound of 20.

function fcn()
...
coder.varsize('A',[1 20]);
...
end

When you do not provide dims, all dimensions, except singleton dimensions, have a variable size.

Declare Variable-Size Array with a Mix of Fixed and Variable Dimensions

Specify that A is an array whose first dimension has a fixed size of three and whose second dimension
has a variable size with an upper bound of 20.

function fcn()
...
coder.varsize('A',[3 20], [0 1]);

 coder.varsize

4-219

...
end

Declare Variable-Size Structure Fields

In this function, the statement coder.varsize('data.values') declares that the field values
inside each element of data has a variable size.

function y = varsize_field()
%#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data.values');

for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
end

y = 0;
for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end
end

Declare Variable-Size Cell Array

Specify that cell array C has a fixed-size first dimension and variable-size second dimension with an
upper bound of three. The coder.varsize declaration must precede the first use of C.

...
C = {1 [1 2]};
coder.varsize('C', [1 3], [0 1]);
y = C{1};
...
end

Without the coder.varsize declaration, C is a heterogeneous cell array whose elements have the
same class and different sizes. With the coder.varsize declaration, C is a homogeneous cell array
whose elements have the same class and maximum size. The first dimension of each element is fixed
at 1. The second dimension of each element has a variable size with an upper bound of 3.

Declare That a Cell Array Has Variable-Size Elements

Specify that the elements of cell array C are vectors with a fixed-size first dimension and variable-size
second dimension with an upper bound of 5.

...
C = {1 2 3};
coder.varsize('C{:}', [1 5], [0 1]);

4 Functions

4-220

C = {1, 1:5, 2:3};
...

Input Arguments
varName1,...,varNameN — Names of variables to declare as having a variable size
character vectors | string scalars

Names of variables to declare as having a variable size, specified as one or more character vectors or
string scalars.
Example: coder.varsize('x','y')

ubounds — Upper bounds for array dimensions
[] (default) | vector of integer constants

Upper bounds for array dimensions, specified as a vector of integer constants.

When you do not specify ubounds, the code generator computes the upper bound for each variable.
If the ubounds element corresponds to a fixed-size dimension, the value is the fixed size of the
dimension.
Example: coder.varsize('x','y',[1 2])

dims — Indication of whether each dimension has a fixed size or a variable size
logical vector

Indication of whether each dimension has a fixed size or a variable size, specified as a logical vector.
Dimensions that correspond to 0 or false in dims have a fixed size. Dimensions that correspond to 1
or true have a variable size.

When you do not specify dims, the dimensions have a variable size, except for the singleton
dimensions.
Example: coder.varsize('x','y',[1 2], [0 1])

Limitations
• The coder.varsize declaration instructs the code generator to allow the size of a variable to

change. It does not change the size of the variable. Consider this code:

...
x = 7;
coder.varsize('x', [1,5]);
disp(size(x));
...

After the coder.varsize declaration, x is still a 1-by-1 array. You cannot assign a value to an
element beyond the current size of x. For example, this code produces a run-time error because
the index 3 exceeds the dimensions of x.

...
x = 7;
coder.varsize('x', [1,5]);
x(3) = 1;
...

 coder.varsize

4-221

• coder.varsize is not supported for a function input argument. Instead:

• If the function is an entry-point function, specify that an input argument has a variable size by
using coder.typeof at the command line. Alternatively, specify that an entry-point function
input argument has a variable size by using the Define Input Types step of the app.

• If the function is not an entry-point function, use coder.varsize in the calling function with
the variable that is the input to the called function.

• For sparse matrices, coder.varsize drops upper bounds for variable-size dimensions.
• Limitations for using coder.varsize with cell arrays:

• A cell array can have a variable size only if it is homogeneous. When you use coder.varsize
with a heterogeneous cell array, the code generator tries to make the cell array homogeneous.
The code generator tries to find a class and maximum size that apply to all elements of the cell
array. For example, consider the cell array c = {1, [2 3]}. Both elements can be
represented by a double type whose first dimension has a fixed size of 1 and whose second
dimension has a variable size with an upper bound of 2. If the code generator cannot find a
common class and a maximum size, code generation fails. For example, consider the cell array
c = {'a',[2 3]}. The code generator cannot find a class that can represent both elements
because the first element is char and the second element is double.

• If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize
to specify that the cell array has a variable size. For example, this code causes a code
generation error because x = cell(1,3) makes x a fixed-size,1-by-3 cell array.

...
x = cell(1,3);
coder.varsize('x',[1 5])
...

You can use coder.varsize with a cell array that you define by using curly braces. For
example:

...
x = {1 2 3};
coder.varsize('x',[1 5])
...

• To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
end

See “Definition of Variable-Size Cell Array by Using cell”.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
coder.varsize('x',[1,20]);

4 Functions

4-222

end
end

• coder.varsize is not supported for:

• Global variables
• MATLAB classes or class properties
• String scalars

More About
Singleton Dimension

Dimension for which size(A,dim) = 1.

Tips
• In a code generation report or a MATLAB Function report, a colon (:) indicates that a dimension

has a variable size. For example, a size of 1x:2 indicates that the first dimension has a fixed size
of one and the second dimension has a variable size with an upper bound of two.

• If you use coder.varsize to specify that the upper bound of a dimension is 1, by default, the
dimension has a fixed size of 1. To specify that the dimension can be 0 (empty array) or 1, set the
corresponding element of the dims argument to true. For example, this code specifies that the
first dimension of x has a fixed size of 1 and the other dimensions have a variable size of 5.

coder.varsize('x',[1,5,5])

In contrast, this code specifies that the first dimension of x has an upper bound of 1 and has a
variable size (can be 0 or 1).

coder.varsize('x',[1,5,5],[1,1,1])

Note For a MATLAB Function block, you cannot specify that an output signal with size 1 has a
variable size.

• If you use input variables or the result of a computation using input variables to specify the size of
an array, it is declared as variable-size in the generated code. Do not re-use coder.varsize on
the array, unless you also want to specify an upper bound for its size.

• If you do not specify upper bounds with a coder.varsize declaration and the code generator is
unable to determine the upper bounds, the generated code uses dynamic memory allocation.
Dynamic memory allocation can reduce the speed of generated code. To avoid dynamic memory
allocation, specify the upper bounds by providing the ubounds argument.

Version History
Introduced in R2011a

See Also
coder.typeof

Topics
“Code Generation for Variable-Size Arrays”

 coder.varsize

4-223

“Incompatibilities with MATLAB in Variable-Size Support for Code Generation”

4 Functions

4-224

colon, :
Create vectors, array subscripting

Syntax
y = j:k
y = j:i:k

Description
y = j:k returns a regularly-spaced vector, [j, j+1 ,..., k]. j:k is empty when j > k.

At least one of the colon operands must be a fi object. All colon operands must have integer values.
All the fixed-point operands must be binary-point scaled. Slope-bias scaling is not supported. If any of
the operands is complex, the colon function generates a warning and uses only the real part of the
operands.

y = colon(j,k) is the same as y = j:k.

y = j:i:k returns a regularly-spaced vector, [j,j+i,j+2i, ...,j+m*i], where m = fix((k-
j)/i). y = j:i:k returns an empty matrix wheni == 0, i > 0 and j > k, or i < 0 and j < k.

Examples

Use fi as a Colon Operator

When you use fi as a colon operator, all colon operands must have integer values.

a = fi(1,0,3,0);
b = fi(2,0,8,0);
c = fi(12,0,8,0);
x = a:b:c

x =
 1 3 5 7 9 11

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

Because all the input operands are unsigned, x is unsigned and the word length is 8. The fraction
length of the resulting vector is always 0.

Use the colon Operator With Signed and Unsigned Operands

a= fi(int8(-1));
b = uint8(255);

 colon, :

4-225

c = a:b;
len = c.WordLength

len = 9

signedness = c.Signedness

signedness =
'Signed'

The word length of c requires an additional bit to handle the intersection of the ranges of int8 and
uint8. The data type of c is signed because the operand a is signed.

Create a Vector of Decreasing Values

If the beginning and ending operands are unsigned, the increment operand can be negative.

x = fi(4,false):-1:1

x =
 4 3 2 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0

Use the colon Operator With Floating-Point and fi Operands

If any of the operands is floating-point, the output has the same word length and signedness as the fi
operand

x = fi(1):10

x =
 1 2 3 4 5 6 7 8 9 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

x = fi(1):10 is equivalent to fi(1:10, true, 16, 0) so x is signed and its word length is 16
bits.

Rewrite Code That Uses Non-Integer Operands

If your code uses non-integer operands, rewrite the colon expression so that the operands are
integers.

The following code does not work because the colon operands are not integer values.

4 Functions

4-226

Fs = fi(100);
n = 1000;
t = (0:1/Fs:(n/Fs - 1/Fs));

Rewrite the colon expression to use integer operands.

Fs = fi(100);
n = 1000;
t = (0:(n-1))/Fs;

All Colon Operands Must Be in the Range of the Data Type

If the value of any of the colon operands is outside the range of the data type used in the colon
expression, MATLAB generates an error.

 y = fi(1,true,8,0):256

MATLAB generates an error because 256 is outside the range of fi(1,true, 8,0). This behavior
matches the behavior for built-in integers. For example, y = int8(1):256 generates the same
error.

Input Arguments
j — Beginning operand
real scalar

Beginning operand, specified as a real scalar integer-valued fi object or built-in numeric type.

If you specify non-scalar arrays, MATLAB interprets j:i:k as j(1):i(1):k(1).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

i — Increment
1 (default) | real scalar

Increment, specified as a real scalar integer-valued fi object or built-in numeric type. Even if the
beginning and end operands, j and k, are both unsigned, the increment operand i can be negative.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

k — Ending operand
real scalar

Ending operand, specified as a real scalar integer-valued fi object or built-in numeric type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

 colon, :

4-227

Output Arguments
y — Regularly-spaced vector
real vector

Fixed-Point Designer determines the data type of the y using the following rules:

• The data type covers the union of the ranges of the fixed-point types of the input operands.
• If either the beginning or ending operand is signed, the resulting data type is signed. Otherwise,

the resulting data type is unsigned.
• The word length of y is the smallest value such that the fraction length is 0 and the real-world

value of the least-significant bit is 1.
• If any of the operands is floating-point, the word length and signedness of y is derived from the fi

operand.
• If any of the operands is a scaled double, y is a scaled double.
• The fimath of y is the same as the fimath of the input operands.
• If all the fi objects are of data type double, the data type of y is double. If all the fi objects are

of data type single, the data type of y is single. If there are both double and single inputs,
and no fixed-point inputs, the output data type is single.

Version History
Introduced in R2013b

See Also
colon | fi

4 Functions

4-228

complex
Construct complex fi object from real and imaginary parts

Syntax
c = complex(a,b)
c = complex(x)

Description
c = complex(a,b) creates a complex output, c, from two real inputs, such that c = a + bi.

When b is all zero, c is complex with an all-zero imaginary part. This is in contrast to the addition of a
+ 0i, which returns a strictly real result.

c = complex(x) returns the complex equivalent of x, such that isreal(c) returns logical 0
(false).

• If x is real, then c is x + 0i.
• If x is complex, then c is identical to x.

Examples

Complex Scalar from Two Real Scalars

Use the complex function to create the complex scalar, 3 + 4i.

a = fi(3,1,16,12);
b = fi(4,0,8);
c = complex(a,b)

c =

 3.0000 + 4.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

The output, c, has the same numerictype and fimath properties as the input fi object, a.

Complex Vector from One Real Vector

Create a complex fi vector with a zero imaginary part.

x = fi([1;2;3;4]);
c = complex(x)

 complex

4-229

c =

 1.0000 + 0.0000i
 2.0000 + 0.0000i
 3.0000 + 0.0000i
 4.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Verify that c is complex.

isreal(c)

ans =

 logical

 0

Input Arguments
a — Real component
scalar | vector | matrix | multidimensional array

Real component, specified as a fi scalar, vector, matrix, or multidimensional array.

The size of a must match the size of b, unless one is a scalar. If either a or b is a scalar, MATLAB
expands the scalar to match the size of the other input.
Data Types: fi

b — Imaginary component
scalar | vector | matrix | multidimensional array

Imaginary component, specified as a fi scalar, vector, matrix, or multidimensional array.

The size of b must match the size of a, unless one is a scalar. If either a or b is a scalar, MATLAB
expands the scalar to match the size of the other input.
Data Types: fi

x — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a fi scalar, vector, matrix, or multidimensional array.
Data Types: fi

Output Arguments
c — Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a fi scalar, vector, matrix, or multidimensional array.

4 Functions

4-230

The size of c is the same as the input arguments.

The output fi object, c, has the same numerictype and fimath properties as the input fi object,
a.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | numerictype

 complex

4-231

conj
Complex conjugate of fi object

Syntax
conj(a)

Description
conj(a) is the complex conjugate of fi object a.

When a is complex,

conj(a) = real(a)− i × imag(a)

The numerictype and fimath properties associated with the input a are applied to the output.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
complex

4 Functions

4-232

conv
Convolution and polynomial multiplication of fi objects

Syntax
c = conv(a,b)
c = conv(a,b,shape)

Description
c = conv(a,b) returns the convolution of input vectors a and b, at least one of which must be a fi
object.

c = conv(a,b,shape) returns a subsection of the convolution, as specified by shape.

Examples

Convolution of 22-Sample Sequence with 16-Tap FIR Filter

Find the convolution of a 22-sample sequence with a 16-tap FIR filter.

x is a 22-sample sequence of signed values with a word length of 16 bits and a fraction length of 15
bits. h is the 16-tap FIR filter.

u = (pi/4)*[1 1 1 -1 -1 -1 1 -1 -1 1 -1];
x = fi(kron(u,[1 1]));
h = firls(15, [0 .1 .2 .5]*2, [1 1 0 0]);

Because x is a fi object, you do not need to cast h into a fi object before performing the convolution
operation. The conv function does this automatically using best-precision scaling.

Use the conv function to convolve the two vectors.

y = conv(x,h);

The operation results in a signed fi object y with a word length of 36 bits and a fraction length of 31
bits. The default fimath properties associated with the inputs determine the numerictype of the
output. The output does not have a local fimath.

Central Part of Convolution of Two fi Vectors

Create two fi vectors. Find the central part of the convolution of a and b that is the same size as a.

a = fi([-1 2 3 -2 0 1 2]);
b = fi([2 4 -1 1]);
c = conv(a,b,'same')

c =

 conv

4-233

 15 5 -9 7 6 7 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 34
 FractionLength: 25

c has a length of 7. The full convolution would be of length length(a)+length(b)-1, which in this
example would be 10.

Input Arguments
a,b — Input vectors
vectors

Input vectors, specified as either row or column vectors.

If either input is a built-in data type, conv casts it into a fi object using best-precision rules before
the performing the convolution operation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

shape — Subset of convolution
'full' (default) | 'same' | 'valid'

Subset of convolution, specified as one of these values:

• 'full' — Returns the full convolution. This option is the default shape.
• 'same' — Returns the central part of the convolution that is the same size as input vector a.
• 'valid' — Returns only those parts of the convolution that the function computes without zero-

padded edges. Using this option, the length of output vector c is max(length(a)-
max(0,length(b)-1),0).

Data Types: char

More About
Convolution

The convolution of two vectors, u and v, represents the area of overlap under the points as v slides
across u. Algebraically, convolution is the same operation as multiplying polynomials whose
coefficients are the elements of u and v.

Let m = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose kth element
is

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1), specifically j
= max(1,k+1-n):1:min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)

4 Functions

4-234

w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithms
The fimath properties associated with the inputs determine the numerictype properties of output
fi object c:

• If either a or b has a local fimath object, conv uses that fimath object to compute intermediate
quantities and determine the numerictype properties of c.

• If neither a nor b have an attached fimath, conv uses the default fimath to compute
intermediate quantities and determine the numerictype properties of c.

If either input is a built-in data type, conv casts it into a fi object using best-precision rules before
the performing the convolution operation.

The output fi object c always uses the default fimath.

Version History
Introduced in R2009b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or KeepLSB.

• For variable-sized signals, you might see different results between generated code and MATLAB.

• In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

See Also
conv

 conv

4-235

convergent
Round toward nearest integer with ties rounding to nearest even integer

Syntax
y = convergent(a)
y = convergent(x)

Description
y = convergent(a) rounds fi object a to the nearest integer. In the case of a tie, convergent(a)
rounds to the nearest even integer.

y = convergent(x) rounds the elements of x to the nearest integer. In the case of a tie,
convergent(x) rounds to the nearest even integer.

Examples

Use Convergent Rounding on Signed fi Object

The following example demonstrates how the convergent function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = convergent(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the convergent function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

4 Functions

4-236

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

y = convergent(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

• The convergent function rounds ties to the nearest even integer.
• The nearest function rounds ties to the nearest integer toward positive infinity.
• The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]

y =
 -3.5000 -4.0000 -3.0000 -4.0000
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.5000 -2.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 0 1.0000 1.0000
 1.5000 2.0000 2.0000 2.0000
 2.5000 2.0000 3.0000 3.0000
 3.5000 3.9999 3.9999 3.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

 convergent

4-237

convergent does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

x — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

For complex inputs, the real and imaginary parts are rounded independently.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, or double, the numerictype of y is the same as

that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.
• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that

of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | fix | floor | nearest | round

Topics
“Precision and Range”

4 Functions

4-238

convertToSingle
Convert double-precision MATLAB code to single-precision MATLAB code

Syntax
convertTosingle options fcn_1, ..., fcn_n
convertTosingle options fcn_1, -args args_1 ,..., fcn_n -args args_n

Description
convertTosingle options fcn_1, ..., fcn_n generates single-precision MATLAB code from
the specified function or functions. When you use this syntax, you must provide a test file that
convertToSingle can use to determine the properties of the input parameters. To specify the test
file, use coder.config('single') to create a coder.SingleConfig object. Specify the
TestBenchName property.

convertTosingle options fcn_1, -args args_1 ,..., fcn_n -args args_n specifies
the properties of the input arguments.

Examples

Convert to Single Precision and Validate Using a Test File

Generate single-precision code from a double-precision function myfun.m. Specify a test file for
determining the argument properties and for verification of the converted types. Plot the error
between the double-precision and single-precision values.

scfg = coder.config('single');
scfg.TestBenchName = 'myfun_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;
convertToSingle -config scfg myfun

Convert Multiple Functions to Single Precision with the Default Configuration

Convert myfun1.m and myfun2.m to single precision. Specify that myfun1 has a double scalar
argument and myfun2 has a 2x3 double argument.

convertToSingle -config cfg myfun1 -args {0} myfun2 -args {zeros(2, 3)}

Specify Input Argument Properties

Generate single-precision code from a double-precision function, myfun.m, whose first argument is
double scalar and whose second argument is 2x3 double.

 convertToSingle

4-239

 convertToSingle myfun -args {0, zeros(2, 3)}

Input Arguments
fcn — Function name
character vector

MATLAB function from which to generate single-precision code.

args — Argument properties
cell array of types or example values.

Definition of the size, class, and complexity of the input arguments specified as a cell array of types or
example values. To create a type, use coder.typeof.

options — options for single-precision conversion
-config | -globals

Specify one of the following single-conversion options.

-config config_object Specify the configuration object to use for
conversion of double-precision MATLAB code to
single-precision MATLAB code. To create the
configuration object, use

coder.config('single');

If you do not use this option, the conversion uses
a default configuration. When you omit -config,
to specify the properties of the input arguments,
use -args.

4 Functions

4-240

-globals global_values Specify names and initial values for global
variables in MATLAB files.

global_values is a cell array of global variable
names and initial values. The format of
global_values is:

{g1, init1, g2, init2, ..., gn, initn}

gn is the name of a global variable. initn is the
initial value. For example:

-globals {'g', 5}

Alternatively, use this format:

-globals {global_var, {type, initial_value}}

type is a type object. To create the type object,
use coder.typeof.

If you do not provide initial values for global
variables using the -globals option,
convertToSingle checks for the variable in the
MATLAB global workspace. If you do not supply
an initial value, convertToSingle generates an
error.

Version History
Introduced in R2015b

See Also
coder.SingleConfig | coder.config

Topics
“Generate Single-Precision MATLAB Code”

 convertToSingle

4-241

copyobj
Make independent copy of quantizer object

Syntax
q1 = copyobj(q)
[q1,q2,...] = copyobj(obja,objb,...)

Description
q1 = copyobj(q) makes a copy of quantizer object q and returns it in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb into q2, and so on.

Using copyobj to copy a quantizer object is not the same as using the command syntax q1 = q to
copy a quantizer object. quantizer objects have memory (their read-only properties). When you
use copyobj, the resulting copy is independent of the original item; it does not share the original
object's memory, such as the values of the properties min, max, noverflows, or noperations.
Using q1 = q creates a new object that is an alias for the original and shares the original object's
memory, and thus its property values.

Examples
q = quantizer([8 7]);
q1 = copyobj(q)

Version History
Introduced before R2006a

See Also
quantizer | get | set

4 Functions

4-242

cordicabs
CORDIC-based absolute value

Syntax
r = cordicabs(c)
r = cordicabs(c,niters)
r = cordicabs(c,niters,'ScaleOutput',b)
r = cordicabs(c,'ScaleOutput',b)

Description
r = cordicabs(c) returns the magnitude of the complex elements of C.

r = cordicabs(c,niters) performs niters iterations of the algorithm.

r = cordicabs(c,niters,'ScaleOutput',b) specifies both the number of iterations and,
depending on the Boolean value of b, whether to scale the output by the inverse CORDIC gain value.

r = cordicabs(c,'ScaleOutput',b) scales the output depending on the Boolean value of b.

Input Arguments
c

c is a vector of complex values.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

 cordicabs

4-243

Output Arguments
r

r contains the magnitude values of the complex input values. If the inputs are fixed-point values, r is
also fixed point (and is always signed, with binary point scaling). All input values must have the same
data type. If the inputs are signed, then the word length of r is the input word length + 2. If the
inputs are unsigned, then the word length of r is the input word length + 3. The fraction length of r
is always the same as the fraction length of the inputs.

Examples
Compare cordicabs and abs of double values.

 dblValues = complex(rand(5,4),rand(5,4));
 r_dbl_ref = abs(dblValues)
 r_dbl_cdc = cordicabs(dblValues)

Compute absolute values of fixed-point inputs.

 fxpValues = fi(dblValues);
 r_fxp_cdc = cordicabs(fxpValues)

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

4 Functions

4-244

Algorithms
Signal Flow Diagrams

 cordicabs

4-245

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

4 Functions

4-246

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccart2pol | cordicangle | abs

 cordicabs

4-247

cordicacos
CORDIC-based approximation of inverse cosine

Syntax
theta = cordicacos(x)
theta = cordicacos(x, niters)

Description
theta = cordicacos(x) returns the inverse cosine of x based on a CORDIC approximation.

theta = cordicacos(x, niters) returns the inverse cosine of x performing niters iterations
of the CORDIC algorithm.

Examples

Calculate CORDIC Inverse Cosine

Compute the inverse cosine of a fixed-point fi object using a CORDIC implementation.

a = fi(-1:.1:1,1,16);
b = cordicacos(a);
plot(a,b);
title('Inverse CORDIC Cosine');

4 Functions

4-248

Compare the output of the cordicacos function and the acos function.

c = acos(double(a));
error = double(b)-c;
plot(a,error);
title('Error');

 cordicacos

4-249

Calculate CORDIC Inverse Cosine with Specified Number of Iterations

Find the inverse cosine of a fi object using a CORDIC implementation and specify the number of
iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse cosine
with varying numbers of iterations.

a = fi(-1:.1:1, 1, 16);
for i = 5:5:20
 b = cordicacos(a,i);
 plot(a,b);
 hold on;
end
legend('5 iterations', '10 iterations', '15 iterations', '20 iterations')

4 Functions

4-250

Input Arguments
x — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 cordicacos

4-251

Output Arguments
theta — Inverse cosine angle values
scalar | vector | matrix | n-dimensional array

Inverse cosine angle values in rad.

Version History
Introduced in R2018b

See Also
Functions
cordicsin | cordiccos

4 Functions

4-252

cordicangle
CORDIC-based phase angle

Syntax
theta = cordicangle(c)
theta = cordicangle(c,niters)

Description
theta = cordicangle(c) returns the phase angles, in radians, of matrix c, which contains
complex elements.

theta = cordicangle(c,niters) performs niters iterations of the algorithm.

Input Arguments
c

Matrix of complex numbers

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Output Arguments
theta

theta contains the polar coordinates angle values, which are in the range [–pi, pi] radians. If x and y
are floating-point, then theta has the same data type as x and y. Otherwise, theta is a fixed-point
data type with the same word length as x and y and with a best-precision fraction length for the [-pi,
pi] range.

Examples
Phase angle for double-valued input and for fixed-point-valued input.

dblRandomVals = complex(rand(5,4), rand(5,4));
theta_dbl_ref = angle(dblRandomVals);
theta_dbl_cdc = cordicangle(dblRandomVals)
fxpRandomVals = fi(dblRandomVals);
theta_fxp_cdc = cordicangle(fxpRandomVals)

 cordicangle

4-253

theta_dbl_cdc =

 1.0422 1.0987 1.2536 0.6122
 0.5893 0.8874 0.3580 0.2020
 0.5840 0.2113 0.8933 0.6355
 0.7212 0.2074 0.9820 0.8110
 1.3640 0.3288 1.4434 1.1291

theta_fxp_cdc =

 1.0422 1.0989 1.2534 0.6123
 0.5894 0.8872 0.3579 0.2019
 0.5840 0.2112 0.8931 0.6357
 0.7212 0.2075 0.9819 0.8110
 1.3640 0.3289 1.4434 1.1289

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

4 Functions

4-254

Algorithms
Signal Flow Diagrams

 cordicangle

4-255

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

4 Functions

4-256

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordicatan2 | cordiccart2pol | cordicabs | angle

 cordicangle

4-257

cordicasin
CORDIC-based approximation of inverse sine

Syntax
theta = cordicasin(x)
theta = cordicasin(x, niters)

Description
theta = cordicasin(x) returns the inverse sine of x based on a CORDIC approximation.

theta = cordicasin(x, niters) returns the inverse sine of x performing niters iterations of
the CORDIC algorithm.

Examples

Calculate CORDIC Inverse Sine

Compute the inverse Sine of a fixed-point fi object using a CORDIC implementation.

a = fi(-1:.1:1,1,16);
b = cordicasin(a);
plot(a, b);
title('Inverse CORDIC Sine');

4 Functions

4-258

Calculate CORDIC Inverse Sine with Specified Number of Iterations

Find the inverse sine of a fi object using a CORDIC implementation and specify the number of
iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse sine
with varying numbers of iterations.

a = fi(-1:.1:1, 1, 16);
for i = 5:5:20
 b = cordicasin(a,i);
 plot(a,b);
 hold on;
end
legend('5 iterations', '10 iterations', '15 iterations', '20 iterations')

 cordicasin

4-259

Input Arguments
x — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 Functions

4-260

Output Arguments
theta — Inverse sine angle values
scalar | vector | matrix | n-dimensional array

Inverse sine angle values in rad.

Version History
Introduced in R2018b

See Also
Functions
cordicsin | cordiccos

 cordicasin

4-261

cordicatan2
CORDIC-based four quadrant inverse tangent

Syntax
theta = cordicatan2(y,x)
theta = cordicatan2(y,x,niters)

Description
theta = cordicatan2(y,x) computes the four quadrant arctangent of y and x using a CORDIC
algorithm approximation.

theta = cordicatan2(y,x,niters) performs niters iterations of the algorithm.

Examples

Compute CORDIC Arctangent

Define floating-point Cartesian coordinates.

y = 0.5;
x = -0.5;

Use cordicatan2 to compute floating-point CORDIC arctangent. Compare the result to the
arctangent computed using atan2.

theta_cdat2_float = cordicatan2(y,x)

theta_cdat2_float = 2.3562

theta_atan2_float = atan2(y,x)

theta_atan2_float = 2.3562

Define fixed-point Cartesian coordinates.

y = fi(0.5,1,16,15);
x = fi(-0.5,1,16,15);

Use cordicatan2 to compute fixed-point CORDIC arctangent. Compare the result to the arctangent
computed using atan2.

theta_cdat2_fixpt = cordicatan2(y,x)

theta_cdat2_fixpt =
 2.3562

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

4 Functions

4-262

theta_atan2_fixpt = atan2(y,x)

theta_atan2_fixpt =
 2.3562

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
y — Cartesian y-coordinate
scalar | vector | matrix | multidimensional array

Cartesian y-coordinate, specified as a scalar, vector, matrix, or multidimensional array.

y and x must be the same size. If they are not the same size, at least one value must be a scalar
value. y and x must have the same data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

x — Cartesian x-coordinate
scalar | vector | matrix | multidimensional array

Cartesian x-coordinate, specified as a scalar, vector, matrix, or multidimensional array.

y and x must be the same size. If they are not the same size, at least one value must be a scalar
value. y and x must have the same data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations of CORDIC algorithm
positive integer-valued scalar

Number of iterations of CORDIC algorithm, specified as a positive, integer-valued scalar.

Increasing the number of iterations can produce more accurate results, but also increases the
expense of the computation and adds latency.

If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the word length
of y or x. For floating-point operation, the maximum value is 52 for double or 23 for single.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
theta — Arctangent value
scalar | vector | matrix | multidimensional array

 cordicatan2

4-263

Arctangent value in the range [-pi, pi] radians, returned as a scalar, vector, matrix, or
multidimensional array.

If y and x are floating-point numbers, then theta has the same data type as y and x. Otherwise,
theta is a fixed-point data type with the same word length as y and x and with a best-precision
fraction length for the [-pi, pi] range.

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

Signal Flow Diagram

4 Functions

4-264

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

• X0 is initialized to the X input value
• Y0 is initialized to the Y input value
• Z0 is initialized 0

 cordicatan2

4-265

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction — Wrap
• RoundingMethod — Floor

The output has no attached fimath.

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
atan2 | atan2 | cordicsin | cordiccos

Topics
“Calculate Fixed-Point Arctangent”

4 Functions

4-266

cordiccart2pol
CORDIC-based approximation of Cartesian-to-polar conversion

Syntax
[theta,r] = cordiccart2pol(x,y)
[theta,r] = cordiccart2pol(x,y, niters)
[theta,r] = cordiccart2pol(x,y, niters,'ScaleOutput',b)
[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b)

Description
[theta,r] = cordiccart2pol(x,y) using a CORDIC algorithm approximation, returns the polar
coordinates, angle theta and radius r, of the Cartesian coordinates, x and y.

[theta,r] = cordiccart2pol(x,y, niters) performs niters iterations of the algorithm.

[theta,r] = cordiccart2pol(x,y, niters,'ScaleOutput',b) specifies both the number of
iterations and, depending on the Boolean value of b, whether to scale the r output by the inverse
CORDIC gain value.

[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b) scales the r output by the inverse
CORDIC gain value, depending on the Boolean value of b.

Input Arguments
x,y

x,y are Cartesian coordinates. x and y must be the same size. If they are not the same size, at least
one value must be a scalar value. Both x and y must have the same data type.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are

 cordiccart2pol

4-267

multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
theta

theta contains the polar coordinates angle values, which are in the range [–pi, pi] radians. If x and y
are floating-point, then theta has the same data type as x and y. Otherwise, theta is a fixed-point
data type with the same word length as x and y and with a best-precision fraction length for the [-pi,
pi] range.

r

r contains the polar coordinates radius magnitude values. r is real-valued and can be a scalar value
or have the same dimensions as theta If the inputs x,y are fixed-point values, r is also fixed point
(and is always signed, with binary point scaling). Both x,y input values must have the same data
type. If the inputs are signed, then the word length of r is the input word length + 2. If the inputs are
unsigned, then the word length of r is the input word length + 3. The fraction length of r is always
the same as the fraction length of the x,y inputs.

Examples
Convert fixed-point Cartesian coordinates to polar coordinates.

[thPos,r]=cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(0.5,16,15))

thPos =

 0.5881 0.7854 1.1072 1.5708 2.0344 2.3562 2.5535 2.6780

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

r =

 0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 15

[thNeg,r]=...
 cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(-0.5,16,15))

thNeg =

 -0.5881 -0.7854 -1.1072 -1.5708 -2.0344 -2.3562 -2.5535 -2.6780

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-268

 Signedness: Signed
 WordLength: 16
 FractionLength: 13

r =

 0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 15

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

 cordiccart2pol

4-269

Algorithms
Signal Flow Diagrams

4 Functions

4-270

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

 cordiccart2pol

4-271

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordicatan2 | cordicpol2cart | cart2pol

4 Functions

4-272

cordiccexp
CORDIC-based approximation of complex exponential

Syntax
y = cordiccexp(theta,niters)

Description
y = cordiccexp(theta,niters) computes cos(theta) + j*sin(theta) using a “CORDIC” on
page 4-274 algorithm approximation. y contains the approximated complex result.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

y is the approximated complex result of the cordiccexp function. When the input to the function is
floating point, the output data type is the same as the input data type. When the input is fixed point,
the output has the same word length as the input, and a fraction length equal to the WordLength – 2.

Examples
The following example illustrates the effect of the number of iterations on the result of the
cordiccexp approximation.

 cordiccexp

4-273

wrdLn = 8;
theta = fi(pi/2, 1, wrdLn);
fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');
fprintf('------\t\t-------\t ------\t ----\t\t-------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 cis = cordiccexp(theta, niters);
 fl = cis.FractionLength;
 x = real(cis);
 y = imag(cis);
 x_dbl = double(x);
 x_err = abs(x_dbl - cos(double(theta)));
 y_dbl = double(y);
 y_err = abs(y_dbl - sin(double(theta)));
 fprintf('%d\t\t%1.4f\t%1.4f\t%1.1f\t\t%1.4f\t%1.4f\t%1.1f\n',...
 niters,y_dbl,y_err,(y_err*pow2(fl)),x_dbl,x_err,(x_err*pow2(fl)));
end
fprintf('\n');

The output table appears as follows:

NITERS Y (SIN) ERROR LSBs X (COS) ERROR LSBs
------ ------- ------ ---- ------- ------ ----
1 0.7031 0.2968 19.0 0.7031 0.7105 45.5
2 0.9375 0.0625 4.0 0.3125 0.3198 20.5
3 0.9844 0.0156 1.0 0.0938 0.1011 6.5
4 0.9844 0.0156 1.0 -0.0156 0.0083 0.5
5 1.0000 0.0000 0.0 0.0312 0.0386 2.5
6 1.0000 0.0000 0.0 0.0000 0.0073 0.5
7 1.0000 0.0000 0.0 0.0156 0.0230 1.5

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

4 Functions

4-274

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Algorithms
Signal Flow Diagrams

 cordiccexp

4-275

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. The accuracy of
the CORDIC rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm
uses the following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

4 Functions

4-276

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccos | cordicsin | cordicsincos

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

 cordiccexp

4-277

cordiccos
CORDIC-based approximation of cosine

Syntax
y = cordiccos(theta, niters)

Description
y = cordiccos(theta, niters) computes the cosine of theta using a “CORDIC” on page 4-280
algorithm approximation.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

y is the CORDIC-based approximation of the cosine of theta. When the input to the function is
floating point, the output data type is the same as the input data type. When the input is fixed point,
the output has the same word length as the input, and a fraction length equal to the WordLength – 2.

Examples

Compare Results of cordiccos and cos Functions

Compare the results produced by various iterations of the cordiccos algorithm to the results of the
double-precision cos function.

% Create 1024 points between [0,2*pi)
stepSize = pi/512;
thRadDbl = 0:stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl,12); % signed, 12-bit fixed-point

4 Functions

4-278

cosThRef = cos(double(thRadFxp)); % reference results

% Use 12-bit quantized inputs and vary the number
% of iterations from 2 to 10.
% Compare the fixed-point CORDIC results to the
% double-precision trig function results.
for niters = 2:2:10
 cdcCosTh = cordiccos(thRadFxp,niters);
 errCdcRef = cosThRef - double(cdcCosTh);
end

figure
hold on
axis([0 2*pi -1.25 1.25]);
 plot(thRadFxp,cosThRef,'b');
 plot(thRadFxp,cdcCosTh,'g');
 plot(thRadFxp,errCdcRef,'r');
 ylabel('cos(\Theta)');
 gca.XTick = 0:pi/2:2*pi;
 gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};
 gca.YTick = -1:0.5:1;
 gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};
 ref_str = 'Reference: cos(double(\Theta))';
 cdc_str = sprintf('12-bit CORDIC cosine; N = %d',niters);
 err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
 legend(ref_str,cdc_str,err_str);

 cordiccos

4-279

After 10 iterations, the CORDIC algorithm has approximated the cosine of theta to within 0.005187
of the double-precision cosine result.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

4 Functions

4-280

Algorithms
Signal Flow Diagrams

 cordiccos

4-281

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

4 Functions

4-282

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

You can generate HDL code for cordiccos function.

See Also
cordiccexp | cordicsin | cordicsincos | sin | cos

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

 cordiccos

4-283

cordicpol2cart
CORDIC-based approximation of polar-to-Cartesian conversion

Syntax
[x,y] = cordicpol2cart(theta,r)
[x,y] = cordicpol2cart(theta,r,niters)
[x,y] = cordicpol2cart(theta,r,Name,Value)
[x,y] = cordicpol2cart(theta,r,niters,Name,Value)

Description
[x,y] = cordicpol2cart(theta,r) returns the Cartesian xy coordinates of r* e^(j*theta)
using a CORDIC algorithm approximation.

[x,y] = cordicpol2cart(theta,r,niters) performs niters iterations of the algorithm.

[x,y] = cordicpol2cart(theta,r,Name,Value) scales the output depending on the Boolean
value of b.

[x,y] = cordicpol2cart(theta,r,niters,Name,Value) specifies both the number of
iterations and Name,Value pair for whether to scale the output.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the
angle values in radians. All values of theta must be in the range [–2π 2π).

r

r contains the input magnitude values and can be a scalar or have the same dimensions as theta. r
must be real valued.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

4 Functions

4-284

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
[x,y]

[x,y] contains the approximated Cartesian coordinates. When the input r is floating point, the
output [x,y] has the same data type as the input.

When the input r is a signed integer or fixed point data type, the outputs [x,y] are signed fi
objects. These fi objects have word lengths that are two bits larger than that of r. Their fraction
lengths are the same as the fraction length of r.

When the input r is an unsigned integer or fixed point, the outputs [x,y] are signed fi objects.
These fi objects have word lengths are three bits larger than that of r. Their fraction lengths are the
same as the fraction length of r.

Examples
Run the following code, and evaluate the accuracy of the CORDIC-based Polar-to-Cartesian
conversion.

 cordicpol2cart

4-285

wrdLn = 16;
theta = fi(pi/3, 1, wrdLn);
u = fi(2.0, 1, wrdLn);

fprintf('\n\nNITERS\tX\t\t ERROR\t LSBs\t\tY\t\t ERROR\t LSBs\n');
fprintf('------\t-------\t ------\t ----\t\t-------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 [x_ref, y_ref] = pol2cart(double(theta),double(u));
 [x_fi, y_fi] = cordicpol2cart(theta, u, niters);
 x_dbl = double(x_fi);
 y_dbl = double(y_fi);
 x_err = abs(x_dbl - x_ref);
 y_err = abs(y_dbl - y_ref);
 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...
 niters,x_dbl,x_err,(x_err * pow2(x_fi.FractionLength)),...
 y_dbl,y_err,(y_err * pow2(y_fi.FractionLength)));
end
fprintf('\n');

NITERS X ERROR LSBs Y ERROR LSBs
------ ------- ------ ---- ------- ------ ----
 1 1.4142 0.4142 3392.8 1.4142 0.3178 2603.8
 2 0.6324 0.3676 3011.2 1.8973 0.1653 1354.2
 3 1.0737 0.0737 603.8 1.6873 0.0448 366.8
 4 0.8561 0.1440 1179.2 1.8074 0.0753 617.2
 5 0.9672 0.0329 269.2 1.7505 0.0185 151.2
 6 1.0214 0.0213 174.8 1.7195 0.0126 102.8
 7 0.9944 0.0056 46.2 1.7351 0.0031 25.2
 8 1.0079 0.0079 64.8 1.7274 0.0046 37.8
 9 1.0011 0.0011 8.8 1.7313 0.0007 5.8
 10 0.9978 0.0022 18.2 1.7333 0.0012 10.2
 11 0.9994 0.0006 5.2 1.7323 0.0003 2.2
 12 1.0002 0.0002 1.8 1.7318 0.0002 1.8
 13 0.9999 0.0002 1.2 1.7321 0.0000 0.2
 14 0.9996 0.0004 3.2 1.7321 0.0000 0.2
 15 0.9998 0.0003 2.2 1.7321 0.0000 0.2

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

4 Functions

4-286

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Algorithms
Signal Flow Diagrams

 cordicpol2cart

4-287

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. This algorithm
takes its initial values for X, Y, and Z from the inputs, r and theta.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

4 Functions

4-288

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordicrotate | cordicsincos | pol2cart

 cordicpol2cart

4-289

cordicrotate
Rotate input using CORDIC-based approximation

Syntax
v = cordicrotate(theta,u)
v = cordicrotate(theta,u,niters)
v = cordicrotate(theta,u,Name,Value)
v = cordicrotate(theta,u,niters,Name,Value)

Description
v = cordicrotate(theta,u) rotates the input u by theta using a CORDIC algorithm
approximation. The function returns the result of u .* e^(j*theta).

v = cordicrotate(theta,u,niters) performs niters iterations of the algorithm.

v = cordicrotate(theta,u,Name,Value) scales the output depending on the Boolean value, b.

v = cordicrotate(theta,u,niters,Name,Value) specifies both the number of iterations and
the Name,Value pair for whether to scale the output.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the
angle values in radians. All values of theta must be in the range [–2π 2π).

u

u can be a signed or unsigned scalar value or have the same dimensions as theta. u can be real or
complex valued.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of u or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results, but it also increases
the expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

4 Functions

4-290

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
v

v contains the approximated result of the CORDIC rotation algorithm. When the input u is floating
point, the output v has the same data type as the input.

When the input u is a signed integer or fixed point data type, the output v is a signed fi object. This
fi object has a word length that is two bits larger than that of u. Its fraction length is the same as the
fraction length of u.

When the input u is an unsigned integer or fixed point, the output v is a signed fi object. This fi
object has a word length that is three bits larger than that of u. Its fraction length is the same as the
fraction length of u.

Examples
Run the following code, and evaluate the accuracy of the CORDIC-based complex rotation.

wrdLn = 16;
theta = fi(-pi/3, 1, wrdLn);
u = fi(0.25 - 7.1i, 1, wrdLn);
uTeTh = double(u) .* exp(1i * double(theta));

fprintf('\n\nNITERS\tReal\t ERROR\t LSBs\t\tImag\tERROR\tLSBs\n');
fprintf('------\t-------\t ------\t ----\t\t-------\t------\t----\n');
for niters = 1:(wrdLn - 1)
 v_fi = cordicrotate(theta, u, niters);
 v_dbl = double(v_fi);
 x_err = abs(real(v_dbl) - real(uTeTh));
 y_err = abs(imag(v_dbl) - imag(uTeTh));
 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...
 niters, real(v_dbl),x_err,(x_err * pow2(v_fi.FractionLength)), ...
 imag(v_dbl),y_err, (y_err * pow2(v_fi.FractionLength)));
end
fprintf('\n');

The output table appears as follows:

NITERS Real ERROR LSBs Imag ERROR LSBs
------ ------- ------ ---- ------- ------ ------
1 -4.8438 1.1800 4833.5 -5.1973 1.4306 5859.8
2 -6.6567 0.6329 2592.5 -2.4824 1.2842 5260.2
3 -5.8560 0.1678 687.5 -4.0227 0.2560 1048.8
4 -6.3098 0.2860 1171.5 -3.2649 0.5018 2055.2
5 -6.0935 0.0697 285.5 -3.6528 0.1138 466.2

 cordicrotate

4-291

6 -5.9766 0.0472 193.5 -3.8413 0.0746 305.8
7 -6.0359 0.0121 49.5 -3.7476 0.0191 78.2
8 -6.0061 0.0177 72.5 -3.7947 0.0280 114.8
9 -6.0210 0.0028 11.5 -3.7710 0.0043 17.8
10 -6.0286 0.0048 19.5 -3.7590 0.0076 31.2
11 -6.0247 0.0009 3.5 -3.7651 0.0015 6.2
12 -6.0227 0.0011 4.5 -3.7683 0.0017 6.8
13 -6.0237 0.0001 0.5 -3.7666 0.0001 0.2
14 -6.0242 0.0004 1.5 -3.7656 0.0010 4.2
15 -6.0239 0.0001 0.5 -3.7661 0.0005 2.2

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

4 Functions

4-292

Algorithms
Signal Flow Diagrams

 cordicrotate

4-293

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. This algorithm
takes its initial values for X, Y, and Z from the inputs, u and theta.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

4 Functions

4-294

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordicpol2cart | cordiccexp

 cordicrotate

4-295

cordicsin
CORDIC-based approximation of sine

Syntax
y = cordicsin(theta)
y = cordicsin(theta,niters)

Description
y = cordicsin(theta) computes the sine of theta using a CORDIC algorithm approximation.

y = cordicsin(theta,niters) computes the sine of theta using a CORDIC algorithm
approximation with specified number of iterations, niters.

Examples

Compare Results of cordicsin and sin Functions

This example compares the results produced by the cordicsin algorithm to the results of the
double-precision sin function.

Create 1024 points between [0, 2*pi).

stepSize = pi/512;
thRadDbl = 0:stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl,12); % signed, 12-bit fixed point
sinThRef = sin(double(thRadFxp)); % reference results

Set the number of iterations to 10.

niters = 10;
cdcSinTh = cordicsin(thRadFxp,niters);
errCdcRef = sinThRef - double(cdcSinTh);

Compare the fixed-point cordicsin function results to the results of the double-precision sin
function.

figure
hold on
axis([0 2*pi -1.25 1.25])
plot(thRadFxp,sinThRef,'b');
plot(thRadFxp,cdcSinTh,'g');
plot(thRadFxp,errCdcRef,'r');
ylabel('sin(\Theta)');
gca.XTick = 0:pi/2:2*pi;
gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};
gca.YTick = -1:0.5:1;
gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};
ref_str = 'Reference: sin(double(\Theta))';
cdc_str = sprintf('12-bit CORDIC sine; N = %d',niters);

4 Functions

4-296

err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref_str,cdc_str,err_str);

After 10 iterations, the CORDIC algorithm has approximated the sine of theta to within 0.005492 of
the double-precision sine result.

Input Arguments
theta — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a signed or unsigned scalar, vector, matrix, or multidimensional
array. All values of theta must be real and in the range [–2π 2π).

niters — Number of iterations
positive integer-valued scalar

Number of iterations the CORDIC algorithm performs, specified as a positive, integer-valued scalar.

If you do not specify niters, or if you specify a value that is too large, the algorithm uses a maximum
value. For fixed-point operation, the maximum number of iterations is one less than the word length
of theta. For floating-point operation, the maximum value is 52 for double or 23 for single.
Increasing the number of iterations can produce more accurate results, but it also increases the
expense of the computation and adds latency.

 cordicsin

4-297

Output Arguments
y — CORDIC-based approximation of sine
scalar | vector | matrix | multidimensional array

CORDIC-based approximation of sine of theta, returned as a scalar, vector, matrix, or
multidimensional array.

When the input to the function is floating point, the output data type is the same as the input data
type. When the input is fixed point, the output has the same word length as the input, and a fraction
length equal to the WordLength – 2.

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

Signal Flow Diagrams

4 Functions

4-298

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

 cordicsin

4-299

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

You can generate HDL code for cordicsin function.

See Also
cordiccexp | cordiccos | cordicsincos | sin | cos

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

4 Functions

4-300

cordicsincos
CORDIC-based approximation of sine and cosine

Syntax
[y, x] = cordicsincos(theta,niters)

Description
[y, x] = cordicsincos(theta,niters) computes the sine and cosine of theta using a
“CORDIC” on page 4-302 algorithm approximation. y contains the approximated sine result, and x
contains the approximated cosine result.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π). When theta has a
fixed-point data type, it must be signed.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

CORDIC-based approximated sine of theta. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is fixed point, the output has the
same word length as the input, and a fraction length equal to the WordLength – 2.

x

CORDIC-based approximated cosine of theta. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is fixed point, the output has the
same word length as the input, and a fraction length equal to the WordLength – 2.

Examples
The following example illustrates the effect of the number of iterations on the result of the
cordicsincos approximation.

 cordicsincos

4-301

wrdLn = 8;
theta = fi(pi/2, 1, wrdLn);
fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');
fprintf('------\t\t-------\t ------\t ----\t\t-------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 [y, x] = cordicsincos(theta, niters);
 y_FL = y.FractionLength;
 y_dbl = double(y);
 x_dbl = double(x);
 y_err = abs(y_dbl - sin(double(theta)));
 x_err = abs(x_dbl - cos(double(theta)));
 fprintf(' %d\t\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n', ...
 niters, y_dbl,y_err, (y_err * pow2(y_FL)), x_dbl,x_err, ...
 (x_err * pow2(y_FL)));
end
fprintf('\n');

The output table appears as follows:

NITERS Y (SIN) ERROR LSBs X (COS) ERROR LSBs
------ ------- ------ ---- ------- ------ ----
1 0.7031 0.2968 19.0 0.7031 0.7105 45.5
2 0.9375 0.0625 4.0 0.3125 0.3198 20.5
3 0.9844 0.0156 1.0 0.0938 0.1011 6.5
4 0.9844 0.0156 1.0 -0.0156 0.0083 0.5
5 1.0000 0.0000 0.0 0.0312 0.0386 2.5
6 1.0000 0.0000 0.0 0.0000 0.0073 0.5
7 1.0000 0.0000 0.0 0.0156 0.0230 1.5

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

More About
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24, 1998, pp.
191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer History
Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

4 Functions

4-302

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Algorithms
Signal Flow Diagrams

 cordicsincos

4-303

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

4 Functions

4-304

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordiccos | cordicsin

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

 cordicsincos

4-305

cordicsqrt
CORDIC-based approximation of square root

Syntax
y=cordicsqrt(u)
y=cordicsqrt(u, niters)
y=cordicsqrt(___ , 'ScaleOutput', B)

Description
y=cordicsqrt(u) computes the square root of u using a CORDIC algorithm implementation.

y=cordicsqrt(u, niters) computes the square root of u by performing niters iterations of the
CORDIC algorithm.

y=cordicsqrt(___ , 'ScaleOutput', B) scales the output depending on the Boolean value of
B.

Examples

Calculate the CORDIC Square Root

Find the square root of fi object x using a CORDIC implementation.

x = fi(1.6,1,12);
y = cordicsqrt(x)

y =
 1.2646

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10

Because you did not specify niters, the function performs the maximum number of iterations,
x.WordLength - 1.

Compute the difference between the results of the cordicsqrt function and the double-precision
sqrt function.

err = abs(sqrt(double(x))-double(y))

err = 1.0821e-04

Calculate the CORDIC Square Root With a Specified Number of Iterations

Compute the square root of x with three iterations of the CORDIC kernel.

4 Functions

4-306

x = fi(1.6,1,12);
y = cordicsqrt(x,3)

y =
 1.2646

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10

Compute the difference between the results of the cordicsqrt function and the double-precision
sqrt function.

err = abs(sqrt(double(x))-double(y))

err = 1.0821e-04

Calculate the CORDIC Square Root Without Scaling the Output

x = fi(1.6,1,12);
y = cordicsqrt(x, 'ScaleOutput', 0)

y =
 1.0479

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10

The output, y, was not scaled by the inverse CORDIC gain factor.

Compare Results of cordicsqrt and sqrt Functions

Compare the results produced by 10 iterations of the cordicsqrt algorithm to the results of the
double-precision sqrt function.

% Create 500 points between [0, 2)
stepSize = 2/500;
XDbl = 0:stepSize:2;
XFxp = fi(XDbl, 1, 12); % signed, 12-bit fixed-point
sqrtXRef = sqrt(double(XFxp)); % reference results

% Use 12-bit quantized inputs and set the number
% of iterations to 10.
% Compare the fixed-point CORDIC results to the
% double-precision sqrt function results.

niters = 10;
cdcSqrtX = cordicsqrt(XFxp, niters);
errCdcRef = sqrtXRef - double(cdcSqrtX);
figure

 cordicsqrt

4-307

hold on
axis([0 2 -.5 1.5])
plot(XFxp, sqrtXRef, 'b')
plot(XFxp, cdcSqrtX, 'g')
plot(XFxp, errCdcRef, 'r')
ylabel('Sqrt(x)')
gca.XTick = 0:0.25:2;
gca.XTickLabel = {'0','0.25','0.5','0.75','1','1.25','1.5','1.75','2'};
gca.YTick = -.5:.25:1.5;
gca.YTickLabel = {'-0.5','-0.25','0','0.25','0.5','0.75','1','1.25','1.5'};
ref_str = 'Reference: sqrt(double(X))';
cdc_str = sprintf('12-bit CORDIC square root; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref_str, cdc_str, err_str, 'Location', 'southeast')

Input Arguments
u — Data input array
scalar | vector | matrix | multidimensional array

Data input array, specified as a positive scalar, vector, matrix, or multidimensional array of fixed-point
or built-in data types. When the input array contains values between 0.5 and 2, the algorithm is most
accurate. A pre- and post-normalization process is performed on input values outside of this range.
For more information on this process, see “Pre- and Post-Normalization” on page 4-311.

4 Functions

4-308

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is u.WordLength - 1. For floating-point inputs, the default value of
niters is 52 for double precision; 23 for single precision.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y= cordicsqrt(x,'ScaleOutput', 0)

ScaleOutput — Whether to scale the output
true (default) | false

Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. If you set
ScaleOutput to true or 1, the output values are multiplied by a constant, which incurs extra
computations. If you set ScaleOutput to false or 0, the output is not scaled.

Data Types: logical

Output Arguments
y — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

 cordicsqrt

4-309

Algorithms
Signal Flow Diagrams

For further details on the pre- and post-normalization process, see “Pre- and Post-Normalization” on
page 4-311.

4 Functions

4-310

CORDIC Hyperbolic Kernel

X is initialized to u'+.25, and Y is initialized to u'-.25, where u' is the normalized function input.

With repeated iterations of the CORDIC hyperbolic kernel, X approaches AN u′, where AN represents
the CORDIC gain. Y approaches 0.

Pre- and Post-Normalization

For input values outside of the range of [0.5, 2) a pre- and post-normalization process occurs. This
process performs bitshifts on the input array before passing it to the CORDIC kernel. The result is
then shifted back into the correct output range during the post-normalization stage. For more details
on this process see “Overcoming Algorithm Input Range Limitations” in “Compute Square Root Using
CORDIC”.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

 cordicsqrt

4-311

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

Version History
Introduced in R2014a

References
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic

Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
sqrt

Topics
“Compute Square Root Using CORDIC”

4 Functions

4-312

cordictanh
CORDIC-based hyperbolic tangent

Syntax
T = cordictanh(theta)
T = cordictanh(theta, niters)

Description
T = cordictanh(theta) returns the hyperbolic tangent of theta.

T = cordictanh(theta, niters) returns the hyperbolic tangent of theta by performing niters
iterations of the CORDIC algorithm.

Examples

Compute CORDIC Hyperbolic Tangent

Find the hyperbolic tangent of fi object theta using a CORDIC implementation with the default
number of iterations.

theta = fi(-2*pi:.1:2*pi-.1);
T_cordic = cordictanh(theta);

Plot the hyperbolic tangent of theta using the tanh function and its CORDIC approximation.

T = tanh(double(theta));
plot(theta, T_cordic);
hold on;
plot(theta, T);
legend('CORDIC approximation of tanh', 'tanh');
xlabel('theta');
ylabel('tanh(theta)');

 cordictanh

4-313

Compute the difference between the results of the cordictanh function and the tanh function.

figure;
err = abs(T - double(T_cordic));
plot(theta, err);
xlabel('theta');
ylabel('error');

4 Functions

4-314

Compute CORDIC Hyperbolic Tangent with Specified Number of Iterations

Find the hyperbolic tangent of fi object theta using a CORDIC implementation and specify the
number of iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the
hyperbolic tangent of theta with varying numbers of iterations.

theta = fi(-2*pi:.1:2*pi-.1);
for niters = 5:10:25
T_cordic = cordictanh(theta, niters);
plot(theta, T_cordic);
hold on;
end
xlabel('theta');
ylabel('tanh(theta)');
legend('5 iterations', '15 iterations', '25 iterations','Location','southeast');

 cordictanh

4-315

Input Arguments
theta — angle values
scalar | vector | matrix | n-dimensional array

Angle values in radians specified as a scalar, vector, matrix, or N-dimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 Functions

4-316

Output Arguments
T — Output array
scalar | vector | matrix | n-dimensional array

T is the CORDIC-based approximation of the hyperbolic tangent of theta. When the input to the
function is floating point, the output data type is the same as the input data type. When the input is
fixed point, the output has the same word length as the input, and a fraction length equal to the
WordLength – 2.

Version History
Introduced in R2017b

See Also
cordicatan2 | cordicsin | cordiccos | tanh

 cordictanh

4-317

cos
Package: embedded

Cosine of fi object in radians

Syntax
Y = cos(X)

Description
Y = cos(X) returns the cosine for each element of fi input X using an 8-bit lookup table algorithm.

Examples

Cosine of Fixed-Point Angles

Calculate the cosine of fixed-point input values.

X = fi([0,pi/4,pi/3,pi/2,(2*pi)/3,(3*pi)/4,pi])

X =
 0 0.7854 1.0472 1.5708 2.0944 2.3562 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Y = cos(X)

Y =
 1.0000 0.7072 0.4999 0.0001 -0.4999 -0.7070 -1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Input Arguments
X — Input angle in radians
scalar | vector | matrix | multidimensional array

Input angle in radians, specified as a scalar, vector, matrix, or multidimensional array.

X can be a real-valued, signed or unsigned:

• fi single

4 Functions

4-318

• fi double
• fi fixed-point with binary-point scaling
• fi scaled double with binary-point scaling

Example: X = fi([pi pi/6],1,8);
Data Types: fi

Output Arguments
Y — Cosine of input angle
scalar | vector | matrix | multidimensional array

Cosine of input angle, returned as a real-valued fi scalar, vector, matrix, or multidimensional array.

More About
Cosine

The cosine of angle Θ is defined as

cos(θ) = eiθ + e−iθ

2

Algorithms
The cos function computes the cosine of fixed-point input using an 8-bit lookup table as follows:

1 Perform a modulo 2π, so the input is in the range [0,2π) radians.
2 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the full uint16

range.
4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values, using nearest-

neighbor linear interpolation.

fimath Propagation Rules

The cos function ignores and discards any fimath attached to the input, X. The output, Y, is always
associated with the default fimath.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 cos

4-319

See Also
cos | angle | sin | atan2 | cordiccos | cordicsin

Topics
“Calculate Fixed-Point Sine and Cosine”

4 Functions

4-320

ctranspose
Complex conjugate transpose of fi object

Syntax
ctranspose(a)

Description
This function accepts fi objects as inputs.

ctranspose(a) returns the complex conjugate transpose of fi object a. It is also called for the
syntax a'.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also

 ctranspose

4-321

CustomFloat
Numeric object with a custom floating-point data type

Description
Use a CustomFloat object to define a floating-point numeric data type with specified word length
and mantissa length. Floating-point data types defined by a CustomFloat object adhere to the IEEE
754-2008 standard. For more information on floating-point data types, see “Floating-Point Numbers”.

Creation

Syntax
x = CustomFloat(v)
x = CustomFloat(v, type)
x = CustomFloat(v, WordLength, MantissaLength)
x = CustomFloat(v, WordLength, MantissaLength, 'typecast')
x = CustomFloat(cf)

Description

x = CustomFloat(v) returns a CustomFloat object with value v. The output object has the same
word length, mantissa length, and exponent length as input v.

x = CustomFloat(v, type) returns a CustomFloat object with value v and floating-point type
specified by type.

x = CustomFloat(v, WordLength, MantissaLength) returns a CustomFloat object with the
specified word length and mantissa length.

x = CustomFloat(v, WordLength, MantissaLength, 'typecast') returns a CustomFloat
object with the bit pattern of v and the specified mantissa length. The word length must match the
word length of the input v.

x = CustomFloat(cf) returns a CustomFloat object with value and data type properties of
CustomFloat object cf.

Input Arguments

v — Value of object
scalar | vector | matrix | multi-dimensional array

The value of the CustomFloat object, specified as a scalar, vector, matrix, or multi-dimensional
array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi

4 Functions

4-322

type — Floating-point type of object
'double' | 'single' | 'half'

Floating-point data type of CustomFloat object, specified as either 'double', 'single', or
'half'.

The properties of these types are summarized in the following table.

Type Word Length Mantissa Length
double 64 52
single 32 23
half 16 10

Data Types: char

cf — Custom floating-point type
CustomFloat object

Custom floating-point type, specified as a CustomFloat object.

Properties
ExponentBias — Offset value for the exponent
scalar integer

Scalar integer representing the offset value for the exponent.

This property cannot be changed directly, however you can change this property by changing the
WordLength and MantissaLength properties, which influence the ExponentLength property. The
ExponentBias for a floating-point data type is computed through the following equation:

ExponentBias = 2e-1-1 (4-6)

where e represents the ExponentLength.
Data Types: double

ExponentLength — Number of bits representing the exponent
scalar integer less than 31

Number of bits representing the exponent. You cannot edit this property directly, however you can
change the exponent length by changing the MantissaLength and WordLength properties.

The ExponentLength, MantissaLength, and WordLength properties are related through the
following equation:

WordLength = 1+MantissaLength+ExponentLength (4-7)

ExponentLength must be less than 31 bits.
Data Types: double

MantissaLength — Number of bits representing the mantissa
scalar integer

 CustomFloat

4-323

Number of bits representing the mantissa, specified as a scalar integer.

The ExponentLength, MantissaLength, and WordLength properties are related through the
following equation.

WordLength = 1+MantissaLength+ExponentLength (4-8)

Note ExponentLength must be less than 31 bits.

Example: custfloat.MantissaLength = 14;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

WordLength — Total number of bits in the data type
scalar integer

Total number of bits in the data type, specified as a scalar integer.

The ExponentLength, MantissaLength, and WordLength properties are related through the
following equation.

WordLength = 1+MantissaLength+ExponentLength (4-9)

Note ExponentLength must be less than 31 bits.

Example: custfloat.WordLength = 28;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions

Math and Arithmetic
abs Absolute value and complex magnitude
ceil Round toward positive infinity
complex Create complex array
conj Complex conjugate
cosh Hyperbolic cosine
exp Exponential
fix Round toward zero
floor Round toward negative infinity
fma Multiply and add using fused multiply add approach
hypot Square root of sum of squares (hypotenuse)
ldivide Left array division
log Natural logarithm
log2 Base 2 logarithm and floating-point number dissection
log10 Common logarithm (base 10)
minus Subtraction
mod Remainder after division (modulo operation)

4 Functions

4-324

mtimes Matrix multiplication
ndims Number of array dimensions
plus Add numbers, append strings
pow10 Base 10 power and scale half-precision numbers
pow2 Base 2 exponentiation and scaling of floating-point numbers
power Element-wise power
rdivide Right array division
real Real part of complex number
rem Remainder after division
round Round to nearest decimal or integer
rsqrt Reciprocal square root
sqrt Square root
tanh Hyperbolic tangent
times Multiplication
uminus Unary minus
uplus Unary plus

Data Types
bin Unsigned binary representation of stored integer of fi object
double Double-precision arrays
fi Construct fixed-point numeric object
int8 8-bit signed integer arrays
int16 16-bit signed integer arrays
int32 32-bit signed integer arrays
int64 64-bit signed integer arrays
isnan Determine which array elements are NaN
isreal Determine whether array uses complex storage
single Single-precision arrays
uint8 8-bit unsigned integer arrays
uint16 16-bit unsigned integer arrays
uint32 32-bit unsigned integer arrays
uint64 64-bit unsigned integer arrays

Relational and Logical Operators
eq Determine equality
ge Determine greater than or equal to
gt Determine greater than
le Determine less than or equal to
lt Determine less than
ne Determine inequality

Array and Matrix Operations
cat Concatenate arrays
ctranspose Complex conjugate transpose
horzcat Horizontal concatenation for heterogeneous arrays
isfinite Determine which array elements are finite
isinf Determine which array elements are infinite
norm Vector and matrix norms
numel Number of array elements
reshape Reshape array

 CustomFloat

4-325

size Array size
transpose Transpose vector or matrix
vertcat Vertical concatenation for heterogeneous arrays

Language Fundamentals
disp Display value of variable

Examples

Create a CustomFloat Object

This example shows how to create a CustomFloat object.

v = pi;
x = CustomFloat(v)

x =
 3.1416

 Data Type: Floating-point: Double-precision
 WordLength: 64
 MantissaLength: 52
 ExponentLength: 11
 ExponentBias: 1023

Because the input to the CustomFloat constructor was a double, the data type of the CustomFloat
object, x, is also a double. If the value passed in to the CustomFloat function is a single, then the
resulting CustomFloat object will also have a single-precision floating-point data type.

v = single(pi);
x = CustomFloat(v)

x =
 3.1416

 Data Type: Floating-point: Single-precision
 WordLength: 32
 MantissaLength: 23
 ExponentLength: 8
 ExponentBias: 127

Create a Half-Precision CustomFloat Object

To create a CustomFloat object with a specified floating-point data type, specify the data type as the
second argument in the CustomFloat function.

v = pi;
x = CustomFloat(v,'half')

x =
 3.1406

4 Functions

4-326

 Data Type: Floating-point: Half-precision
 WordLength: 16
 MantissaLength: 10
 ExponentLength: 5
 ExponentBias: 15

Create a CustomFloat Object with Specified Word Length and Mantissa Length

Specify a word length and a mantissa length in the CustomFloat function.

v = pi;
wl = 16;
ml = 4;
x = CustomFloat(v,wl,ml)

x =
 3.1250

 Data Type: Floating-point: Custom-precision
 WordLength: 16
 MantissaLength: 4
 ExponentLength: 11
 ExponentBias: 1023

Compare the difference between the double-precision value and the value of the CustomFloat object
as you change the mantissa length.

err = zeros(1,12);
for ml = 1:12
 x = CustomFloat(v,wl,ml);
 err(ml) = v-double(x);
end

plot(err);
title('Error: v - double(x)');
ylabel('Error');
xlabel('Mantissa Length');

 CustomFloat

4-327

Typecast a Value to a New CustomFloat Data Type

Using the 'typecast' input argument, the CustomFloat function creates a CustomFloat object
with the bit pattern of the input value, and the specified word length and mantissa length.

Define a single-precision value. Single-precision floating-point data types have a 32-bit word length
and 23-bit mantissa length. View the binary representation of the single-precision value.

v = single(pi);
bit_pattern = bin(CustomFloat(v))

bit_pattern =
'01000000010010010000111111011011'

Define a CustomFloat object that has the same bit pattern as the input value, but has a different
mantissa length.

x = CustomFloat(v, 32, 20, 'typecast')

x =
 50.1239

 Data Type: Floating-point: Custom-precision
 WordLength: 32

4 Functions

4-328

 MantissaLength: 20
 ExponentLength: 11
 ExponentBias: 1023

View the binary representation of the CustomFloat object, and compare it to the bit pattern of the
single-precision input value.

bit_pattern2 = bin(x)

bit_pattern2 =
'01000000010010010000111111011011'

same = strcmp(bit_pattern, bit_pattern2)

same = logical
 1

Limitations
The following functions, which support custom floating-point inputs, do not support complex custom
floating-point inputs.

• ceil
• cosh
• exp
• fix
• floor
• ge
• gt
• hypot
• le
• log
• log10
• log2
• lt
• mod
• pow10
• pow2
• power
• rem
• round
• rsqrt
• sqrt
• tanh

 CustomFloat

4-329

Version History
Introduced in R2020a

See Also
half | single | double

Topics
“Floating-Point Numbers”

4 Functions

4-330

DataTypeWorkflow.findDecoupledSubsystems
Get a list of subsystems to replace with an approximation

Syntax
systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)

Description
systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)returns
a table containing all of the subsystems in the system specified by system created by the Fixed-Point
Tool during the preparation stage of conversion.

When converting a model to fixed point using the Fixed-Point Tool, when you click Prepare, the tool
finds any blocks that are not supported for conversion. When the tool finds these blocks, it isolates
the block by placing it in a subsystem surrounded by Data Type Conversion blocks. After converting
the rest of the system to fixed point, use this function to get a list of all the subsystems you must
replace. You can use the Lookup Table Optimizer to generate a lookup table approximation of the
subsystems containing the unsupported blocks.

Examples

Replace Unsupported Blocks with a Lookup Table Approximation

In this example, you replace a block that is not supported for fixed-point conversion, with a lookup
table approximation.

Open the model.

open_system('ex_fixed_point_workflow_lutapprox')

 DataTypeWorkflow.findDecoupledSubsystems

4-331

The Controller Subsystem in the model uses fixed-point data types, except in the Exp subsystem. This
subsystem was created by the Fixed-Point Tool during the preparation stage of the conversion. In this
example, you use the Lookup Table Optimizer to replace this subsystem with a lookup table
approximation.

4 Functions

4-332

Identify the subsystems that you need to replace using the
DataTypeWorkflow.findDecoupledSubsystems function.

decoupled = DataTypeWorkflow.findDecoupledSubsystems(gcs)

decoupled =

 1x2 table

 ID BlockPath
 __ __

 1 {'ex_fixed_point_workflow_lutapprox/Controller Subsystem/Exp'}

To replace the functions, open the Lookup Table Optimizer. In the Simulink Apps tab, select Lookup
Table Optimizer.

On the Objective page of the Lookup Table Optimizer, select Simulink Block. Click Next.

Under Block Information, copy and paste the path to the decoupled subsystem created by the
Fixed-Point Tool.

 DataTypeWorkflow.findDecoupledSubsystems

4-333

Continue through the steps of the Lookup Table Optimizer to generate the lookup table
approximation.

Input Arguments
system — System containing the decoupled subsystems
character vector

System containing the decoupled subsystems, specified as a character vector.

Output Arguments
systemsToApproximate — Subsystems to approximate with a lookup table
table

4 Functions

4-334

A list of the subsystems decoupled from the model by the Fixed-Point Tool to approximate, returned
as a table.

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.Converter | Lookup Table Optimizer

Topics
“Convert Floating-Point Model to Fixed Point”
“Use the Fixed-Point Tool to Prepare a System for Conversion”

 DataTypeWorkflow.findDecoupledSubsystems

4-335

dec
Package: embedded

Unsigned decimal representation of stored integer of fi object

Syntax
b = dec(a)

Description
b = dec(a) returns the stored integer of fi object a in unsigned decimal format as a character
vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Unsigned Decimal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a =
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the unsigned decimal representation of the stored integers of fi object a.

b = dec(a)

b =
'128 127'

4 Functions

4-336

Input Arguments
a — Input array
fi object

Input array, specified as a fi object.
Data Types: fi

Version History
Introduced before R2006a

See Also
bin | hex | storedInteger | oct | sdec | dec2hex | dec2base | dec2bin

 dec

4-337

dec2base
Package: embedded

Convert decimal integer to its base-n representation for fi objects

Syntax
baseStr = dec2base(D,n)
baseStr = dec2base(D,n,minDigits)

Description
baseStr = dec2base(D,n) returns a base-n representation of the decimal integer D. The output
argument baseStr is a character array that represents digits using numeric characters, and, when n
is greater than 10, letters. For example, if n is 12, the dec2base represents the numbers 9, 10, and
11 using the characters 9, A, and B, and represents the number 12 as the character sequence 10.

baseStr = dec2base(D,n,minDigits) returns a base-n representation of D with no fewer than
minDigits digits.

Tip dec2base returns the base-n representation of the real-world value of the values contained in fi
object D.

Examples

Convert Decimal Number

Convert a decimal number to a character vector that represents its value in base 3.

D = fi(23);
baseStr = dec2base(D,3)

baseStr =

 '212'

Convert a decimal number to a character vector that represents its value in base 12. In this base
system, the characters 'A' and 'B' represent the numbers denoted as 10 and 11 in base 10.

D = fi(23);
baseStr = dec2base(D,12)

baseStr =

 '1B'

4 Functions

4-338

Specify Number of Digits

Specify the number of base-3 digits that dec2base returns. If you specify more digits than are
required, then dec2base pads the output with leading zeros.

D = fi(23);
baseStr = dec2base(D,3,5)

baseStr =

 '00212'

Convert Upperbound of fi Object

Convert the upper bound of a signed fi object with 100-bit word length to base 36 representation.

baseStr = dec2base(upperbound(fi([],1,100,0)),36)

baseStr =

 '1PG7OTO50BLAOIQ8FPQ7'

Input Arguments
D — Input array
fi array of nonnegative numbers

Input array, specified as a fi array of nonnegative numbers.

D must contain finite integers. If any element of D has a fractional part, then dec2base produces an
error. For example, dec2base(fi(10),8) converts fi(10) to '12', but dec2base(fi(10.5),8)
produces an error.
Data Types: fi

n — Base of output representation
integer between 2 and 36

Base of output representation, specified as an integer between 2 and 36. For example, if n is 8, then
the output represents base-8 numbers.

minDigits — Minimum number of digits in output
positive integer

Minimum number of digits in the output, specified as a positive integer.

• If D can be represented with fewer than minDigits digits, then dec2base pads the output with
leading zeros.

• If D is so large that it must be represented with more than minDigits digits, then dec2base
returns the output with as many digits as required.

Version History
Introduced in R2021b

 dec2base

4-339

Extended Capabilities
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported.

See Also
fi | dec2bin | dec2hex | bin | dec | oct | hex

4 Functions

4-340

dec2bin
Package: embedded

Convert decimal integer to its binary representation for fi objects

Syntax
binStr = dec2bin(D)
binStr = dec2bin(D,minDigits)

Description
binStr = dec2bin(D) returns the binary, or base-2, representation of the decimal integer D. The
output argument binStr is a character vector that represents binary digits using the characters 0
and 1.

binStr = dec2bin(D,minDigits) returns a binary representation with no fewer than minDigits
digits.

Tip dec2bin returns the binary representation of the real-world value of the fi object D. To obtain
the binary representation of the stored integer value, use bin instead.

Examples

Convert Decimal Number

Convert a decimal number stored as a fi object to a character vector that represents its binary
value.

D1 = fi(2748);
D2 = fi(251);
binStr1 = dec2bin(D1)
binStr2 = dec2bin(D2)

binStr1 =

 '101010111100'

binStr2 =

 '11111011'

The dec2bin function converts negative numbers using their two's complement binary values.

D3 = fi(-5);
binStr3 = dec2bin(D3)

 dec2bin

4-341

binStr3 =

 '11111011'

Specify Minimum Number of Digits

Convert the decimal number stored as a fi object to binary representation. Specify the minimum
number of binary digits that dec2bin returns. If you specify more digits than are required, then
dec2bin pads the output.

D = fi(2748);
binStr = dec2bin(D,16)

binStr =

 '0000101010111100'

If you specify fewer digits, then dec2bin still returns as many binary digits as required to represent
the input number.

binStr = dec2bin(D,8)

binStr =

 '101010111100'

Convert Numeric Array

Create a numeric fi array.

D = fi([1023 122 14]);

To represent the elements of D as binary values, use the dec2bin function. Each row of binStr
corresponds to an element of D.

binStr = dec2bin(D)

binStr =

 3×10 char array

 '1111111111'
 '0001111010'
 '0000001110'

Convert Upper and Lower Bound of fi Object

Convert the upper and lower bound of a signed fi object with 100-bit word length.

binStr = dec2bin([lowerbound(fi([],1,100,0)), upperbound(fi([],1,100,0))])

binStr =

4 Functions

4-342

 2×100 char array

 '1000'
 '0111'

Input Arguments
D — Input array
numeric fi array

Input array, specified as a numeric fi array.

• D must contain finite integers. If any element of D has a fractional part, then dec2bin truncates it
before conversion. For example, dec2bin converts both fi(12) and fi(12.5) to '1100'. The
truncation is always to the nearest integer less than or equal to that element.

• D can include negative numbers. The function converts negative numbers using their two's
complement binary values.

Data Types: fi

minDigits — Minimum number of digits in output
positive integer

Minimum number of digits in the output, specified as a positive integer.

• If D can be represented with fewer than minDigits binary digits, then dec2bin pads the output.
• If D is so large that it must be represented with more than minDigits digits, then dec2bin

returns the output with as many digits as required.

Version History
Introduced in R2021b

Extended Capabilities
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported.

See Also
fi | bin | dec2base | dec2hex | bin | dec | oct | hex

 dec2bin

4-343

dec2hex
Package: embedded

Convert decimal integer to its hexadecimal representation for fi objects

Syntax
hexStr = dec2hex(D)
hexStr = dec2hex(D,minDigits)

Description
hexStr = dec2hex(D) returns the hexadecimal, or base-16, representation of the decimal integer
D. The output argument hexStr is a character array where each row represents the hexadecimal
digits of each decimal integer in D using the characters 0-9 and A-F. D must contain finite integers.

hexStr = dec2hex(D,minDigits) returns a hexadecimal representation with no fewer than
minDigits digits.

Tip dec2hex returns the hexadecimal representation of the real-world value of the fi object D. To
obtain the hexadecimal representation of the stored integer value, use hex instead.

Examples

Convert Decimal Number

Convert the decimal number stored as a fi object to hexadecimal representation.

D1 = fi(2748);
D2 = fi(251);
hexStr1 = dec2hex(D1)
hexStr2 = dec2hex(D2)

hexStr1 =

 'ABC'

hexStr2 =

 'FB'

The dec2hex function converts negative numbers using their two's complement binary values.

D3 = fi(-5);
hexStr3 = dec2hex(D3)

4 Functions

4-344

hexStr3 =

 'FB'

Specify Minimum Number of Digits

Convert the decimal number stored as a fi object to hexadecimal representation. Specify the
minimum number of hexadecimal digits that dec2hex returns. If you specify more digits than are
required, then dec2hex pads the output.

D = fi(2748);
hexStr = dec2hex(D,8)

hexStr =

 '00000ABC'

If you specify fewer digits, then dec2hex still returns as many hexadecimal digits as required to
represent the input number.

hexStr = dec2hex(D,2)

hexStr =

 'ABC'

Convert Numeric Array

Create a numeric fi array.

D = fi([1023 122 14]);

To represent the elements of D as hexadecimal values, use the dec2hex function. Each row of
hexStr corresponds to an element of D.

hexStr = dec2hex(D)

hexStr =

 3×3 char array

 '3FF'
 '07A'
 '00E'

Convert a numeric fi array containing negative values and specify minimum number of digits.

D = fi([1023 122 14;2748 251 -5]);
hexStr = dec2hex(D,5)

hexStr =

 6×5 char array

 '003FF'

 dec2hex

4-345

 '00ABC'
 '0007A'
 '000FB'
 '0000E'
 'FFFFB'

Convert Upper and Lower Bound of fi Object

Convert the upper and lower bound of a signed fi object with 100-bit word length.

binStr = dec2hex([lowerbound(fi([],1,100,0)), upperbound(fi([],1,100,0))])

binStr =

 2×25 char array

 '8000000000000000000000000'
 '7FFFFFFFFFFFFFFFFFFFFFFFF'

Input Arguments
D — Input array
numeric fi array

Input array, specified as a numeric fi array.

• D must contain finite integers. If any element of D has a fractional part, then dec2hex produces an
error. For example, dec2hex converts fi(10) to 'A', but does not convert fi(10.5).

• D can include negative numbers. The function converts negative numbers using their two's
complement binary values.

Data Types: fi

minDigits — Minimum number of digits in output
positive integer

Minimum number of digits in the output, specified as a positive integer.

• If D can be represented with fewer than minDigits hexadecimal digits, then dec2hex pads the
output.

• If D is so large that it must be represented with more than minDigits digits, then dec2hex
returns the output with as many digits as required.

Version History
Introduced in R2021b

Extended Capabilities
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

4 Functions

4-346

Slope-bias representation is not supported.

See Also
fi | dec2base | dec2bin | hex | bin | dec | oct

 dec2hex

4-347

denormalmax
Largest denormalized quantized number for quantizer object

Syntax
x = denormalmax(q)

Description
x = denormalmax(q) is the largest positive denormalized quantized number where q is a
quantizer object. Anything larger than x is a normalized number. Denormalized numbers apply only
to floating-point format. When q represents fixed-point numbers, this function returns eps(q).

Examples
q = quantizer('float',[6 3]);
x = denormalmax(q)

x =

 0.1875

Algorithms
When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

Version History
Introduced before R2006a

See Also
denormalmin | eps | quantizer

4 Functions

4-348

denormalmin
Smallest denormalized quantized number for quantizer object

Syntax
x = denormalmin(q)

Description
x = denormalmin(q) is the smallest positive denormalized quantized number where q is a
quantizer object. Anything smaller than x underflows to zero with respect to the quantizer object
q. Denormalized numbers apply only to floating-point format. When q represents a fixed-point
number, denormalmin returns eps(q).

Examples
q = quantizer('float',[6 3]);
x = denormalmin(q)

x =

 0.0625

Algorithms
When q is a floating-point quantizer object,

x = 2Emin− f

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,

x = eps(q) = 2− f

where f is equal to fractionlength(q).

Version History
Introduced before R2006a

See Also
denormalmax | eps | quantizer

 denormalmin

4-349

divide
Package: embedded

Divide two fi objects

Syntax
c = divide(T,a,b)

Description
c = divide(T,a,b) performs division on the elements of a by the elements of b. The result c has
the numeric type specified by numerictype object T.

Examples

Divide Two fi Objects

This example shows how to control the precision of the divide function.

Create an unsigned fi object with an 80-bit word length and 2^-83 scaling, which puts the leading 1
of the representation into the most significant bit. Initialize the object with value 0.1, and examine
the binary representation.

P = fipref('NumberDisplay', 'bin',...
 'NumericTypeDisplay', 'short',...
 'FimathDisplay', 'none');
a = fi(0.1, 0, 80, 83)

a =
11001100110011001100110011001100110011001100110011010000000000000000000000000000
 numerictype(0,80,83)

Notice that the infinite repeating representation is truncated after 52 bits, because the mantissa of an
IEEE® standard double-precision floating-point number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the quotient set to the same
numeric type as before.

T = numerictype('Signed', false,...
 'WordLength', 80,...
 'FractionLength', 83);
a = fi(1);
b = fi(10);
c = divide(T, a, b);
c.bin

ans =
'11001100110011001100110011001100110011001100110011001100110011001100110011001101'

4 Functions

4-350

Notice that when you use the divide function, the quotient is calculated to the full 80 bits,
regardless of the precision of a and b. Thus, the fi object c represents 1/10 more precisely than a
IEEE® standard double-precision floating-point number can.

Input Arguments
T — Numeric type of the output
numerictype object

Numeric type of the output, specified as a numerictype object.

a — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array.

Inputs a and b must either be the same size or have sizes that are compatible. For more information,
see “Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

b — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a real scalar, vector, matrix, or multidimensional array.

Inputs a and b must either be the same size or have sizes that are compatible. For more information,
see “Compatible Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Output Arguments
c — Quotient
scalar | vector | matrix | multidimensional array

Solution, returned as a scalar, vector, matrix, or multidimensional array.

The size of c is determined by implicit expansion of the dimensions of a and b. For more information,
see “Compatible Array Sizes for Basic Operations”.

Algorithms
If a and b are both fi objects, c has the same fimath object as a. If c has a fi Fixed data type, and
any one of the inputs have fi floating point data types, then the fi floating point is converted into a
fixed-point value. Intermediate quantities are calculated using the fimath object of a.

 divide

4-351

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in
object is cast to the word length of the fi object, preserving best-precision fraction length.
Intermediate quantities are calculated using the fimath object of the input fi object.

If a and b are both MATLAB built-in doubles, then c is the floating-point quotient a./b, and
numerictype T is ignored.

Data Type Propagation Rules

For syntaxes for which Fixed-Point Designer software uses the numerictype object T, the divide
function follows the data type propagation rules listed in the following table. In most cases, floating-
point data types are propagated. This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Objects a and b Data Type of
numerictype Object T

Data Type of Output c

Built-in double Built-in double Any Built-in double
fi Fixed fi Fixed fi Fixed Data type of

numerictype object T
fi Fixed fi Fixed fi double fi double
fi Fixed fi Fixed fi single fi single
fi Fixed fi Fixed fi ScaledDouble fi ScaledDouble with

properties of
numerictype object T

fi double fi double fi Fixed fi double
fi double fi double fi double fi double
fi double fi double fi single fi single
fi double fi double fi ScaledDouble fi double
fi single fi single fi Fixed fi single
fi single fi single fi double fi double
fi single fi single fi single fi single
fi single fi single fi ScaledDouble fi single
fi ScaledDouble fi ScaledDouble fi Fixed If either input a or b is

of type fi
ScaledDouble, then
output cis of type fi
ScaledDouble with
properties of
numerictype object T.

fi ScaledDouble fi ScaledDouble fi double fi double
fi ScaledDouble fi ScaledDouble fi single fi single

4 Functions

4-352

Data Type of Input fi Objects a and b Data Type of
numerictype Object T

Data Type of Output c

fi ScaledDouble fi ScaledDouble fi ScaledDouble If either input a or b is
of type fi
ScaledDouble, then
output c is of type fi
ScaledDouble with
properties of
numerictype object T.

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi divide, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not supported.
• Code generation does not support the syntax T.divide(a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

• For HDL Code generation, the divisor must be a constant and a power of two.
• Non-fi inputs must be constant; that is, their values must be known at compile time so that they

can be cast to fi objects.
• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax T.divide(a,b).

 divide

4-353

See Also
add | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

4 Functions

4-354

double
Double-precision floating-point real-world value of fi object

Syntax
b = double(a)

Description
b = double(a) returns the real-world value of a fi object in double-precision floating point format.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

Examples

View Stored Integer of fi Object in Double-Precision Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a =
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the double-precision floating-point real-world value of the stored integers of fi object a.

b = double(a)

b = 1×2

 -1.0000 0.9922

Input Arguments
a — fi object to view in double-precision floating-point
fi object

 double

4-355

Input fi object to view in double-precision floating-point.
Data Types: fi

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm
to insulate functions that do not support fixed-point data types. The automated conversion tool
does not support these casts. Instead of using casts, supply a replacement function. For more
information, see “Function Replacements”.

See Also
single

4 Functions

4-356

eps
Quantized relative accuracy for fi or quantizer objects

Syntax
d = eps(a)
d = eps(q)

Description
d = eps(a) returns the value of the least significant bit value of the fi object a. The result of this
function is equivalent to that given by the Fixed-Point Designer function lsb.

d = eps(q) returns the value of the least significant bit of the value of the quantizer object q.

Examples

Quantized Relative Accuracy of fi Object

a = fi(pi, 1, 8)
eps(a)

ans =

 0.1250

Quantization Level of quantizer Object

q = quantizer('fixed',[6 3]);
eps(q)

ans =

 0.1250

Input Arguments
a — Input fi object
fi object

Input fi object.
Data Types: fi

q — Input quantizer object
quantizer object

Input quantizer object.

 eps

4-357

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation supports scalar fixed-point signals only.
• Code generation supports scalar, vector, and matrix, fi single and fi double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi single and fi double signals.

See Also
intmax | intmin | lowerbound | lsb | range | realmax | realmin | upperbound | quantizer |
fi

4 Functions

4-358

eq, ==
Package: embedded

Determine whether real-world values are equal

Syntax
A == B
eq(A,B)

Description
A == B returns a logical array with elements set to logical 1 (true) where the real-world values of
arrays A and B are equal, when A or B is a fi object. Otherwise, the element is logical 0 (false). The
test compares both real and imaginary parts of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to a fixed-point type that preserves the relative order of the value with respect to the
value in the fixed-point fi object.

eq(A,B) is an alternate way to execute A == B, but is rarely used.

Examples

Compare Two fi Objects

Use the eq function to determine if two fi objects have the same real-world value.

a = fi(pi);
b = fi(pi,1,32);
a == b

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The eq function returns 0
because the two fi objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the
relative order of the value with respect to the value in the fixed-point fi object. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

 eq, ==

4-359

a = fi(pi);
b = pi;
eq(a,b)

ans =

 logical

 0

Input Arguments
A,B — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi eq, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Improved accuracy in comparing fi objects and floating-point numbers using relational
operators
Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This could lead to incorrect results. For
example,

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

4 Functions

4-360

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

Note that the updated algorithm may produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest
wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 eq, ==

4-361

See Also
ge | gt | isequal | le | lt | ne

4 Functions

4-362

errmean
Mean of quantization error

Syntax
m = errmean(q)

Description
m = errmean(q) returns the mean of a uniformly distributed random quantization error that arises
from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples
Find m, the mean of the quantization error for quantizer q:

q = quantizer;
m = errmean(q)

m =

 -1.525878906250000e-05

Now compare m to m_est, the sample mean from a Monte Carlo experiment:

r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
m_est = mean(e) % Estimate of the error mean

m_est =

 -1.526738835715480e-05

Version History
Introduced in R2008a

See Also
errpdf | errvar | quantize

 errmean

4-363

errpdf
Probability density function of quantization error

Syntax
[f,x] = errpdf(q)
f = errpdf(q,x)

Description
[f,x] = errpdf(q) returns the probability density function f evaluated at the values in x. The
vector x contains the uniformly distributed random quantization errors that arise from quantizing a
signal by quantizer object q.

f = errpdf(q,x) returns the probability density function f evaluated at the values in vector x.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples

Compute the PDF of the quantization error

q = quantizer('nearest',[4 3]);
[f,x] = errpdf(q);
subplot(211)
plot(x,f)
title('Computed PDF of the quantization error.')

4 Functions

4-364

The output plot shows the probability density function of the quantization error. Compare this result
to a plot of the sample probability density function from a Monte Carlo experiment:

 r = realmax(q);
 u = 2*r*rand(10000,1)-r; % Original signal
 y = quantize(q,u); % Quantized signal
 e = y - u; % Error
 subplot(212)
 hist(e,20)
 gca.xlim = [min(x) max(x)];
 title('Estimate of the PDF of the quantization error.')

 errpdf

4-365

Version History
Introduced in R2008a

See Also
errmean | errvar | quantize

4 Functions

4-366

errvar
Variance of quantization error

Syntax
v = errvar(q)

Description
v = errvar(q) returns the variance of a uniformly distributed random quantization error that
arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples
Find v, the variance of the quantization error for quantizer object q:

q = quantizer;
v = errvar(q)

v =

 7.761021455128987e-11

Now compare v to v_est, the sample variance from a Monte Carlo experiment:

r = realmax(q);
 u = 2*r*rand(1000,1)-r; % Original signal
 y = quantize(q,u); % Quantized signal
 e = y - u; % Error
 v_est = var(e) % Estimate of the error variance

v_est =

 7.686538499583834e-11

Version History
Introduced in R2008a

See Also
errmean | errpdf | quantize

 errvar

4-367

exponentbias
Exponent bias for quantizer object

Syntax
b = exponentbias(q)

Description
b = exponentbias(q) returns the exponent bias of the quantizer object q. For fixed-point
quantizer objects, exponentbias(q) returns 0.

Examples
q = quantizer('double');
b = exponentbias(q)

b =

 1023

Algorithms
For floating-point quantizer objects,

b = 2e− 1− 1

where e = eps(q), and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, b = 0 by definition.

Version History
Introduced before R2006a

See Also
eps | exponentlength | exponentmax | exponentmin

4 Functions

4-368

exponentlength
Exponent length of quantizer object

Syntax
e = exponentlength(q)

Description
e = exponentlength(q) returns the exponent length of quantizer object q. When q is a fixed-
point quantizer object, exponentlength(q) returns 0. This is useful because exponent length is
valid whether the quantizer object mode is floating point or fixed point.

Examples
q = quantizer('double');
e = exponentlength(q)

e =

 11

Algorithms
The exponent length is part of the format of a floating-point quantizer object [w e]. For fixed-point
quantizer objects, e = 0 by definition.

Version History
Introduced before R2006a

See Also
eps | exponentbias | exponentmax | exponentmin

 exponentlength

4-369

exponentmax
Maximum exponent for quantizer object

Syntax
exponentmax(q)

Description
exponentmax(q) returns the maximum exponent for quantizer object q. When q is a fixed-point
quantizer object, it returns 0.

Examples
q = quantizer('double');
exponentmax(q)

ans =

 1023

Algorithms
For floating-point quantizer objects,

Emax = 2e− 1− 1

For fixed-point quantizer objects, Emax = 0 by definition.

Version History
Introduced before R2006a

See Also
eps | exponentbias | exponentlength | exponentmin

4 Functions

4-370

exponentmin
Minimum exponent for quantizer object

Syntax
emin = exponentmin(q)

Description
emin = exponentmin(q) returns the minimum exponent for quantizer object q. If q is a fixed-
point quantizer object, exponentmin returns 0.

Examples
q = quantizer('double');
emin = exponentmin(q)

emin =

 -1022

Algorithms
For floating-point quantizer objects,

Emin = − 2e− 1 + 2

For fixed-point quantizer objects, Emin = 0.

Version History
Introduced before R2006a

See Also
eps | exponentbias | exponentlength | exponentmax

 exponentmin

4-371

eye
Create identity matrix with fixed-point properties

Syntax
I = eye('like',p)
I = eye(n,'like',p)
I = eye(n,m,'like',p)
I = eye(sz,'like',p)

Description
I = eye('like',p) returns the scalar 1 with the same fixed-point properties and complexity (real
or complex) as the prototype argument, p. The output, I, contains the same numerictype and
fimath properties as p.

I = eye(n,'like',p) returns an n-by-n identity matrix like p, with ones on the main diagonal and
zeros elsewhere.

I = eye(n,m,'like',p) returns an n-by-m identity matrix like p.

I = eye(sz,'like',p) returns an array like p, where the size vector, sz, defines size(I).

Examples

Create Identity Matrix with Fixed-Point Properties

Create a prototype fi object, p.

p = fi([],1,16,14);

Create a 3-by-4 identity matrix with the same fixed-point properties as p.

I = eye(3,4,'like',p)

I =
 1 0 0 0
 0 1 0 0
 0 0 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

4 Functions

4-372

Create Identity Matrix with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and OverflowAction set to
Wrap.

format long
p = fi([],1,16,15,'OverflowAction','Wrap');

Create a 2-by-2 identity matrix with the same numerictype properties as p.

X = eye(2,'like',p)

X =
 0.999969482421875 0
 0 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

1 cannot be represented by the data type of p, so the value saturates. The output fi object X has the
same numerictype and fimath properties as p.

Input Arguments
n — Size of first dimension of I
integer value

Size of first dimension of I, specified as an integer value.

• If n is the only integer input argument, then I is a square n-by-n identity matrix.
• If n is 0, then I is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m — Size of second dimension of I
integer value

Size of second dimension of I, specified as an integer value.

• If m is 0, then I is an empty matrix.
• If m is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Size of I
row vector of no more than two integer values

 eye

4-373

Size of I, specified as a row vector of no more than two integer values.

• If an element of sz is 0, then I is an empty matrix.
• If an element of sz is negative, then the element is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable.

If the value 1 overflows the numeric type of p, the output saturates regardless of the specified
OverflowAction property of the attached fimath. All subsequent operations performed on the
output obey the rules of the attached fimath.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

Version History
Introduced in R2015a

See Also
zeros | ones

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Best Practices”

4 Functions

4-374

fi
Construct fixed-point numeric object

Description
To assign a fixed-point data type to a number or variable, create a fi object using the fi constructor.
You can specify numeric attributes and math rules in the constructor or using the numerictype and
fimath objects.

Creation

Syntax
a = fi
a = fi(v)
a = fi(v,s)
a = fi(v,s,w)
a = fi(v,s,w,f)
a = fi(v,s,w,slope,bias)
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
a = fi(v,T)
a = fi(___ ,F)
a = fi(___ ,Name,Value)

Description

a = fi returns a fi object with no value, 16-bit word length, and 15-bit fraction length.

a = fi(v) returns a fixed-point object with value v and default property values.

a = fi(v,s) returns a fixed-point object with signedness (signed or unsigned) s.

a = fi(v,s,w) creates a fixed-point object with word length specified by w.

a = fi(v,s,w,f) creates a fixed-point object with fraction length specified by f.

a = fi(v,s,w,slope,bias) creates a fixed-point object using slope and bias scaling.

a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias) creates a fixed-point object
using slope and bias scaling.

a = fi(v,T) creates a fixed-point object with value v, and numeric type properties, T.

a = fi(___ ,F) creates a fixed-point object with math settings specified by fimath object F.

a = fi(___ ,Name,Value) creates a fixed-point object with property values specified by one or
more Name,Value pair arguments. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 fi

4-375

Input Arguments

v — Value
scalar | vector | matrix | multi-dimensional array

Value of the fi object, specified as a scalar, vector, matrix, or multidimensional array.

The value of the output fi object is the value of the input quantized to the data type specified in the
fi constructor.

You can specify the non-finite values -Inf, Inf, and NaN as the value only if you fully specify the
numeric type of the fi object. When fi is specified as a fixed-point numeric type,

• NaN maps to 0.
• When the 'OverflowAction' property of the fi object is set to 'Wrap', -Inf, and Inf map to

0.
• When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the

largest representable value, and -Inf maps to the smallest representable value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

s — Signedness
1 (default) | 0

Signedness of the fi object, specified as a boolean. A value of 1, or true, indicates a signed data
type. A value of 0, or false, indicates an unsigned data type.
Data Types: logical

w — Word length
16 (default) | scalar integer

Word length, in bits, of the fi object, specified as a scalar integer.

The fi object has a word length limit of 65535 bits.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

f — Fraction length
15 (default) | scalar integer

Fraction length, in bits, of the fi object, specified as a scalar integer. If you do not specify a fraction
length, the fi object automatically uses the fraction length that gives the best precision while
avoiding overflow for the specified value, word length, and signedness.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

slope — Slope
scalar integer

Slope of the scaling, specified as a scalar integer. The following equation represents the real-world
value of a slope bias scaled number.

4 Functions

4-376

real−worldvalue = (slope × integer) + bias

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

bias — Bias
scalar

Bias of the scaling, specified as a scalar. The following equation represents the real-world value of a
slope bias scaled number.

real−worldvalue = (slope × integer) + bias

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

slopeadjustmentfactor — Slope adjustment factor
scalar integer

The slope adjustment factor of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

fixedexponent — Fixed exponent
scalar integer

The fixed exponent of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

T — Numeric type properties
numerictype object

Numeric type properties of the fi object, specified as a numerictype object. For more information,
see numerictype.

F — Fixed-point math properties
fimath object

Fixed-point math properties of the fi object, specified as a fimath object. For more information, see
fimath.

Properties
“fi Object Properties”

 fi

4-377

Examples

Create a fi object

Create a signed fi object with a value of pi, a word length of eight bits, and a fraction length of 3
bits.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

Create an Array of fi Objects

Create an array of fi objects with 16-bit word length and 12-bit fraction length.

a = fi((magic(3)/10), 1, 16, 12)

a =
 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Create a fi object with Default Word Length and Fraction Length

When you specify only the value and the signedness of the fi object, the word length defaults to 16
bits, and the fraction length is set to achieve the best precision possible without overflow.

a = fi(pi, 1)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

4 Functions

4-378

Create a fi Object with Default Precision

If you do not specify a fraction length, input argument f, the fraction length of the fi object defaults
to the fraction length that offers the best precision.

a = fi(pi,1,8)

a =
 3.1562

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 5

The fraction length of fi object a is five because three bits are required to represent the integer
portion of the value when the data type is signed. If the fi object uses an unsigned data type, only
two bits are needed to represent the integer portion, leaving six fractional bits.

b = fi(pi,0,8)

b =
 3.1406

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 6

Create a fi Object with Slope and Bias Scaling

The real-world value of a slope bias scaled number is represented by:

real world value = slope × integer + bias

To create a fi object that uses slope and bias scaling, include the slope and bias arguments after
the word length in the constructor.

a = fi(pi, 1, 16, 3, 2)

a =
 2

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

The DataTypeMode property of the fi object, a, is slope and bias scaling.

 fi

4-379

Create a fi Object From a Non-Double Value

When the value input argument, v, of a fi object is a non-double, and you do not specify the word
length or fraction length properties, the resulting fi object retains the numeric type of the input, v.

Create a fi object from a built-in integer

When the input is a built-in integer, the fixed-point attributes match the attributes of the integer type.

v1 = uint32(5);
a1 = fi(v1)

a1 =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 32
 FractionLength: 0

v2 = int8(5);
a2 = fi(v2)

a2 =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

Create a fi object from a fi object

When the input value is a fi object, the output uses the same word length, fraction length, and
signedness of the input fi object.

v = fi(pi, 1, 24, 12);
a = fi(v)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Create a fi object from a logical

When the input v is logical, the DataTypeMode property of the output fi object is Boolean.

v = true;
a = fi(v)

a =
 1

 DataTypeMode: Boolean

4 Functions

4-380

Create a fi object from a single

When the input is single, the DataTypeMode property of the output is Single.

v = single(pi);
a = fi(v)

a =
 3.1416

 DataTypeMode: Single

Create a fi Object With an Associated fimath Object

The arithmetic attributes of a fi object are defined by a fimath object which is attached to that fi
object.

Create a fimath object and specify the OverflowAction, RoundingMethod, and ProductMode
properties.

F = fimath('OverflowAction', 'Wrap', 'RoundingMethod','Floor', 'ProductMode','KeepMSB')

F =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: KeepMSB
 ProductWordLength: 32
 SumMode: FullPrecision

Create a fi object and specify the fimath object, F, in the constructor.

a = fi(pi, F)

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: KeepMSB
 ProductWordLength: 32
 SumMode: FullPrecision

Use the removefimath function to remove the associated fimath object and restore the math
settings to their default values.

a = removefimath(a)

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 fi

4-381

 WordLength: 16
 FractionLength: 13

Create a fi Object From a numerictype Object

A numerictype object contains all of the data type information of a fi object. By transitivity,
numerictype properties are also properties of fi objects.

You can create a fi object that uses all of the properties of an existing numerictype object by
specifying the numerictype object in the fi constructor.

T = numerictype(0,24,16)

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 16

a = fi(pi, T)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 16

Create a fi Object With Fraction Length Greater Than Word Length

When you use binary-point representation for a fixed-point number, the fraction length can be greater
than the word length. In this case, there are implicit leading zeros (for positive numbers) or ones (for
negative numbers) between the binary point and the first significant binary digit.

Consider a signed value with a word length of 8, fraction length of 10, and a stored integer value of 5.
Calculate the real-world value using the following equation.

real world value = stored integer × 2−fraction length

realWorldValue = 5*2^(-10)

realWorldValue = 0.0049

Create a signed fi object with value realWorldValue, a word length of 8 bits, and a fraction length
of 10 bits.

a = fi(realWorldValue, 1, 8, 10)

a =
 0.0049

4 Functions

4-382

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 10

Get the stored integer value of a using the int function.

int(a)

ans = int8
 5

Use the bin function to view the stored integer value in binary.

bin(a)

ans =
'00000101'

Because the fraction length is two bits longer than the word length, the binary value of the stored
integer is X.XX00000101, where X is a placeholder for implicit zeroes. 0.0000000101 (binary) is
equivalent to 0.0049 (decimal).

Create a fi Object With Negative Fraction Length

When you use binary-point representation for a fixed-point number, the fraction length can be
negative. In this case, there are implicit trailing zeros (for positive numbers) or ones (for negative
numbers) between the binary point and the first significant binary digit.

Consider a signed data type with a word length of 8, fraction length of -2 and a stored integer value
of 5. Calculate the stored integer value using the following equation.

real world value = stored integer × 2−fraction length

realWorldValue = 5*2^(2)

realWorldValue = 20

Create a signed fi object with value realWorldValue, a word length of 8 bits, and a fraction length
of -2 bits.

a = fi(realWorldValue, 1, 8, -2)

a =
 20

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: -2

Get the stored integer value of a using the int function.

int(a)

 fi

4-383

ans = int8
 5

Get the binary value of a using the bin function.

bin(a)

ans =
'00000101'

Because the fraction length is negative, the binary value of the stored integer is 00000101XX, where
X is a placeholder for implicit zeros. 0000010100 (binary) is equivalent to 20 (decimal).

Create a fi Object Specifying Rounding and Overflow Modes

You can set math properties, such as rounding and overflow modes during the creation of the fi
object.

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

The RoundingMethod and OverflowAction properties are properties of the fimath object.
Specifying these properties in the fi constructor associates a local fimath object with the fi object.

Use the removefimath function to remove the local fimath and set the math properties back to
their default values.

a = removefimath(a)

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Use fi as an Indexing Argument

When using a fi object as an index, the value of the fi object must be an integer.

4 Functions

4-384

Set up an array to index into.

x = 10:-1:1;

Create an integer valued fi object and use it to index into x.

a = fi(3);
y = x(a)

y = 8

Use fi as the index in a for loop

Create fi objects to use as the index of a for loop. The values of the indices must be integers.

a = fi(1, 0, 8, 0);
b = fi(2, 0, 8, 0);
c = fi(10, 0, 8, 0);

for x = a:b:c
 x
end

x =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 7

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 9

 DataTypeMode: Fixed-point: binary point scaling

 fi

4-385

 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

Set Data Type Override on a fi Object

The fipref object defines the display and logging attributes for all fi objects. Use the
DataTypeOverride setting of the fipref object to override fi objects with doubles, singles, or
scaled doubles.

Save the current fipref settings to restore later.

fp = fipref;
initialDTO = fp.DataTypeOverride;

Create a fi object with the default settings and original fipref settings.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Turn on data type override to doubles and create a new fi object without specifying its
DataTypeOverride property so that it uses the data type override settings specified using fipref.

fipref('DataTypeOVerride', 'TrueDoubles')

ans =
 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'
 LoggingMode: 'Off'
 DataTypeOverride: 'TrueDoubles'
 DataTypeOverrideAppliesTo: 'AllNumericTypes'

a = fi(pi)

a =
 3.1416

 DataTypeMode: Double

Now create a fi object and set its DataTypeOverride setting to off so that it ignores the data type
override settings of the fipref object.

b = fi(pi, 'DataTypeOverride', 'Off')

b =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-386

 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Restore the fipref settings saved at the start of the example.

fp.DataTypeOverride = initialDTO;

fi Behavior for -Inf, Inf, and NaN

To use the non-numeric values -Inf, Inf, and NaN as fixed-point values with fi, you must fully
specify the numeric type of the fixed-point object. Automatic best-precision scaling is not supported
for these values.

Saturate on Overflow

When the numeric type of the fi object is specified to saturate on overflow, then Inf maps to the
largest representable value of the specified numeric type, and -Inf maps to the smallest
representable value. NaN maps to zero.

x = [-inf nan inf];
a = fi(x,1,8,0,'OverflowAction','Saturate')
b = fi(x,0,8,0,'OverflowAction','Saturate')

a =

 -128 0 127

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

b =

 0 0 255

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

 fi

4-387

Wrap on Overflow

When the numeric type of the fi object is specified to wrap on overflow, then -Inf, Inf, and NaN
map to zero.

x = [-inf nan inf];
a = fi(x,1,8,0,'OverflowAction','Wrap')
b = fi(x,0,8,0,'OverflowAction','Wrap')

a =

 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

b =

 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

Version History
Introduced in R2006a

Change in default behavior of fi for -Inf, Inf, and NaN
Behavior changed in R2020b

In previous releases, fi would return an error when passed the non-finite input values -Inf, Inf, or
NaN. fi now treats these inputs in the same way that MATLAB and Simulink handle -Inf, Inf, and
NaN for integer data types.

When fi is specified as a fixed-point numeric type,

• NaN maps to 0.
• When the 'OverflowAction' property of the fi object is set to 'Wrap', -Inf, and Inf map to

0.
• When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the

largest representable value, and -Inf maps to the smallest representable value.

4 Functions

4-388

For an example of this behavior, see “fi Behavior for -Inf, Inf, and NaN” on page 4-387.

Note Best-precision scaling is not supported for input values of -Inf, Inf, or NaN.

Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result
in a warning. In R2021a, support for inexact property names was removed. Use exact property names
instead.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The default constructor syntax without any input arguments is not supported.
• If the numerictype is not fully specified, the input to fi must be a constant, a fi, a single, or a

built-in integer value. If the input is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data type of the input.

• All properties related to data type must be constant for code generation.
• numerictype object information must be available for nonfixed-point Simulink inputs.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | fipref | isfimathlocal | numerictype | sfi | ufi

Topics
“Create Fixed-Point Data”
“Perform Fixed-Point Arithmetic”
“Perform Binary-Point Scaling”
“fi Object Functions”
“Binary Point Interpretation”

 fi

4-389

fiaccel
Accelerate fixed-point code or convert floating-point MATLAB code to fixed-point MATLAB code

Syntax
fiaccel -options fcn
fiaccel -float2fixed fcn

Description
fiaccel -options fcn translates the MATLAB file fcn.m to a MEX function, which accelerates
fixed-point code. To use fiaccel, your code must meet one of these requirements:

• The top-level function has no inputs or outputs, and the code uses fi.
• The top-level function has an output or a non-constant input, and at least one output or input is a

fi.
• The top-level function has at least one input or output containing a built-in integer class (int8,

uint8, int16, uint16, int32, uint32, int64, or uint64), and the code uses fi.

fiaccel -float2fixed fcn converts the floating-point MATLAB function, fcn to fixed-point
MATLAB code.

Examples

Accelerate Fixed-Point MATLAB Code

This example shows how to accelerate fixed-point MATLAB code using the fiaccel function.

Define a function that computes the moving average.

type("moving_average.m")

function [avg,z] = moving_average(x,z)
%#codegen

if nargin < 2
 z = fi(zeros(10,1),1,16,15);
end

z(2:end) = z(1:end-1); % Update buffer
z(1) = x; % Add new value
avg = mean(z); % Compute moving average
end

Create a test file.

type("test_moving_average.m")

function avg = test_moving_average(x)
%#codegen

4 Functions

4-390

if nargin < 1
 x = fi(rand(100,1),1,16,15);
end

z = fi(zeros(10,1),1,16,15);
avg = x;
for k = 1:length(x)
 [avg(k),z] = moving_average(x(k),z);
end
end

Use the fiaccel function to create a MEX function and accelerate the MATLAB code.

x = fi(rand(100,1),1,16,15);
fiaccel test_moving_average -args {x} -report

Compare the non-accelerated and accelerated code.

tic avg = test_moving_average(x); toc % Non-compiled version
tic avg = test_moving_average_mex(x); toc % Compiled version

Convert Floating-Point MATLAB Code to Fixed Point

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Input Arguments
fcn — MATLAB function to generate MEX from
function name

MATLAB function to generate MEX from, specified as a function existing in the current working
folder or on the path.

Note If your top-level file is on a path that contains Unicode characters, code generation might not
be able to find the file.

-options — Compiler options
option value | space delimited list of option values

 fiaccel

4-391

Compiler options, specified as a space delimited list of option values. fiaccel gives precedence to
individual command-line options over options specified using a configuration object. If command-line
options conflict, the right-most option prevails.

Specified as one or more of these values:

-args example_inputs Define the size, class, and complexity of MATLAB
function inputs by providing a cell array of
example input values. The position of the example
input in the cell array must correspond to the
position of the input argument in the MATLAB
function definition. To generate a function that
has fewer input arguments than the function
definition has, omit the example values for the
arguments that you do not want.

Specify the example inputs immediately after the
function to which they apply.

Instead of an example value, you can provide a
coder.Type object. To create a coder.Type
object, use the coder.typeof function.

-config config_object Specify MEX generation parameters, based on
config_object, defined as a MATLAB variable
using coder.mexconfig.

For example:

cfg = coder.mexconfig;
-d out_folder Store generated files in the absolute or relative

path specified by out_folder. If the folder
specified by out_folder does not exist,
fiaccel creates it for you.

If you do not specify the folder location, fiaccel
generates files in the default folder
fiaccel/mex/fcn, where fcn is the name of
the MATLAB function specified at the command
line.

The function does not support the following
characters in folder names: asterisk (*), question-
mark (?), dollar ($), and pound (#).

4 Functions

4-392

-float2fixed float2fixed_cfg_name Generates fixed-point MATLAB code using the
settings specified by the floating-point to fixed-
point conversion configuration object named
float2fixed_cfg_name.

For this option, fiaccel generates files in the
folder codegen/fcn_name/fixpt.

You must set the TestBenchName property of
float2fixed_cfg_name.

For example:

fixptcfg.TestBenchName = 'myadd_test';

specifies that myadd_test is the test file for the
floating-point to fixed-point configuration object
fixptcfg.

You cannot use this option with the -global
option.

-g Compiles the MEX function in debug mode, with
optimization turned off. If not specified, fiaccel
generates the MEX function in optimized mode.

-global global_values Specify initial values for global variables in
MATLAB file. Use the values in cell array
global_values to initialize global variables in
the function you compile. The cell array should
provide the name and initial value of each global
variable. You must initialize global variables
before compiling with fiaccel. If you do not
provide initial values for global variables using
the -global option, fiaccel checks for the
variable in the MATLAB global workspace. If you
do not supply an initial value, fiaccel generates
an error.

The generated MEX code and MATLAB each have
their own copies of global data. To ensure
consistency, you must synchronize their global
data whenever the two interact. If you do not
synchronize the data, their global variables might
differ.

You cannot use this option with the -
float2fixed option.

-I include_path Add include_path to the beginning of the code
generation path.

fiaccel searches the code generation path first
when converting MATLAB code to MEX code.

 fiaccel

4-393

-launchreport Generate and open a code generation report. If
you do not specify this option, fiaccel
generates a report only if error or warning
messages occur or you specify the -report
option.

-nargout Specify the number of output arguments in the
generated entry-point function. The code
generator produces the specified number of
output arguments in the order in which they
occur in the MATLAB function definition.

-o output_file_name Generate the MEX function with the base name
output_file_name plus a platform-specific
extension.

output_file_name can be a file name or
include an existing path.

If you do not specify an output file name, the base
name is fcn_mex, which allows you to run the
original MATLAB function and the MEX function
and compare the results.

-O optimization_option Optimize generated MEX code, based on the
value of optimization_option:

• enable:inline — Enable function inlining
• disable:inline — Disable function inlining

If not specified, fiaccel uses inlining for
optimization.

-report Generate a code generation report. If you do not
specify this option, fiaccel generates a report
only if error or warning messages occur or you
specify the -launchreport option.

-? Display help for fiaccel command.

Version History
Introduced in R2011a

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType | coder.newtype |
coder.PrimitiveType | coder.resize | coder.StructType | coder.Type | coder.typeof |
coder.mexconfig | coder.config | coder.FixPtConfig

4 Functions

4-394

filter
One-dimensional digital filter of fi objects

Syntax
y = filter(b,1,x)
[y,zf] = filter(b,1,x,zi)
y = filter(b,1,x,zi,dim)

Description
y = filter(b,1,x) filters the data in the fixed-point vector x using the filter described by the
fixed-point vector b. The function returns the filtered data in the output fi object y. Inputs b and x
must be fi objects. filter always operates along the first non-singleton dimension. Thus, the filter
operates along the first dimension for column vectors and nontrivial matrices, and along the second
dimension for row vectors.

[y,zf] = filter(b,1,x,zi) gives access to initial and final conditions of the delays, zi, and zf.
zi is a vector of length length(b)-1, or an array with the leading dimension of size length(b)-1
and with remaining dimensions matching those of x. zi must be a fi object with the same data type
as y and zf. If you do not specify a value for zi, it defaults to a fixed-point array with a value of 0 and
the appropriate numerictype and size.

y = filter(b,1,x,zi,dim) performs the filtering operation along the specified dimension. If you
do not want to specify the vector of initial conditions, use [] for the input argument zi.

Input Arguments
b

Fixed-point vector of the filter coefficients.

x

Fixed-point vector containing the data for the function to filter.

zi

Fixed-point vector containing the initial conditions of the delays. If the initial conditions of the delays
are zero, you can specify zero, or, if you do not know the appropriate size and numerictype for zi,
use [].

If you do not specify a value for zi, the parameter defaults to a fixed-point vector with a value of zero
and the same numerictype and size as the output zf (default).

dim

Dimension along which to perform the filtering operation.

 filter

4-395

Output Arguments
y

Output vector containing the filtered fixed-point data.

zf

Fixed-point output vector containing the final conditions of the delays.

Examples

Filter a high-frequency fixed-point sinusoid from a signal

The following example filters a high-frequency fixed-point sinusoid from a signal that contains both a
low- and high-frequency fixed-point sinusoid.

w1 = .1*pi;
w2 = .6*pi;
n = 0:999;
xd = sin(w1*n) + sin(w2*n);
x = sfi(xd,12);
b = ufi([.1:.1:1,1-.1:-.1:.1]/4,10);
gd = (length(b)-1)/2;
y = filter(b,1,x);

% Plot results, accommodate for group-delay of filter
plot(n(1:end-gd),x(1:end-gd))
hold on
plot(n(1:end-gd),y(gd+1:end),'r--')
axis([0 50 -2 2])
legend('Unfiltered signal','Filtered signal')
xlabel('Sample index (n)')
ylabel('Signal value')

4 Functions

4-396

The resulting plot shows both the unfiltered and filtered signals.

More About
Filter length (L)

The filter length is length(b), or the number of filter coefficients specified in the fixed-point vector
b.

Filter order (N)

The filter order is the number of states (delays) of the filter, and is equal to L-1.

Tips
• The filter function only supports FIR filters. In the general filter representation, b/a, the

denominator, a, of an FIR filter is the scalar 1, which is the second input of this function.
• The numerictype of b can be different than the numerictype of x.
• If you want to specify initial conditions, but do not know what numerictype to use, first try
filtering your data without initial conditions. You can do so by specifying [] for the input zi. After
performing the filtering operation, you have the numerictype of y and zf (if requested). Because
the numerictype of zi must match that of y and zf, you now know the numerictype to use for
the initial conditions.

 filter

4-397

Algorithms
The filter function uses a Direct-Form Transposed FIR implementation of the following difference
equation:

y(n) = b1 * xn + b2 * xn− 1 + ... + bL * xn− N

where L is the filter length on page 4-397 and N is the filter order on page 4-397.

The following diagram shows the direct-form transposed FIR filter structure used by the filter
function:

fimath Propagation Rules

The filter function uses the following rules regarding fimath behavior:

• globalfimath is obeyed.
• If any of the inputs has an attached fimath, then it is used for intermediate calculations.
• If more than one input has an attached fimath, then the fimaths must be equal.
• The output, y, is always associated with the default fimath.
• If the input vector, zi, has an attached fimath, then the output vector, zf, retains this fimath.

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-398

Usage notes and limitations:

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to Specify precision or Keep LSB.

See Also
conv | filter

 filter

4-399

fimath
Set fixed-point math settings

Syntax
F = fimath
F = fimath(Name,Value)

Description
F = fimath creates a fimath object with the default fimath property settings.

F = fimath(Name,Value) specifies the properties of a fimath object by using one or more name-
value pair arguments. All properties not specified in the constructor use default values.

Examples

Create a Default fimath Object

This example shows how to create a fimath object with the default property settings.

F = fimath

F =
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Set Properties of a fimath Object

Set the properties of a fimath object at the time of object creation by using name-value pairs. For
example, set the overflow action to saturate and the rounding method to convergent.

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

F =
 RoundingMethod: Convergent
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

4 Functions

4-400

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Floor')

CastBeforeSum — Whether both operands are cast to the sum data type before addition
false or 0 (default) | true or 1

Whether both operands are cast to the sum data type before addition, specified as a numeric or
logical 1 (true) or 0 (false).

Note This property is hidden when the SumMode is set to FullPrecision.

Example: F = fimath('CastBeforeSum',true)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

MaxProductWordLength — Maximum allowable word length for the product data type
65535 (default) | positive integer

Maximum allowable word length for the product data type, specified as a positive integer.
Example: F = fimath('MaxProductWordLength',16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxSumWordLength — Maximum allowable word length for sum data type
65535 (default) | positive integer

Maximum allowable word length for the sum data type, specified as a positive integer.
Example: F = fimath('MaxSumWordLength',16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverflowAction — Action to take on overflow
'Saturate' (default) | 'Wrap'

Action to take on overflow, specified as one of these values:

• 'Saturate' – Saturate to the maximum or minimum value of the fixed-point range on overflow.
• 'Wrap' – Wrap on overflow. This mode is also known as two's complement overflow.

Example: F = fimath('OverflowAction','Wrap')
Data Types: char

ProductBias — Bias of product data type
0 (default) | floating-point number

 fimath

4-401

Bias of the product data type, specified as a floating-point number.
Example: F = fimath('ProductBias',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductFixedExponent — Fixed exponent of product data type
-30 (default) | nonzero integer

Fixed exponent of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one
property changes the other.

Example: F = fimath('ProductFixedExponent',-20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductFractionLength — Fraction length of product data type
30 (default) | nonzero integer

Fraction length, in bits, of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one
property changes the other.

Example: F = fimath('ProductFractionLength',20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductMode — How product data type is determined
'FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the product data type is determined, specified as one of these values:

• 'FullPrecision' – The full precision of the result is kept.
• 'KeepLSB' – Keep the least significant bits. Specify the product word length. The fraction length

is set to maintain the least significant bits of the product.
• 'KeepMSB' – Keep the most significant bits. Specify the product word length. The fraction length

is set to maintain the most significant bits of the product.
• 'SpecifyPrecision' – Specify the word and fraction lengths or slope and bias of the product.

Example: F = fimath('ProductMode','KeepLSB')
Data Types: char

ProductSlope — Slope of product data type
9.3132e-10 (default) | finite, positive floating-point number

Slope of the product data type, specified as a finite, positive floating-point number.

Note

4 Functions

4-402

ProductSlope = ProductSlopeAd justmentFactor × 2ProductFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('ProductSlope',9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the product data type, specified as a floating-point number greater than or
equal to 1 and less than 2.

Note

ProductSlope = ProductSlopeAd justmentFactor × 2ProductFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('ProductSlopeAdjustmentFactor',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductWordLength — Word length of product data type
32 (default) | positive integer

Word length, in bits, of the product data type, specified as a positive integer.
Example: F = fimath('ProductWordLength',64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RoundingMethod — Rounding method to use
'Nearest' (default) | 'Ceiling' | 'Convergent' | 'Zero' | 'Floor' | 'Round'

Rounding method to use, specified as one of these values:

• 'Nearest' – Round toward nearest. Ties round toward positive infinity.
• 'Ceiling' – Round toward positive infinity.
• 'Convergent' – Round toward nearest. Ties round to the nearest even stored integer (least

biased).
• 'Zero' – Round toward zero.
• 'Floor' – Round toward negative infinity.
• 'Round' – Round toward nearest. Ties round toward negative infinity for negative numbers, and

toward positive infinity for positive numbers.

Example: F = fimath('RoundingMethod','Convergent')
Data Types: char

SumBias — Bias of sum data type
0 (default) | floating-point number

 fimath

4-403

Bias of the sum data type, specified as a floating-point number.
Example: F = fimath('SumBias',0)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumFixedExponent — Fixed exponent of sum data type
-30 (default) | nonzero integer

Fixed exponent of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property
changes the other.

Example: F = fimath('SumFixedExponent',-20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumFractionLength — Fraction length of sum data type
30 (default) | nonzero integer

Fraction length, in bits, of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property
changes the other.

Example: F = fimath('SumFractionLength',20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumMode — How the sum data type is determined
'FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the sum data type is determined, specified as one of these values:

• 'FullPrecision' – The full precision of the result is kept.
• 'KeepLSB' – Keep least significant bits. Specify the sum data type word length. The fraction

length is set to maintain the least significant bits of the sum.
• 'KeepMSB' – Keep most significant bits. Specify the sum data type word length. The fraction

length is set to maintain the most significant bits of the sum and no more fractional bits than
necessary.

• 'SpecifyPrecision' – Specify the word and fraction lengths or slope and bias of the sum data
type.

Example: F = fimath('SumMode','KeepLSB')
Data Types: char

SumSlope — Slope of sum data type
9.3132e-10 (default) | floating-point number

Slope of the sum data type, specified as a floating-point number.

4 Functions

4-404

Note

SumSlope = SumSlopeAd justmentFactor × 2SumFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('SumSlope',9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the sum data type, specified as a floating-point number greater than or
equal to 1 and less than 2.

Note

SumSlope = SumSlopeAd justmentFactor × 2SumFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('SumSlopeAdjustmentFactor',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumWordLength — Word length of sum data type
32 (default) | positive integer

Word length, in bits, of the sum data type, specified as a positive integer.
Example: F = fimath('SumWordLength',64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced before R2006a

Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result
in a warning. In R2021a, support for inexact property names was removed. Use exact property names
instead.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 fimath

4-405

• Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a fimath
object. You define this object in the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.
• If the ProductMode property of the fimath object is set to anything other than FullPrecision,

the ProductWordLength and ProductFractionLength properties must be constant.
• If the SumMode property of the fimath object is set to anything other than FullPrecision, the

SumWordLength and SumFractionLength properties must be constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fipref | globalfimath | numerictype | quantizer | removefimath | setfimath

Topics
“fimath Object Construction”
“fimath Object Properties”
How Functions Use fimath
“fimath Properties Usage for Fixed-Point Arithmetic”

4 Functions

4-406

fipref
Set fixed-point preferences

Syntax
P = fipref
P = fipref(Name,Value)

Description
P = fipref creates a default fipref object. The fipref object defines the display and logging
attributes for all fi objects.

P = fipref(Name,Value) creates a fipref object with properties specified by Name,Value
pairs.

Your fipref settings persist throughout your MATLAB session. Use reset(fipref) to return to the
default settings during your session. Use savefipref to save your display preferences for
subsequent MATLAB sessions.

Examples

Create a Default fipref Object

P = fipref

P =
 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'
 LoggingMode: 'Off'
 DataTypeOverride: 'ForceOff'

Set fipref Properties at Object Creation

You can set properties of fipref objects at the time of object creation by including properties after
the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and
NumericTypeDisplay to short,

P = fipref('NumberDisplay','bin','NumericTypeDisplay','short')

P =
 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
 FimathDisplay: 'full'
 LoggingMode: 'Off'

 fipref

4-407

 DataTypeOverride: 'ForceOff'

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: P =
fipref('NumberDisplay','RealWorldValue','NumericTypeDisplay','short');

Data Type Override Properties

DataTypeOverride — Data type override options
'ForceOff' (default) | 'ScaledDoubles' | 'TrueDoubles' | 'TrueSingles'

Data type override options for fi objects, specified as the comma-separated pair consisting of
'DataTypeOverride' and one of these values:

• 'ForceOff' — No data type override
• 'ScaledDoubles' — Override with scaled doubles
• 'TrueDoubles' — Override with doubles
• 'TrueSingles' — Override with singles

Data type override only occurs when the fi constructor function is called.
Data Types: char

DataTypeOverrideAppliesTo — Data type override setting applicability
'AllNumericTypes' (default) | 'Fixed-Point' | 'Floating-Point'

Data type override setting applicability to fi objects, specified as the comma-separated pair
consisting of 'DataTypeOverrideAppliesTo' and one of these values:

• 'AllNumericTypes' — Apply data type override to all fi data types. This setting does not
override built-in integer types.

• 'Fixed-Point' — Apply data type override only to fixed-point data types
• 'Floating-Point' — Apply data type override only to floating-point fi data types

DataTypeOverrideAppliesTo displays only if DataTypeOverride is not set to ForceOff.
Data Types: char

Display Properties

FimathDisplay — Display options for local fimath attributes of fi objects
'full' (default) | 'none'

4 Functions

4-408

Display options for the local fimath attributes of a fi object, specified as the comma-separated pair
consisting of 'FimathDisplay' and one of these values:

• 'full' — Displays all of the fimath attributes of a fixed-point object
• 'none' — None of the fimath attributes are displayed

Data Types: char

NumberDisplay — Display options for the value of a fi object
'RealWorldValue' (default) | 'bin' | 'dec' | 'hex' | 'int' | 'none'

Display options for the values of a fi object, specified as the comma-separated pair consisting of
'NumberDisplay' and one of these values:

• 'bin' — Displays the stored integer value in binary format
• 'dec' — Displays the stored integer value in unsigned decimal format
• 'RealWorldValue' — Displays the stored integer value in the format specified by the MATLAB

format function

fi objects in rat format are displayed according to

1
2f ixed− pointexponent × storedinteger

• 'hex' — Displays the stored integer value in hexadecimal format
• 'int' — Displays the stored integer value in signed decimal format
• 'none' — No value is displayed

The stored integer value does not change when you change the fipref object. The fipref object
only affects the display.
Data Types: char

NumericTypeDisplay — Display options for the numerictype attributes of a fi object
'full' (default) | 'none' | 'short'

Display options for the numerictype attributes of a fi object, specified as the comma-separated
pair consisting of 'NumericTypeDisplay' and one of these values:

• 'full' — Displays all of the numerictype attributes of a fi object
• 'none' — None of the numerictype attributes are displayed
• 'short' — Displays the numerictype attributes of a fi object using the abbreviated notation of

the numerictype constructor

Data Types: char

Logging Properties

LoggingMode — Logging options for operations performed on fi objects
'off' (default) | 'on'

Logging options for operations performed on fi objects, specified as the comma-separated pair
consisting of 'LoggingMode' and one of these values:

 fipref

4-409

• 'off' — No logging
• 'on' — Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication operations are logged as
warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to return logged information
about assignment and creation operations to the MATLAB command line:

• maxlog — Returns the maximum real-world value
• minlog — Returns the minimum value
• noverflows — Returns the number of overflows
• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log information about
it. To clear the log, use the function resetlog.
Data Types: char

Version History
Introduced before R2006a

See Also
fi | fimath | numerictype | quantizer | savefipref

4 Functions

4-410

fix
Round toward zero

Syntax
y = fix(a)

Description
y = fix(a) rounds fi object a to the nearest integer in the direction of zero and returns the result
in fi object y.

Examples

Use fix on a Signed fi Object

The following example demonstrates how the fix function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = fix(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 5
 FractionLength: 0

The following example demonstrates how the fix function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

 fix

4-411

y = fix(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity.
• The fix function rounds values to the nearest integer toward zero.
• The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]

y =
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.7500 -1.0000 -1.0000 -2.0000
 -1.2500 -1.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 1.0000 0 0
 1.2500 2.0000 1.0000 1.0000
 1.7500 2.0000 1.0000 1.0000
 2.5000 3.0000 2.0000 2.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

4 Functions

4-412

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

fix does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.

 fix

4-413

• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | floor | nearest | round

4 Functions

4-414

fixed.extractNumericType
Extract numeric type from input

Syntax
T = fixed.extractNumericType(x)

Description
T = fixed.extractNumericType(x) returns an embedded.numerictype object that is
extracted from a numeric value input x, or is specified by the input argument x.

Examples

Extract Numeric Type

Extract the numeric type from an input numeric value.

T = fixed.extractNumericType(pi)

T =

 DataTypeMode: Double

T = fixed.extractNumericType(int8(0))

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

T = fixed.extractNumericType(fi(pi,1,24,12))

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

T = fixed.extractNumericType(half(pi))

T =

 DataTypeMode: Half

Extract the numeric type from a numeric type specification object.

 fixed.extractNumericType

4-415

T = fixed.extractNumericType(numerictype(1,32,16))

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

T = fixed.extractNumericType(fixdt(0,18,0))

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 18
 FractionLength: 0

Extract the numeric type from a data type name string.

T = fixed.extractNumericType('int8')

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

T = fixed.extractNumericType('sfix16_En3')

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

Extract the numeric type from a constructor string.

T = fixed.extractNumericType('numerictype(1,33,55)')

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 33
 FractionLength: 55

T = fixed.extractNumericType('fixdt(0,77,22)')

T =

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-416

 Signedness: Unsigned
 WordLength: 77
 FractionLength: 22

Input Arguments
x — Input
scalar

Input, specified as a scalar.

The following input types are supported:

• Numeric values — half, single, double, int8, int16, int32, int64, uint8, uint16,
uint32, uint64, logical, fi

• Numeric type specification objects — embedded.numerictype objects,
Simulink.NumericType objects

• MATLAB data type name strings — 'half', 'single', 'double', 'int8', 'int16', 'int32',
'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'logical'

• Simulink data type name strings (not aliases) — 'bool', 'sfix16_En3', etc.
• Constructor strings that evaluate to a numeric type object — 'numerictype(1,33,55)',

'fixdt(0,77,22)', etc.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Output Arguments
T — Numeric type of input
embedded.numerictype object

Numeric type of the input, returned as a embedded.numerictype object.

Version History
Introduced in R2021a

See Also
fi | fixdt | numerictype | Simulink.NumericType | “Fixed-Point Numbers in Simulink”

 fixed.extractNumericType

4-417

fixDiv
Round the result of division toward zero

Syntax
y = fixDiv(x,d)
y = fixDiv(x,d,m)

Description
y = fixDiv(x,d) returns the result of x/d rounded to the nearest integer value in the direction of
zero.

y = fixDiv(x,d,m) returns the result of x/d rounded to the nearest multiple of m in the direction
of zero.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Examples

Divide and Round to Zero

Perform a division operation and round to the nearest integer value in the direction of zero.

fixDiv(int16(201),10)

ans =
 20

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

Perform a division operation and round to the nearest multiple of 7 in the direction of zero.

fixDiv(int16(201),10,7)

ans =
 14

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

4 Functions

4-418

Divide and Generate Code

Define a function that uses fixDiv.

function y = fixDiv_example(x,d)
y = fixDiv(x,d);
end

Define inputs and execute the function in MATLAB®.

x = fi(pi);
d = fi(2);
y = fixDiv_example(x,d)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

To generate code for this function, the denominator d must be defined as a constant.

codegen fixDiv_example -args {x, coder.Constant(d)}

Code generation successful.

Alternatively, you can define the denominator, d, as constant in the body of the code.

function y = fixDiv10(x)
y = fixDiv(x,10);
end

x = fi(5*pi);
y = fixDiv10(x)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

codegen fixDiv10 -args {x}

Code generation successful.

Input Arguments
x — Dividend
scalar

Dividend, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

 fixDiv

4-419

d — Divisor
scalar

Divisor, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

m — Value to round to nearest multiple of
1 (default) | scalar

Value to round to nearest multiple of, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
y — Result of division and round to zero
scalar

Result of division and round to zero, returned as a scalar.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

To generate code, the denominator d must be declared as constant.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
ceilDiv | floorDiv | nearestDiv

4 Functions

4-420

fixed.aggregateType
Compute aggregate numerictype

Syntax
aggNT = fixed.aggregateType(A,B)

Description
aggNT = fixed.aggregateType(A,B) computes the smallest binary point scaled numerictype
that is able to represent both the full range and precision of inputs A and B.

Examples

Compute Aggregate Numeric Type

Aggregate Numeric Type of Two numerictype Objects

a_nt = numerictype(1,16,13);
b_nt = numerictype(1,18,16);
aggNT = fixed.aggregateType(a_nt,b_nt)

aggNT =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 19
 FractionLength: 16

a_nt can represent the range [-4,4) with precision 2^-13. b_nt can represent the range [-2,2)
with precision 2^-16. aggNT can represent the range [-4,4) with precision 2^-16.

Aggregate Numeric Type of Two fi Objects

a_fi = ufi(pi,16)

a_fi =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 14

b_fi = sfi(-pi,24)

b_fi =
 -3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 fixed.aggregateType

4-421

 WordLength: 24
 FractionLength: 21

aggNT = fixed.aggregateType(a_fi,b_fi)

aggNT =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 21

Aggregate Numeric Type of a fi Object and an Integer

a_fi = ufi(pi,16);
cInt = uint8(0);
aggNT = fixed.aggregateType(a_fi,cInt)

aggNT =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 22
 FractionLength: 14

a_fi can represent the range [0,3] with precision 2^-14. cInt can represent the range [0,255]
with precision 2^0. aggNT can represent the range [0,255] with precision 2^-14.

Input Arguments
A,B — Input objects
integers | numerictype objects | fi objects

Input objects, specified as integers, binary point scaled fixed-point fi objects, or numerictype
objects.

Output Arguments
aggNT — Aggregate numeric type
numerictype object

Aggregate numeric type, returned as a numerictype object.

Version History
Introduced in R2011b

See Also
numerictype | fi

4 Functions

4-422

fixed.backwardSubstitute
Solve upper-triangular system of equations through backward substitution

Syntax
x = fixed.backwardSubstitute(R, C)
x = fixed.backwardSubstitute(R, C, outputType)

Description
x = fixed.backwardSubstitute(R, C) performs backward substitution on upper-triangular
matrix R to compute x = R\C.

x = fixed.backwardSubstitute(R, C, outputType) returns x = R\C, where the data type of
output variable, x, is specified by outputType.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations A′A x = B using forward and backward
substitution.

Specify the input variables, A and B.

rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];

Compute the upper-triangular factor, R, of A, where A = QR.

R = fixed.qlessQR(A);

Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

 fixed.backwardSubstitute

4-423

x = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

Input Arguments
R — Upper-triangular input matrix
matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

C — Linear system factor
matrix

Linear system factor, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi | numerictype

Output Arguments
x — Solution
matrix

Solution, returned as a matrix satisfying the equation x = R\C.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-424

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

R and C must be signed and use binary-point scaling. Slope-bias representation is not supported for
fixed-point data types.

See Also
fixed.forwardSubstitute | fixed.qlessQR | fixed.qlessQRUpdate | fixed.qrAB |
fixed.qrMatrixSolve | fixed.qlessQRMatrixSolve

 fixed.backwardSubstitute

4-425

fixed.complexConditionNumberUpperBound
Estimate of upper bound for 2-norm condition number of complex-valued matrix

Syntax
C = fixed.complexConditionNumberUpperBound(m,n,max_abs_A,
noiseStandardDeviation)
C = fixed.complexConditionNumberUpperBound(___ ,p_s)
C = fixed.complexConditionNumberUpperBound(___ ,regularizationParameter)

Description
C = fixed.complexConditionNumberUpperBound(m,n,max_abs_A,
noiseStandardDeviation) returns an estimate of an upper bound for the 2-norm condition
number of a complex-valued m-by-n matrix A, where max_abs_A >= max(abs(A(:))) and
noiseStandardDeviation is the standard deviation of the additive random noise in A.

C = fixed.complexConditionNumberUpperBound(___ ,p_s) uses the probability p_s that the
estimate of the lower bound of the smallest singular value is larger than the actual smallest singular
value. p_s is an optional parameter. If not supplied or empty, then the default value is used.

C = fixed.complexConditionNumberUpperBound(___ ,regularizationParameter)
returns an estimate of an upper bound for the 2-norm condition number of a complex-valued matrix
λIn
A

, where λ is the regularizationParameter, A is an m-by-n matrix with m >= n, and In =

eye(n). regularizationParameter is an optional parameter. If not supplied or empty, then the
default value is used.

Examples

Condition Number of Low Rank Matrix with Additive Noise

Estimate an upper bound for the 2-norm condition number of a low rank, complex-valued matrix with
additive noise.

Define a complex matrix A with additive noise.

m = 300;
n = 10;
rankA = 3;
A = fixed.example.complexRandomLowRankMatrix(m,n,rankA);

noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Estimate an upper bound for the condition number of the matrix A.

C = fixed.complexConditionNumberUpperBound(m,n,max(abs(A(:))),noiseStandardDeviation)

4 Functions

4-426

C =

 1.4375e+03

Compare to the actual condition number of the matrix.

C_actual = cond(A)

C_actual =

 304.4858

Condition Number of Low Rank Matrix with Regularization Parameter

Estimate an upper bound for the 2-norm condition number of a low rank, complex-valued matrix with
additive noise, using the regularization parameter.

Define a complex matrix A with additive noise.

m = 300;
n = 10;
rankA = 3;
A = fixed.example.complexRandomLowRankMatrix(m,n,rankA);

noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Define the regularization parameter.

regularizationParameter = 0.01;
A = [regularizationParameter*eye(n);A];

Estimate an upper bound for the condition number of the matrix A with the regularization parameter.
Use the default value for p_s.

C = fixed.complexConditionNumberUpperBound(m,n,max(abs(A(:))),...
 noiseStandardDeviation,[],regularizationParameter)

C =

 1.3946e+03

Compare to the actual condition number of the matrix.

C_actual = cond(A)

C_actual =

 291.7264

Condition Number of Full Rank Matrix

Estimate an upper bound for the 2-norm condition number of a full rank random matrix with normally
distributed elements.

 fixed.complexConditionNumberUpperBound

4-427

Define a full rank, random, complex matrix A with normally distributed elements.

m = 300;
n = 10;
noiseStandardDeviation = 1;
A = fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Estimate an upper bound for the condition number of the matrix A.

C = fixed.complexConditionNumberUpperBound(m,n,max(abs(A(:))),noiseStandardDeviation)

C =

 12.0438

Compare to the actual condition number of the matrix.

C_actual = cond(A)

C_actual =

 1.3560

Input Arguments
m — Number of rows in matrix A
positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of columns in matrix A
positive integer-valued scalar

Number of columns in matrix A, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

max_abs_A — Maximum of absolute value of matrix A
scalar

Maximum of absolute value of matrix A, specified as a scalar.
Example: max_abs_A >= max(abs(A(:)))
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

noiseStandardDeviation — Standard deviation of additive random noise in matrix A
(2^-precisionBits)/(sqrt(12)) (default) | scalar

Standard deviation of additive random noise in matrix A, specified as a scalar.

If noiseStandardDeviation is not supplied or empty, then the default value is used, which is the
standard deviation of the quantization noise,

4 Functions

4-428

σq = 2−precisionBits

12 .

This value is calculated by the function fixed.complexQuantizationNoiseStandardDeviation.

If noiseStandardDeviation is zero, then fixed.singularValueLowerBound will return zero
for the estimate of the smallest singular value and fixed.complexConditionNumberUpperBound
will return an infinite condition number.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p_s — Probability that estimate of lower bound of smallest singular value is larger than
actual smallest singular value of matrix A
2.8665e-07 (default) | scalar

Probability that estimate of lower bound of smallest singular value is larger than actual smallest
singular value of matrix A, specified as a scalar.

If p_s is not supplied or empty, then the default of p_s = (1/2)*(1+erf(-5/sqrt(2))) =
2.8665e-07 is used, which is five standard deviations below the mean. So, the probability that the
estimated lower bound for the smallest singular value is less than the actual smallest singular value is
1 - p_s = 0.99999971 - p_s = 0.9999997.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar.

regularizationParameter is the Tikhonov regularization parameter of the matrix
[regularizationParameter*eye(n); A], where A is an m-by-n matrix with m >= n.
Data Types: single | double

More About
Condition Number for Inversion

A condition number for a matrix and computational task measures how sensitive the answer is to
changes in the input data and roundoff errors in the solution process. The condition number for
inversion of a matrix measures the sensitivity of the solution of a system of linear equations to errors
in the data. The condition number for inversion gives an indication of the accuracy of the results from
matrix inversion and the linear equation solution.

A large condition number indicates that a small change in the coefficient matrix A can lead to larger
changes in the output b in the linear equation Ax = b. The extreme case is when A is so poorly
conditioned that it is singular (an infinite condition number), in which case it has no inverse and the
linear equation has no unique solution.

Algorithms
The condition number with respect to the inversion of matrix A is the ratio of the largest singular
value of A to the smallest singular value of A. The fixed.complexSingularValueLowerBound

 fixed.complexConditionNumberUpperBound

4-429

function estimates the lower bound of the smallest singular value, s_n, of A. The
fixed.singularValueUpperBound function determines an upper bound for the largest singular
value, svdUpperBound, of A. A bound on the condition number of A is then cond(A) =
max(svd(A))/min(svd(A)) <= svdUpperBound/s_n [1][2][3].

Version History
Introduced in R2022b

References
[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for

"Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947,
130. 2022.

[2] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."
U.S. Patent Application No. 16/947, 130. 2020.

[3] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/
10.1137/040616413.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fixed.singularValueUpperBound | fixed.complexSingularValueLowerBound |
fixed.realConditionNumberUpperBound |
fixed.complexQuantizationNoiseStandardDeviation | cond

4 Functions

4-430

fixed.complexQlessQRMatrixSolveFixedpointTypes
Determine fixed-point types for matrix solution of complex-valued A'AX=B using QR decomposition

Syntax
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits)
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,
noiseStandardDeviation)
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,p_s)
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,
regularizationParameter)
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,maxWordLength)

Description
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits) computes fixed-point types for the matrix solution of complex-valued A'AX=B using
QR decomposition. T is returned as a struct with fields that specify fixed-point types for A and B that
guarantee no overflow will occur in the QR algorithm transforming A in-place into upper-triangular R,
where QR=A is the QR decomposition of X, and X such that there is a low probability of overflow.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,
noiseStandardDeviation) specifies the standard deviation of the additive random noise in A.
noiseStandardDeviation is an optional parameter. If not supplied or empty, then the default value
is used.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,p_s) specifies the
probability that the estimate of the lower bound for the smallest singular value of A is larger than the
actual smallest singular value of the matrix. p_s is an optional parameter. If not supplied or empty,
then the default value is used.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,
regularizationParameter) computes fixed-point types for the matrix solution of complex-valued

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularizationParameter, A is an m-by-n matrix, and In = eye(n).
regularizationParameter is an optional parameter. If not supplied or empty, then the default
value is used.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(___ ,maxWordLength) specifies
the maximum word length of the fixed-point types. maxWordLenth is an optional parameter. If not
supplied or empty, then the default value is used.

Examples

 fixed.complexQlessQRMatrixSolveFixedpointTypes

4-431

Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B

This example shows how to use the fixed.complexQlessQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation A′AX = B, where A is an m-by-n matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation A′AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

4 Functions

4-432

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 fixed.complexQlessQRMatrixSolveFixedpointTypes

4-433

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
 FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 24

Use the Specified Types to Solve the Matrix Equation A'AX=B

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent
to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qlessQRMatrixSolve -args {A,B,T.X} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X = (A′A)\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the output.

relative_error = norm(double(A'*A*X - B))/norm(double(B))

relative_error = 0.1052

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

4 Functions

4-434

Determine Fixed-Point Types for Complex Q-less QR Matrix Solve with Tikhonov
Regularization

This example shows how to use the fixed.complexQlessQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation

λIn
A

H λIn
A

X = (λ2In + AHA)X = B

where A is an m-by-n matrix with m ≥ n, B is n-by-p, X is n-by-p, In = eye(n), and λ is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

 fixed.complexQlessQRMatrixSolveFixedpointTypes

4-435

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 9.5053e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming
λIn
A

 to R = QH λIn
A

 in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-436

 WordLength: 40
 FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 35
 FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

H λIn
A

\B so that there is a low probability that it

overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 48
 FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent
to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel +fixed/qlessQRMatrixSolve -args {A,B,T.X,[],regularizationParameter} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X =
λIn
A

H λIn
A

\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X,[],regularizationParameter);

 fixed.complexQlessQRMatrixSolveFixedpointTypes

4-437

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

Xdouble =
λIn
A

H λIn
A

\B

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 1.0591e-05

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Input Arguments
m — Number of rows in A and B
positive integer-valued scalar

Number of rows in A and B, specified as a positive integer-valued scalar.
Data Types: double

n — Number of columns in A
positive integer-valued scalar

Number of columns in A, specified as a positive integer-valued scalar.
Data Types: double

max_abs_A — Maximum of absolute value of A
scalar

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double

max_abs_B — Maximum of absolute value of B
scalar

Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double

precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision of the input and output, specified as a positive integer-valued
scalar.

4 Functions

4-438

Data Types: double

noiseStandardDeviation — Standard deviation of additive random noise in A
scalar

Standard deviation of additive random noise in A, specified as a scalar.

If noiseStandardDeviation is not specified, then the default is the standard deviation of the
complex-valued quantization noise σq = 2−precisionBits / 6 , which is calculated by
fixed.complexQuantizationNoiseStandardDeviation.
Data Types: double

p_s — Probability that estimate of lower bound s is larger than actual smallest singular
value of matrix
≈3·10-7 (default) | scalar

Probability that estimate of lower bound s is larger than actual smallest singular value of matrix,
specified as a scalar. Use fixed.complexSingularValueLowerBound to estimate the smallest
singular value, s, of A. If p_s is not specified, the default value is
ps = 1/2 ⋅ 1 + erf −5/ 2 ≈ 3 ⋅ 10−7 which is 5 standard deviations below the mean, so the
probability that the estimated bound for the smallest singular value is less than the actual smallest
singular value is 1-ps ≈ 0.9999997.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the matrix problem

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

maxWordLength — Maximum word length of fixed-point types
128 (default) | positive integer

Maximum word length of fixed-point types, specified as a positive integer.

If the word length of the fixed-point type exceeds the specified maximum word length, the default of
128 bits is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 fixed.complexQlessQRMatrixSolveFixedpointTypes

4-439

Output Arguments
T — Fixed-point types for A, B, and X
struct

Fixed-point types for A, B, and X, returned as a struct. The struct T has fields T.A, T.B, and T.X.
These fields contain fi objects that specify fixed-point types for

• A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R where QR=A is the QR
decomposition of A.

• X such that there is a low probability of overflow.

Tips
Use fixed.complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types for the
inputs of these functions and blocks.

• fixed.qlessQRMatrixSolve
• Complex Burst Matrix Solve Using Q-less QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Algorithms
The fixed-point type for A is computed using fixed.qlessqrFixedpointTypes. The required
number of integer bits to prevent overflow is derived from the following bound on the growth of R [1].
The required number of integer bits is added to the number of bits of precision, precisionBits, of
the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately
1.6468 [2].

The elements of R are bounded in magnitude by

max R : ≤ mmax A : .

Matrix B is not transformed, so it does not need any additional growth bits.

The elements of X=R\(R'\B) are bounded in magnitude by

max X : ≤ n ⋅max B :
min svd A 2 .

Computing the singular value decomposition to derive the above bound on X is more computationally
intensive than the entire matrix solve, so the fixed.complexSingularValueLowerBound function
is used to estimate a bound on min(svd(A)).

Version History
Introduced in R2021b

4 Functions

4-440

Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixed-
point types.

Support for Tikhonov regularization parameter

The fixed.complexQlessQRMatrixSolveFixedpointTypes function now supports the Tikhonov
regularization parameter, “regularizationParameter” on page 4-0 .

References
[1] “Perform QR Factorization Using CORDIC”

[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic
Computers EC-8 (1959): 330-334.

See Also
Functions
fixed.complexQuantizationNoiseStandardDeviation |
fixed.complexSingularValueLowerBound | fixed.qlessqrFixedpointTypes |
fixed.qlessQRMatrixSolve

Blocks
Complex Burst Matrix Solve Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve
Using Q-less QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor

 fixed.complexQlessQRMatrixSolveFixedpointTypes

4-441

fixed.complexQRMatrixSolveFixedpointTypes
Determine fixed-point types for matrix solution of complex-valued AX=B using QR decomposition

Syntax
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits)
T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,noiseStandardDeviation)
T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,p_s)
T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,regularizationParameter)
T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,maxWordLength)

Description
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits) computes fixed-point types for the matrix solution of complex-valued AX=B using
QR decomposition. T is returned as a struct with fields that specify fixed-point types for A and B that
guarantee no overflow will occur in the QR algorithm, and X such that there is a low probability of
overflow.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into
C=Q'B, where QR=A is the QR decomposition of A.

T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,noiseStandardDeviation)
specifies the standard deviation of the additive random noise in A. noiseStandardDeviation is an
optional parameter. If not supplied or empty, then the default value is used.

T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,p_s) specifies the probability that
the estimate of the lower bound for the smallest singular value of A is larger than the actual smallest
singular value of the matrix. p_s is an optional parameter. If not supplied or empty, then the default
value is used.

T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,regularizationParameter)

computes fixed-point types for the matrix solution of complex-valued
λIn
A

X =
0n, p

B
 where λ is the

regularizationParameter, A is an m-by-n matrix, p is the number of columns in B, In = eye(n),
and 0n,p = zeros(n,p). regularizationParameter is an optional parameter. If not supplied or
empty, then the default value is used.

T = fixed.complexQRMatrixSolveFixedpointTypes(___ ,maxWordLength) specifies the
maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not
supplied or empty, then the default value is used.

Examples

Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the
fixed.complexQlessQRMatrixSolveFixedpointTypes function uses to analytically determine

4 Functions

4-442

fixed-point types for the solution of the complex matrix equation A′AX = B, where A is an m-by-n
matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Overview

You can solve the fixed-point matrix equation A′AX = B using QR decomposition. Using a sequence of
orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R,
where QR = A is the economy-size QR decomposition. This reduces the equation to an upper-
triangular system of equations R′RX = B. To solve for X, compute X = R\(R′\B) through forward- and
backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation A′AX = B by selecting the
fraction length based on the number of bits of precision defined by your requirements. The
fixed.complexQlessQRMatrixSolveFixedpointTypes function analytically computes the
following upper bounds on R, and X to determine the number of integer bits required to avoid
overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.complexQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation (A′A)X = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a2/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

 fixed.complexQRMatrixSolveFixedpointTypes

4-443

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for X = (A'A)\B

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Proof of Upper Bound for X = (A'A)\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
nmax(|B(:) |)/min(svd(A))2 = ∞and so the inequality is true.

If A′Ax = b and QR = A is the economy-size QR decomposition of A, then A′Ax = R′Q′QRx = R′Rx = b.
If A is full rank then x = R−1 ⋅ ((R′)−1b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the j
th column of B. Then

4 Functions

4-444

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ ((R′)−1b) | |2
≤ | |R−1 | |2 | | (R′)−1 | |2 | |b | |2
= 1/min(svd(A))2 ⋅ | |b | |2

= ||b | |2/min(svd(A))2

≤ n | |b | |∞/min(svd(A))2

= nmax(|b(:) |)/min(svd(A))2 .

Since max(|x(:) |) ≤ nmax(|b(:) |)/min(svd(A))2 for all rows and columns of B and X, then

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for complex-valued A using the following formula,

s =
σN

2 γ−1 ps Γ m− n + 2 2 Γ n
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

≤ nmax(|B(:) |)
s2 with probability 1− ps.

You can compute s using the fixed.complexSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, and X = (A′A)\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

 fixed.complexQRMatrixSolveFixedpointTypes

4-445

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal
is 2−precisionBits/ 6 [4,5]. Use fixed.complexQuantizationNoiseStandardDeviation to
compute this. See that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

4 Functions

4-446

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
 FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 fixed.complexQRMatrixSolveFixedpointTypes

4-447

 WordLength: 40
 FractionLength: 24

Upper Bound for R

The upper bound for R is computed using the formula max(|R(:) |) ≤ mmax(| A(:) |), where m is the
number of rows of matrix A. This upper bound is used to select a fixed-point type with the required
number of bits of precision to avoid an overflow in the upper bound.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 24.4949

Lower Bound for min(svd(A)) for Complex A

A lower bound for min(svd(A)) is estimated by the fixed.complexSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.complexSingularValueLowerBound
function.

estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0389

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples,...
 noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 24.4949

max(actualMaxR)

ans = 9.4990

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

4 Functions

4-448

estimatedSingularValueLowerBound = 0.0389

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0443

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
 noiseStandardDeviation,singularValues,...
 estimatedSingularValueLowerBound,"complex");

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.complexQRMatrixSolveFixedpointTypes

4-449

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.complexQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 9.3348e+03

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 977.7440

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"complex normally distributed random");

4 Functions

4-450

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation A′AX = B. It returns the maximum values of R = Q′A, the singular values of A, and the
values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,n,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [~,R] = qr(A,0);
 X = R\(R'\B);
 actualMaxR(j) = max(abs(R(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;

 fixed.complexQRMatrixSolveFixedpointTypes

4-451

 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010. url: https://www.mathworks.com/help/fixedpoint/ug/perform-qr-
factorization-using-cordic.html.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed.complexQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Overview

You can solve the fixed-point least-squares matrix equation AX = B using QR decomposition. Using a
sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper
triangular R, and transforms matrix B in-place to C = Q′B, where QR = A is the economy-size QR
decomposition. This reduces the equation to an upper-triangular system of equations RX = C. To
solve for X, compute X = R\C through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation AX = B by
selecting the fraction length based on the number of bits of precision defined by your requirements.
The fixed.complexQRMatrixSolveFixedpointTypes function analytically computes the
following upper bounds on R = Q′A, C = Q′B, and X to determine the number of integer bits required
to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of C = Q′B is

4 Functions

4-452

https://www.mathworks.com/help/fixedpoint/ug/perform-qr-factorization-using-cordic.html
https://www.mathworks.com/help/fixedpoint/ug/perform-qr-factorization-using-cordic.html
https://dx.doi.org/10.1137/040616413

max(|C(:) |) ≤ mmax(|B(:) |).

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.complexQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation AX = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

 fixed.complexQRMatrixSolveFixedpointTypes

4-453

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(:) |) ≤ mmax(|B(:) |).

Proof of Upper Bound for C = Q'B

The proof of the upper bound for C = Q′B is the same as the proof of the upper bound for R = Q′A by
substituting C for R and B for A.

Upper Bound for X = A\B

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Proof of Upper Bound for X = A\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
mmax(|B(:) |)/min(svd(A)) = ∞ and so the inequality is true.

If A is full rank, then x = R−1(Q′b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the jth
column of B. Then

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ (Q′b) | |2
≤ | |R−1 | |2 | |Q′ | |2 | |b | |2
= 1/min(svd(A)) ⋅ 1 ⋅ | |b | |2
= ||b | |2/min(svd(A))

≤ m | |b | |∞/min(svd(A))

= mmax(|b(:) |)/min(svd(A)) .

4 Functions

4-454

Since max(|x(:) |) ≤ mmax(|b(:) |)/min(svd(A)) for all rows and columns of B and X, then

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for complex-valued A using the following formula,

s =
σN

2 γ−1 ps Γ m− n + 2 2 Γ n
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) ≤ mmax(|B(:) |)

s with probability 1− ps.

You can compute s using the fixed.complexSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, C = Q′B, and X = A\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

 fixed.complexQRMatrixSolveFixedpointTypes

4-455

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal
is 2−precisionBits/ 6 [4,5]. Use the fixed.complexQuantizationNoiseStandardDeviation
function to compute this. See that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

4 Functions

4-456

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.B is the type computed for transforming B to Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 37
 FractionLength: 24

Upper Bounds for R and C=Q'B

The upper bounds for R and C = Q′B are computed using the following formulas, where m is the
number of rows of matrices A and B.

max(|R(:) |) ≤ mmax(| A(:) |)

max(|C(:) |) ≤ mmax(|B(:) |)

These upper bounds are used to select a fixed-point type with the required number of bits of precision
to avoid overflows.

upperBoundR = sqrt(m)*max_abs_A

 fixed.complexQRMatrixSolveFixedpointTypes

4-457

upperBoundR = 24.4949

upperBoundQB = sqrt(m)*max_abs_B

upperBoundQB = 24.4949

Lower Bound for min(svd(A)) for Complex A

A lower bound for min(svd(A)) is estimated by the fixed.complexSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.complexSingularValueLowerBound
function.

estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0389

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 24.4949

max(actualMaxR)

ans = 9.6720

You can see that the upper bound on C = Q′B compared to the measured simulation results of the
maximum value of C = Q′B over all runs is also within an order of magnitude.

upperBoundQB

upperBoundQB = 24.4949

max(actualMaxQB)

ans = 4.4764

4 Functions

4-458

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0389

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0443

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,noiseStandardDeviation,...
 singularValues,estimatedSingularValueLowerBound,"complex");

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.complexQRMatrixSolveFixedpointTypes

4-459

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.complexMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 629.3194

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 70.2644

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"complex normally distributed random");

4 Functions

4-460

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation AX = B. It returns the maximum values of R = Q′A and C = Q′B, the singular values of
A, and the values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 actualMaxQB = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding normally distributed random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,m,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [Q,R] = qr(A,0);
 C = Q'*B;
 X = R\C;
 actualMaxR(j) = max(abs(R(:)));

 fixed.complexQRMatrixSolveFixedpointTypes

4-461

 actualMaxQB(j) = max(abs(C(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010. url: https://www.mathworks.com/help/fixedpoint/ug/perform-qr-
factorization-using-cordic.html.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

This example shows how to use the fixed.complexQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the complex least-squares matrix equation
AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

4 Functions

4-462

https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://dx.doi.org/10.1137/040616413

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

 fixed.complexQRMatrixSolveFixedpointTypes

4-463

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.B is the type computed for transforming B to C = Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 37
 FractionLength: 24

Use the Specified Types to Solve the Matrix Equation AX=B

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

4 Functions

4-464

rng('default');
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.complexQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X} -o qrComplexMatrixSolve_mex

Specify the output type T.X and compute fixed-point X = A\B using the QR method.

X = qrComplexMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the output.

relative_error = norm(double(A*X - B))/norm(double(B))

relative_error = 0.0056

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Determine Fixed-Point Types for Complex Least-Squares Matrix Solve with Tikhonov
Regularization

This example shows how to use the fixed.complexQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the complex least-squares matrix equation

λIn
A

X =
0n, p

B
,

where A is an m-by-n matrix with m ≥ n, B is m-by-p, X is n-by-p, In = eye(n), 0n, p = zeros(n, p), and λ
is a regularization parameter.

The least-squares solution is

XLS = (λ2In + ATA)−1ATB

but is computed without squares or inverses.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

 fixed.complexQRMatrixSolveFixedpointTypes

4-465

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

4 Functions

4-466

quantizationNoiseStandardDeviation = 9.5053e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming
λIn
A

 to R = QT λIn
A

 in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 32

T.B is the type computed for transforming
0n, p

B
 to C = QT 0n, p

B
 in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

\
0n, p

B
, so that there is a low probability that it

overflows.

T.X

 fixed.complexQRMatrixSolveFixedpointTypes

4-467

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 44
 FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

rng('default');
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.complexQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X,regularizationParameter} -o qrMatrixSolve_mex

Specify output type T.X and compute fixed-point X = A\B using the QR method.

X = qrMatrixSolve_mex(A,B,T.X,regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and the output from MATLAB using the
default double-precision floating-point values is small.

Xdouble =
λIn
A

\
0n, p

B

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 5.2634e-06

Suppress mlint warnings in this file.

4 Functions

4-468

%#ok<*NASGU>
%#ok<*ASGLU>

Input Arguments
m — Number of rows in A and B
positive integer-valued scalar

Number of rows in A and B, specified as a positive integer-valued scalar.
Data Types: double

n — Number of columns in A
positive integer-valued scalar

Number of columns in A, specified as a positive integer-valued scalar.
Data Types: double

max_abs_A — Maximum of absolute value of A
scalar

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double

max_abs_B — Maximum of absolute value of B
scalar

Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double

precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision of the input and output, specified as a positive integer-valued
scalar.
Data Types: double

noiseStandardDeviation — Standard deviation of additive random noise in A
scalar

Standard deviation of additive random noise in A, specified as a scalar.

If noiseStandardDeviation is not specified, then the default is the standard deviation of the
complex-valued quantization noise σq = 2−precisionBits / 6 , which is calculated by
fixed.complexQuantizationNoiseStandardDeviation.
Data Types: double

 fixed.complexQRMatrixSolveFixedpointTypes

4-469

p_s — Probability that estimate of lower bound s is larger than the actual smallest singular
value of the matrix
≈3·10-7 (default) | scalar

Probability that estimate of lower bound s is larger than the actual smallest singular value of the
matrix, specified as a scalar. Use fixed.complexSingularValueLowerBound to estimate the
smallest singular value, s, of A. If p_s is not specified, the default value is
ps = 1/2 ⋅ 1 + erf −5/ 2 ≈ 3 ⋅ 10−7 which is 5 standard deviations below the mean, so the
probability that the estimated bound for the smallest singular value is less than the actual smallest
singular value is 1-ps ≈ 0.9999997.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the least-squares problem
λIn
A

X =
0n, p

B
.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

maxWordLength — Maximum word length of fixed-point types
128 (default) | positive integer

Maximum word length of fixed-point types, specified as a positive integer.

If the word length of the fixed-point type exceeds the specified maximum word length, the default of
128 bits is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
T — Fixed-point types for A, B, and X
struct

Fixed-point types for A, B, and X, returned as a struct. The struct T has fields T.A, T.B, and T.X.
These fields contain fi objects that specify fixed-point types for

• A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into
C=Q'B, where QR=A is the QR decomposition of A.

• X such that there is a low probability of overflow.

4 Functions

4-470

Tips
Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types for the inputs
of these functions and blocks.

• fixed.qrMatrixSolve
• Complex Burst Matrix Solve Using QR Decomposition
• Complex Partial-Systolic Matrix Solve Using QR Decomposition

Algorithms
T.A and T.B are computed using fixed.qrFixedpointTypes. The number of integer bits required
to prevent overflow is derived from the following bounds on the growth of R and C=Q'B [1]. The
required number of integer bits is added to the number of bits of precision, precisionBits, of the
input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468
[2].

The elements of R are bounded in magnitude by

max R : ≤ mmax A : .

The elements of C=Q'B are bounded in magnitude by

max C : ≤ mmax B : .

T.X is computed by bounding the output, X, in the least-squares solution of AX=B using the following
formula [3] [4].

The elements of X=R\(Q'B) are bounded in magnitude by

max X : ≤ mmax B :
min svd A .

Computing the singular value decomposition to derive the above bound on X is more computationally
expensive than the entire matrix solve, so the fixed.complexSingularValueLowerBound
function is used to estimate a bound on min(svd(A)).

Version History
Introduced in R2021b

Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixed-
point types.

Support for Tikhonov regularization parameter

The fixed.complexQRMatrixSolveFixedpointTypes function now supports the Tikhonov
regularization parameter, “regularizationParameter” on page 4-0 .

 fixed.complexQRMatrixSolveFixedpointTypes

4-471

References
[1] “Perform QR Factorization Using CORDIC”

[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic
Computers EC-8 (1959): 330-334.

[3] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."
U.S. Patent Application No. 16/947, 130. 2020.

[4] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620.

See Also
Functions
fixed.complexQuantizationNoiseStandardDeviation |
fixed.complexSingularValueLowerBound | fixed.qrFixedpointTypes |
fixed.qrMatrixSolve

Blocks
Complex Burst Matrix Solve Using QR Decomposition | Complex Partial-Systolic Matrix Solve Using
QR Decomposition

4 Functions

4-472

fixed.complexQuantizationNoiseStandardDeviation
Estimate standard deviation of quantization noise of complex-valued signal

Syntax
noiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(
precisionBits)

Description
noiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(
precisionBits) returns an estimate of the quantization noise standard deviation of a complex-
valued signal with a quantization level q=2-precisionBits, where precisionBits is the required number
of bits of precision.

Examples

Estimate Standard Deviation of Quantization Noise of Complex-Valued Signal

Quantizing a complex signal to p bits of precision can be modeled as a linear system that adds

normally distributed noise with a standard deviation of ϛnoise = 2−p

6 [1,2].

Compute the theoretical quantization noise standard deviation with p bits of precision using the
fixed.complexQuantizationNoiseStandardDeviation function.

p = 14;
theoreticalQuantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(p);

The returned value is ϛnoise = 2−p

6 .

Create a complex signal with n samples.

rng('default');
n = 1e6;
x = complex(rand(1,n),rand(1,n));

Quantize the signal with p bits of precision.

wordLength = 16;
x_quantized = quantizenumeric(x,1,wordLength,p);

Compute the quantization noise by taking the difference between the quantized signal and the
original signal.

quantizationNoise = x_quantized - x;

Compute the measured quantization noise standard deviation.

 fixed.complexQuantizationNoiseStandardDeviation

4-473

measuredQuantizationNoiseStandardDeviation = std(quantizationNoise)

measuredQuantizationNoiseStandardDeviation = 2.4902e-05

Compare the actual quantization noise standard deviation to the theoretical and see that they are
close for large values of n.

theoreticalQuantizationNoiseStandardDeviation

theoreticalQuantizationNoiseStandardDeviation = 2.4917e-05

References

1 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

2 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

Input Arguments
precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

Output Arguments
noiseStandardDeviation — Noise standard deviation
scalar

Noise standard deviation, returned as a scalar.

Tips
fixed.complexQuantizationNoiseStandardDeviation is used in these functions.

• fixed.complexQRMatrixSolveFixedpointTypes
• fixed.complexQlessQRMatrixSolveFixedpointTypes

Algorithms
The variance of a complex-valued error sequence e(k) with quantization level q=2-precisionBits [1][2] is

σq
2 = 2

q∫−q/2
q/2

e2de = q2

6 = 2−2precisionBits

6 .

The standard deviation of a real error sequence e(k) is

σq = 2−precisionBits

6 .

4 Functions

4-474

Version History
Introduced in R2021b

References
[1] Widrow, Bernard. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling

Theory." IRE Transactions on Circuit Theory 3, no. 4 (December 1956): 266-276.

[2] Widrow, Bernard, and Kollár, István. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University
Press, 2008.

See Also
fixed.complexQRMatrixSolveFixedpointTypes |
fixed.complexQlessQRMatrixSolveFixedpointTypes

 fixed.complexQuantizationNoiseStandardDeviation

4-475

fixed.complexSingularValueLowerBound
Estimate lower bound for smallest singular value of complex-valued matrix

Syntax
s_n = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n)
s_n = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n,
regularizationParameter)

Description
s_n = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n)
returns an estimate of a lower bound, s_n, for the smallest singular value of a complex-valued matrix
with m rows and n columns, where m≥n.

s_n = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n,
regularizationParameter) returns an estimate of a lower bound, s_n, for the smallest singular

value of a complex-valued matrix
λIn
A

 where λ is the regularizationParameter, A is an m-by-n

matrix with m >= n, and In = eye(n).

p_s_n and regularizationParameter are optional parameters. If not supplied or empty, then
their default values are used.

Examples

Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the
fixed.complexQlessQRMatrixSolveFixedpointTypes function uses to analytically determine
fixed-point types for the solution of the complex matrix equation A′AX = B, where A is an m-by-n
matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Overview

You can solve the fixed-point matrix equation A′AX = B using QR decomposition. Using a sequence of
orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R,
where QR = A is the economy-size QR decomposition. This reduces the equation to an upper-
triangular system of equations R′RX = B. To solve for X, compute X = R\(R′\B) through forward- and
backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation A′AX = B by selecting the
fraction length based on the number of bits of precision defined by your requirements. The
fixed.complexQlessQRMatrixSolveFixedpointTypes function analytically computes the
following upper bounds on R, and X to determine the number of integer bits required to avoid
overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

4 Functions

4-476

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.complexQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation (A′A)X = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a2/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

 fixed.complexSingularValueLowerBound

4-477

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for X = (A'A)\B

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Proof of Upper Bound for X = (A'A)\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
nmax(|B(:) |)/min(svd(A))2 = ∞and so the inequality is true.

If A′Ax = b and QR = A is the economy-size QR decomposition of A, then A′Ax = R′Q′QRx = R′Rx = b.
If A is full rank then x = R−1 ⋅ ((R′)−1b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the j
th column of B. Then

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ ((R′)−1b) | |2
≤ | |R−1 | |2 | | (R′)−1 | |2 | |b | |2
= 1/min(svd(A))2 ⋅ | |b | |2

= ||b | |2/min(svd(A))2

≤ n | |b | |∞/min(svd(A))2

= nmax(|b(:) |)/min(svd(A))2 .

Since max(|x(:) |) ≤ nmax(|b(:) |)/min(svd(A))2 for all rows and columns of B and X, then

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

4 Functions

4-478

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for complex-valued A using the following formula,

s =
σN

2 γ−1 ps Γ m− n + 2 2 Γ n
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

≤ nmax(|B(:) |)
s2 with probability 1− ps.

You can compute s using the fixed.complexSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, and X = (A′A)\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

 fixed.complexSingularValueLowerBound

4-479

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal
is 2−precisionBits/ 6 [4,5]. Use fixed.complexQuantizationNoiseStandardDeviation to
compute this. See that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

4 Functions

4-480

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
 FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 24

Upper Bound for R

The upper bound for R is computed using the formula max(|R(:) |) ≤ mmax(| A(:) |), where m is the
number of rows of matrix A. This upper bound is used to select a fixed-point type with the required
number of bits of precision to avoid an overflow in the upper bound.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 24.4949

Lower Bound for min(svd(A)) for Complex A

A lower bound for min(svd(A)) is estimated by the fixed.complexSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.complexSingularValueLowerBound
function.

estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation)

 fixed.complexSingularValueLowerBound

4-481

estimatedSingularValueLowerBound = 0.0389

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples,...
 noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 24.4949

max(actualMaxR)

ans = 9.4990

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0389

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0443

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
 noiseStandardDeviation,singularValues,...
 estimatedSingularValueLowerBound,"complex");

4 Functions

4-482

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.complexSingularValueLowerBound

4-483

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.complexQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 9.3348e+03

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 977.7440

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"complex normally distributed random");

4 Functions

4-484

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation A′AX = B. It returns the maximum values of R = Q′A, the singular values of A, and the
values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,n,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [~,R] = qr(A,0);
 X = R\(R'\B);
 actualMaxR(j) = max(abs(R(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;

 fixed.complexSingularValueLowerBound

4-485

 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010. url: https://www.mathworks.com/help/fixedpoint/ug/perform-qr-
factorization-using-cordic.html.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed.complexQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Overview

You can solve the fixed-point least-squares matrix equation AX = B using QR decomposition. Using a
sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper
triangular R, and transforms matrix B in-place to C = Q′B, where QR = A is the economy-size QR
decomposition. This reduces the equation to an upper-triangular system of equations RX = C. To
solve for X, compute X = R\C through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation AX = B by
selecting the fraction length based on the number of bits of precision defined by your requirements.
The fixed.complexQRMatrixSolveFixedpointTypes function analytically computes the
following upper bounds on R = Q′A, C = Q′B, and X to determine the number of integer bits required
to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of C = Q′B is

4 Functions

4-486

https://www.mathworks.com/help/fixedpoint/ug/perform-qr-factorization-using-cordic.html
https://www.mathworks.com/help/fixedpoint/ug/perform-qr-factorization-using-cordic.html
https://dx.doi.org/10.1137/040616413

max(|C(:) |) ≤ mmax(|B(:) |).

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.complexQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation AX = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

 fixed.complexSingularValueLowerBound

4-487

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(:) |) ≤ mmax(|B(:) |).

Proof of Upper Bound for C = Q'B

The proof of the upper bound for C = Q′B is the same as the proof of the upper bound for R = Q′A by
substituting C for R and B for A.

Upper Bound for X = A\B

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Proof of Upper Bound for X = A\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
mmax(|B(:) |)/min(svd(A)) = ∞ and so the inequality is true.

If A is full rank, then x = R−1(Q′b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the jth
column of B. Then

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ (Q′b) | |2
≤ | |R−1 | |2 | |Q′ | |2 | |b | |2
= 1/min(svd(A)) ⋅ 1 ⋅ | |b | |2
= ||b | |2/min(svd(A))

≤ m | |b | |∞/min(svd(A))

= mmax(|b(:) |)/min(svd(A)) .

4 Functions

4-488

Since max(|x(:) |) ≤ mmax(|b(:) |)/min(svd(A)) for all rows and columns of B and X, then

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for complex-valued A using the following formula,

s =
σN

2 γ−1 ps Γ m− n + 2 2 Γ n
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) ≤ mmax(|B(:) |)

s with probability 1− ps.

You can compute s using the fixed.complexSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, C = Q′B, and X = A\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

 fixed.complexSingularValueLowerBound

4-489

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal
is 2−precisionBits/ 6 [4,5]. Use the fixed.complexQuantizationNoiseStandardDeviation
function to compute this. See that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

4 Functions

4-490

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.B is the type computed for transforming B to Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 37
 FractionLength: 24

Upper Bounds for R and C=Q'B

The upper bounds for R and C = Q′B are computed using the following formulas, where m is the
number of rows of matrices A and B.

max(|R(:) |) ≤ mmax(| A(:) |)

max(|C(:) |) ≤ mmax(|B(:) |)

These upper bounds are used to select a fixed-point type with the required number of bits of precision
to avoid overflows.

upperBoundR = sqrt(m)*max_abs_A

 fixed.complexSingularValueLowerBound

4-491

upperBoundR = 24.4949

upperBoundQB = sqrt(m)*max_abs_B

upperBoundQB = 24.4949

Lower Bound for min(svd(A)) for Complex A

A lower bound for min(svd(A)) is estimated by the fixed.complexSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.complexSingularValueLowerBound
function.

estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0389

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 24.4949

max(actualMaxR)

ans = 9.6720

You can see that the upper bound on C = Q′B compared to the measured simulation results of the
maximum value of C = Q′B over all runs is also within an order of magnitude.

upperBoundQB

upperBoundQB = 24.4949

max(actualMaxQB)

ans = 4.4764

4 Functions

4-492

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0389

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0443

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,noiseStandardDeviation,...
 singularValues,estimatedSingularValueLowerBound,"complex");

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.complexSingularValueLowerBound

4-493

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.complexMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 629.3194

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 70.2644

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"complex normally distributed random");

4 Functions

4-494

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation AX = B. It returns the maximum values of R = Q′A and C = Q′B, the singular values of
A, and the values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 actualMaxQB = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
 % Adding normally distributed random noise makes A non-singular.
 A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,m,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [Q,R] = qr(A,0);
 C = Q'*B;
 X = R\C;
 actualMaxR(j) = max(abs(R(:)));

 fixed.complexSingularValueLowerBound

4-495

 actualMaxQB(j) = max(abs(C(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010. url: https://www.mathworks.com/help/fixedpoint/ug/perform-qr-
factorization-using-cordic.html.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Input Arguments
m — Number of rows in matrix
positive integer-valued scalar

Number of rows in matrix, specified as a positive integer-valued scalar. The number of rows, m, must
be greater than or equal to the number of columns, n.
Data Types: double

n — Number of columns in matrix
positive integer-valued scalar

Number of columns in matrix, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: double

noiseStandardDeviation — Standard deviation of additive random noise in matrix
scalar

Standard deviation of additive random noise in matrix, specified as a scalar.
Data Types: double

4 Functions

4-496

https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://dx.doi.org/10.1137/040616413

p_s_n — Probability that estimate of lower bound is larger than actual smallest singular
value of matrix
2.8665e-07 (default) | scalar

Probability that estimate of lower bound is larger than actual smallest singular value of matrix,
specified as a scalar.

If p_s_n is not supplied or empty, then the default of p_s = (1/2)*(1+erf(-5/sqrt(2))) =
2.8665e-07 is used, which is 5 standard deviations below the mean, so the probability that the
estimated lower bound for the smallest singular value is less than the actual smallest singular value is
1 - p_s = 0.99999971 - p_s = 0.9999997.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the matrix
λIn
A

 where λ is

the regularizationParameter, A is an m-by-n matrix with m >= n, and I = eye(n)..
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
s_n — Estimate of lower bound for smallest singular value of complex-valued matrix
scalar

Estimate of lower bound for smallest singular value of complex-valued matrix, returned as a scalar.

Tips
• Use fixed.complexSingularValueLowerBound to used estimate the smallest singular value of

a matrix to estimate a bound for max(|X(:)|). For example, in
fixed.complexQRMatrixSolveFixedpointTypes, the elements of X=R\(Q'B) are bounded in
magnitude by

max X : ≤ mmax B :
min svd A ≤ mmax B :

s

with probability 1-ps.
• max(|X(:)|) is smaller when the denominator in the above equation is larger.
• If nothing else is known about a matrix, then in general the smallest singular value will be larger

if:

• there is additive random noise.

 fixed.complexSingularValueLowerBound

4-497

• the number of rows, m, is much larger than the number of columns, n.
• If the noise standard deviation is not known, you can approximate it as the standard deviation of

the quantization error. You can compute the quantization error using
fixed.complexQuantizationNoiseStandardDeviation.

• For s to be a useful bound on the smallest singular value of A, the probability that s is greater than
the smallest singular value of A should be small. A practical value to use is

ps = 1/2 ⋅ 1 + erf −5/ 2 ≈ 3 ⋅ 10−7

which is 5 standard deviations below the mean, so the probability that the estimated bound for the
smallest singular value is less than the actual smallest singular value is 1-ps ≈ 0.9999997.

• fixed.complexSingularValueLowerBound is used in these functions.

• fixed.complexQRMatrixSolveFixedpointTypes
• fixed.complexQlessQRMatrixSolveFixedpointTypes

Algorithms
Given a m-by-n complex-valued matrix A and standard deviation σN of additive random noise on the
elements of A, you can compute an estimate of a lower bound for the smallest singular value of A, s,
such that the probability, ps, of s being greater than the smallest singular value of A using this
formula [1][2].

s =
σN

2 γ−1 psΓ m− n + 2 2Γ(n)
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

Version History
Introduced in R2021b

Support for Tikhonov regularization parameter

The fixed.complexSingularValueLowerBound function now supports the Tikhonov
regularization parameter, “regularizationParameter” on page 4-0 .

References
[1] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."

U.S. Patent Application No. 16/947, 130. 2020.

[2] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/
10.1137/040616413.

See Also
fixed.complexQRMatrixSolveFixedpointTypes |
fixed.complexQuantizationNoiseStandardDeviation |

4 Functions

4-498

fixed.complexQRMatrixSolveFixedpointTypes |
fixed.complexQlessQRMatrixSolveFixedpointTypes

 fixed.complexSingularValueLowerBound

4-499

fixed.cordicDivide
Fixed-point divide using CORDIC

Syntax
y = fixed.cordicDivide(num,den,OutputType)

Description
y = fixed.cordicDivide(num,den,OutputType) divides num by den using the output data type
specified by OutputType.

Examples

Divide Using CORDIC

num = fi(1);
den = fi(10);
OutputType = fi([],1,16,15);
y = fixed.cordicDivide(num,den,OutputType)

y =

 0.1000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Input Arguments
num — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a real-valued scalar, vector, matrix, or multidimensional array.

• If num is a floating-point type, den must also be a floating-point type and OutputType must
specify a floating-point data type.

• If num is a built-in integer type, den must also be a built-in integer type and OutputType must
specify a built-in integer data type.

• If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a
fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

4 Functions

4-500

den — Denominator
scalar | vector | matrix | multidimensional array

Numerator, specified as a real-valued scalar, vector, matrix, or multidimensional array.

• If num is a floating-point type, den must also be a floating-point type and OutputType must
specify a floating-point data type.

• If num is a built-in integer type, den must also be a built-in integer type and OutputType must
specify a built-in integer data type.

• If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a
fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

OutputType — Data type of output
fi object | numerictype object | Simulink.NumericType object

Data type of the output, specified as a fi object, numerictype, or Simulink.NumericType object.

• If num is a floating-point type, den must also be a floating-point type and OutputType must
specify a floating-point data type.

• If num is a built-in integer type, den must also be a built-in integer type and OutputType must
specify a built-in integer data type.

• If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a
fixed-point data type.

Example: fi([],1,16,15)
Example: numerictype(1,16,15)
Example: fixdt(1,16,15)

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

Algorithms
For fixed-point inputs num and den, fixed.cordicDivide wraps on overflow for division by zero.
The behavior for fixed-point division by zero is summarized in the table below.

 fixed.cordicDivide

4-501

Wrap Overflow Saturate Overflow
0/0 = 0 0/0 = 0
1/0 = 0 1/0 = upper bound
-1/0 = 0 -1/0 = lower bound

For floating-point inputs, fixed.cordicDivide follows IEEE Standard 754.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
fixed.cordicReciprocal | Real Divide HDL Optimized | Complex Divide HDL Optimized | Real
Reciprocal HDL Optimized

4 Functions

4-502

fixed.cordicReciprocal
Fixed-point reciprocal using CORDIC

Syntax
y = fixed.cordicReciprocal(u,OutputType)

Description
y = fixed.cordicReciprocal(u,OutputType) returns 1./u with the output cast to the data
type specified by OutputType.

Examples

Reciprocal Using CORDIC

u = fi(10);
outputType = fi([],1,32,24);
y = fixed.cordicReciprocal(u,outputType)

y =

 0.1000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 24

Input Arguments
u — Value to take reciprocal of
scalar | vector | matrix | multidimensional array

Value to take reciprocal of, specified as a scalar, vector, matrix, or multidimensional array.

• If u is a floating-point type, then OutputType must specify a floating-point data type.
• If u is a built-in integer type, then OutputType must specify a built-in integer data type.
• If u is a fixed-point type, then OutputType must specify a fixed-point data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

OutputType — Data type of output
fi object | numerictype object | Simulink.NumericType object

Data type of the output, specified as a fi object, numerictype, or Simulink.NumericType object.

 fixed.cordicReciprocal

4-503

• If num is a floating-point type, den must also be a floating-point type and OutputType must
specify a floating-point data type.

• If num is a built-in integer type, den must also be a built-in integer type and OutputType must
specify a built-in integer data type.

• If num is a fixed-point type, den must also be a fixed-point type and OutputType must specify a
fixed-point data type.

Example: fi([],1,16,15)
Example: numerictype(1,16,15)
Example: fixdt(1,16,15)

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so
increases the expense of the computation and adds latency.

Algorithms
For fixed-point input u, fixed.cordicReciprocal wraps on overflow for division by zero. The
behavior for fixed-point division by zero is summarized in the table below.

Wrap Overflow Saturate Overflow
0/0 = 0 0/0 = 0
1/0 = 0 1/0 = upper bound
-1/0 = 0 -1/0 = lower bound

For floating-point inputs, fixed.cordicReciprocal follows IEEE Standard 754.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

4 Functions

4-504

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
fixed.cordicDivide | Real Reciprocal HDL Optimized | Real Divide HDL Optimized | Complex
Divide HDL Optimized

 fixed.cordicReciprocal

4-505

fixed.fimathLike
Return fimath object like the input

Syntax
F = fixed.fimathLike(X)
F = fixed.fimathLike(X,roundingMethod)
F = fixed.fimathLike(X,roundingMethod,overflowAction)

Description
F = fixed.fimathLike(X) returns fimath object F with ProductMode and SumMode set to the
same fixed-point arithmetic properties as the input X, where X is a fi object or numerictype object.

By default, RoundingMethod is set to 'Floor' and OverflowAction is set to 'Wrap'. For fixed-
point inputs, this function supports binary-point scaling and slope-bias scaling. If X is not a fi object
or numerictype object, then empty is returned.

F = fixed.fimathLike(X,roundingMethod) specifies the rounding method to use.

F = fixed.fimathLike(X,roundingMethod,overflowAction) specifies the rounding method
and overflow action to use.

Examples

Set fimath to be Like Input

Use fixed.fimathLike and setfimath to set the fimath fixed-point math settings to be like the
input.

Define a fixed-point fi object.

X = fi(1,1,8,0)

Create a fimath object with the same fixed-point math settings as the input.

F = fixed.fimathLike(X)

F =

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: SpecifyPrecision
 ProductWordLength: 8
 ProductFractionLength: 0
 SumMode: SpecifyPrecision
 SumWordLength: 8
 SumFractionLength: 0
 CastBeforeSum: true

4 Functions

4-506

Apply the fixed-point math settings.

X(:) = setfimath(X,F) + 1

X =

 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

If X is a fi object or numerictype object, then fixed.fimathLike returns a fimath object.
Otherwise, fixed.fimathLike returns empty.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

roundingMethod — Rounding method to use
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use, specified as one of these values:

• 'Ceiling' — Round toward positive infinity.
• 'Convergent' — Round toward nearest. Ties round to the nearest even stored integer (least

biased).
• 'Floor' — Round toward negative infinity.
• 'Nearest' — Round toward nearest. Ties round toward positive infinity.
• 'Round' — Round toward nearest. Ties round toward negative infinity for negative numbers, and

toward positive infinity for positive numbers.
• 'Zero' — Round toward zero.

Data Types: char | string

overflowAction — Action to take on overflow
'Wrap' (default) | 'Saturate'

Action to take on overflow, specified as one of these values:

• 'Wrap' — Wrap on overflow. This mode is also known as two's complement overflow.
• 'Saturate' — Saturate to the maximum or minimum value of the fixed-point range on overflow.

Data Types: char | string

 fixed.fimathLike

4-507

Output Arguments
F — Fixed-point math settings
fimath object

Fixed-point math settings, returned as a fimath object.

If X is not a fi object or numerictype object, then fixed.fimathLike returns empty.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
setfimath | fimath | fi | numerictype

4 Functions

4-508

fixed.forgettingFactor
Compute forgetting factor required for streaming input data

Syntax
alpha = fixed.forgettingFactor(m)

Description
alpha = fixed.forgettingFactor(m) returns the forgetting factor ɑ for an infinite number of
rows with the equivalent gain of a matrix A with m rows.

Examples

Compute Forgetting Factor Required for Streaming Input Data

This example shows how to use the fixed.forgettingFactor and
fixed.forgettingFactorInverse functions.

The growth in the QR decomposition can be seen by looking at the magnitude of the first element
R(1, 1)of the upper-triangular factor R, which is equal to the Euclidean norm of the first column of
matrix A,

|R(1, 1) | = | | A(: , 1) | |2 .

To see this, create matrix A as a column of ones of length n and compute R of the economy-size QR
decomposition.

n = 1e4;
A = ones(n,1);

Then |R(1, 1) | = | | A(: , 1) | |2 = ∑
i = 1

n
12 = n.

R = fixed.qlessQR(A)

R = 100.0000

norm(A)

ans = 100

sqrt(n)

ans = 100

The diagonal elements of the upper-triangular factor R of the QR decomposition may be positive,
negative, or zero, but fixed.qlessQR and fixed.qrAB always return the diagonal elements of R as
non-negative.

 fixed.forgettingFactor

4-509

In a real-time application, such as when data is streaming continuously from a radar array, you can
update the QR decomposition with an exponential forgetting factor α where 0 < α < 1. Use the
fixed.forgettingFactor function to compute a forgetting factor α that acts as if the matrix were
being integrated over m rows to maintain a gain of about m. The relationship between α and m is
α = e−1/(2m).

m = 16;
alpha = fixed.forgettingFactor(m);
R_alpha = fixed.qlessQR(A,alpha)

R_alpha = 3.9377

sqrt(m)

ans = 4

If you are working with a system and have been given a forgetting factor α, and want to know the
effective number of rows m that you are integrating over, then you can use the
fixed.forgettingFactorInverse function. The relationship between m and α is m = −1

2log(α) .

fixed.forgettingFactorInverse(alpha)

ans = 16

Input Arguments
m — Number of rows in matrix A
positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.
Data Types: double

Output Arguments
alpha — Forgetting factor
scalar

Forgetting factor, returned as a scalar.

Tips
Use fixed.forgettingFactor to compute a forgetting factor for these functions and blocks.

• fixed.qlessQR
• fixed.qlessQRMatrixSolve
• Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
• Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

4 Functions

4-510

Algorithms
In real-time applications, such as when data is streaming continuously from a radar array [1], the QR
decomposition is often computed continuously as each new row of data arrives. In these systems, the
previously computed upper-triangular matrix, R, is updated and weighted by forgetting factor ɑ,
where 0 < ɑ < 1. This computation treats the matrix A as if it is infinitely tall. The series of
transformations is as follows.

R0 = zeros n, n
R0

A 1, :
R1
0

αR1
A 2, :

R2
0

⋮
αRk

A k, :
Rk + 1

0

Without the forgetting factor ɑ, the values of R would grow without bound.

With the forgetting factor, the gain in R is

g = 1
2∫0 ∞αxdx = −1

2log α .

The gain of computing R without a forgetting factor from an m-by-n matrix A is m. Therefore,

m = −1
2log α

m = −1
2log α

α = e−1/ 2m .

Version History
Introduced in R2021b

References
[1] Rader, C.M. "VLSI Systolic Arrays for Adaptive Nulling." IEEE Signal Processing Magazine (July

1996): 29-49.

See Also
Functions
fixed.qlessQR | fixed.qlessQRMatrixSolve | fixed.forgettingFactorInverse

Blocks
Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less
QR Decomposition with Forgetting Factor | Real Partial-Systolic Matrix Solve Using Q-less QR

 fixed.forgettingFactor

4-511

Decomposition with Forgetting Factor | Complex Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor

4 Functions

4-512

fixed.forgettingFactorInverse
Compute the inverse of the forgetting factor required for streaming input data

Syntax
m = fixed.forgettingFactorInverse(alpha)

Description
m = fixed.forgettingFactorInverse(alpha) returns the number of rows with the equivalent
gain of a matrix A with m rows, given a forgetting factor ɑ.

Examples

Compute Forgetting Factor Required for Streaming Input Data

This example shows how to use the fixed.forgettingFactor and
fixed.forgettingFactorInverse functions.

The growth in the QR decomposition can be seen by looking at the magnitude of the first element
R(1, 1)of the upper-triangular factor R, which is equal to the Euclidean norm of the first column of
matrix A,

|R(1, 1) | = | | A(: , 1) | |2 .

To see this, create matrix A as a column of ones of length n and compute R of the economy-size QR
decomposition.

n = 1e4;
A = ones(n,1);

Then |R(1, 1) | = | | A(: , 1) | |2 = ∑
i = 1

n
12 = n.

R = fixed.qlessQR(A)

R = 100.0000

norm(A)

ans = 100

sqrt(n)

ans = 100

The diagonal elements of the upper-triangular factor R of the QR decomposition may be positive,
negative, or zero, but fixed.qlessQR and fixed.qrAB always return the diagonal elements of R as
non-negative.

 fixed.forgettingFactorInverse

4-513

In a real-time application, such as when data is streaming continuously from a radar array, you can
update the QR decomposition with an exponential forgetting factor α where 0 < α < 1. Use the
fixed.forgettingFactor function to compute a forgetting factor α that acts as if the matrix were
being integrated over m rows to maintain a gain of about m. The relationship between α and m is
α = e−1/(2m).

m = 16;
alpha = fixed.forgettingFactor(m);
R_alpha = fixed.qlessQR(A,alpha)

R_alpha = 3.9377

sqrt(m)

ans = 4

If you are working with a system and have been given a forgetting factor α, and want to know the
effective number of rows m that you are integrating over, then you can use the
fixed.forgettingFactorInverse function. The relationship between m and α is m = −1

2log(α) .

fixed.forgettingFactorInverse(alpha)

ans = 16

Input Arguments
alpha — Forgetting factor
scalar

Forgetting factor, specified as a scalar.
Data Types: double

Output Arguments
m — Number of rows in matrix A
positive integer-valued scalar

Number of rows in matrix A with the equivalent gain, returned as a positive integer-valued scalar.

Algorithms
In real-time applications, such as when data is streaming continuously from a radar array [1], the QR
decomposition is often computed continuously as each new row of data arrives. In these systems, the
previously computed upper-triangular matrix, R, is updated and weighted by forgetting factor ɑ,
where 0 < ɑ < 1. This computation treats the matrix A as if it is infinitely tall. The series of
transformations is as follows.

4 Functions

4-514

R0 = zeros n, n
R0

A 1, :
R1
0

αR1
A 2, :

R2
0

⋮
αRk

A k, :
Rk + 1

0

Without the forgetting factor ɑ, the values of R would grow without bound.

With the forgetting factor, the gain in R is

g = 1
2∫0 ∞αxdx = −1

2log α .

The gain of computing R without a forgetting factor from an m-by-n matrix A is m. Therefore,

m = −1
2log α

m = −1
2log α

α = e−1/ 2m .

Version History
Introduced in R2021b

References
[1] Rader, C.M. "VLSI Systolic Arrays for Adaptive Nulling." IEEE Signal Processing Magazine (July

1996): 29-49.

See Also
Functions
fixed.qlessQR | fixed.qlessQRMatrixSolve | fixed.forgettingFactor

Blocks
Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less
QR Decomposition with Forgetting Factor | Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor | Complex Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor

 fixed.forgettingFactorInverse

4-515

fixed.forwardSubstitute
Solve lower-triangular system of equations through forward substitution

Syntax
x = fixed.forwardSubstitute(R, B)
x = fixed.forwardSubstitute(R, B, outputType)

Description
x = fixed.forwardSubstitute(R, B) performs forward substitution on upper-triangular matrix
R to compute x = R'\B.

x = fixed.forwardSubstitute(R, B, outputType) returns x = R'\B, where the data type of
output variable, x, is specified by outputType.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations A′A x = B using forward and backward
substitution.

Specify the input variables, A and B.

rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];

Compute the upper-triangular factor, R, of A, where A = QR.

R = fixed.qlessQR(A);

Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

4 Functions

4-516

x = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

Input Arguments
R — Upper-triangular input matrix
matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

B — Linear system factor
matrix

Linear system factor, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi | numerictype

Output Arguments
x — Solution
matrix

Solution, returned as a matrix satisfying the equation x = R'\B.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 fixed.forwardSubstitute

4-517

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

R and B must be signed and use binary-point scaling. Slope-bias representation is not supported for
fixed-point data types.

See Also
fixed.backwardSubstitute | fixed.qlessQR | fixed.qlessQRUpdate | fixed.qrAB |
fixed.qrMatrixSolve | fixed.qlessQRMatrixSolve

4 Functions

4-518

fixed.qlessQR
Q-less QR decomposition

Syntax
R = fixed.qlessQR(A)
R = fixed.qlessQR(A,forgettingFactor)
R = fixed.qlessQR(A,[],regularizationParameter)
R = fixed.qlessQR(A,forgettingFactor,regularizationParameter)

Description
R = fixed.qlessQR(A) returns the upper-triangular R factor of the QR decomposition A = QR.

This is equivalent to computing

[~,R] = qr(A)

R = fixed.qlessQR(A,forgettingFactor) returns the upper-triangular R factor of the QR
decomposition and multiplies R by the forgettingFactor before each row of A is processed.

R = fixed.qlessQR(A,[],regularizationParameter) returns the upper-triangular R factor of

the QR decomposition of
λIn
A

 where A is an m-by-n matrix and λ is the

regularizationParameter.

R = fixed.qlessQR(A,forgettingFactor,regularizationParameter) returns the upper-
triangular R factor of the QR decomposition of

αmλIn
αm

αm− 1

⋱
α

A

where α is the forgettingFactor, λ is the regularizationParameter, and A is an m-by-n
matrix.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations A′A x = B using forward and backward
substitution.

Specify the input variables, A and B.

 fixed.qlessQR

4-519

rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];

Compute the upper-triangular factor, R, of A, where A = QR.

R = fixed.qlessQR(A);

Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

x = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

Compute Upper-Triangular Matrix Factor Using Forgetting Factor

Using a forgetting factor with the fixed.qlessQR function is roughly equivalent to the Complex-
and Real Partial-Systolic Q-less QR with Forgetting Factor blocks. These blocks process one row of
the input matrix at a time and apply the forgetting factor before each row is processed. The
fixed.qlessQR function takes in all rows of A at once, but carries out the computation in the same
way as the blocks. The forgetting factor is applied before each row is processed.

Specifying a forgetting factor is useful when you want to stream an indefinite number of rows
continuously, such as reading values from a sensor array continuously, without accumulating the data
without bound.

Without using a forgetting factor, the accumulation is the square root of the number of rows, so
10000 rows would accumulate to 10000 = 100.

A = ones(10000,3);
R = fixed.qlessQR(A)

4 Functions

4-520

R = 3×3

 100.0000 100.0000 100.0000
 0 0.0000 0.0000
 0 0 0.0000

To accrue with the effective height of m=16 rows, set the forgetting factor to the following.

m=16;
forgettingFactor = exp(-1/(2*m))

forgettingFactor = 0.9692

Using the forgetting factor, fixed.qlessQR would accumulate to about square root of 16.

R = fixed.qlessQR(A,forgettingFactor)

R = 3×3

 3.9377 3.9377 3.9377
 0 0.0000 0.0000
 0 0 0.0000

Input Arguments
A — Input matrix
matrix

Input matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by R
before each row of A is processed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 fixed.qlessQR

4-521

Output Arguments
R — Upper-triangular factor
matrix

Upper-triangular factor, returned as a matrix that satisfies A = QR.

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The fixed.qlessqr function now supports the Tikhonov regularization parameter,
“regularizationParameter” on page 4-0 .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQRUpdate |
fixed.qrAB | fixed.qrMatrixSolve | fixed.qlessQRMatrixSolve

Topics
“Determine Fixed-Point Types for Q-less QR Decomposition”
“Compute Forgetting Factor Required for Streaming Input Data”

4 Functions

4-522

fixed.qlessQRMatrixSolve
Solve system of linear equations (A'A)X = B for X using Q-less QR decomposition

Syntax
X = fixed.qlessQRMatrixSolve(A,B)
X = fixed.qlessQRMatrixSolve(A,B,outputType)
X = fixed.qlessQRMatrixSolve(A,B,outputType,forgettingFactor)
X = fixed.qlessQRMatrixSolve(A,B,outputType,[],regularizationParameter)
X = fixed.qlessQRMatrixSolve(A,B,outputType,forgettingFactor,
regularizationParameter)

Description
X = fixed.qlessQRMatrixSolve(A,B) solves the system of linear equations (A'A)X = B using QR
decomposition, without computing the Q value.

The result of this code is equivalent to computing

[~,R] = qr(A,0);
X = R\(R'\B)

or

X = (A'*A)\B

X = fixed.qlessQRMatrixSolve(A,B,outputType) returns the solution to the system of linear
equations (A'A)X = B as a variable with the output type specified by outputType.

X = fixed.qlessQRMatrixSolve(A,B,outputType,forgettingFactor) returns the solution
to the system of linear equations, with the forgettingFactor multiplied by R after each row of A is
processed.

X = fixed.qlessQRMatrixSolve(A,B,outputType,[],regularizationParameter) solves
the matrix equation λ2In + A′A X = B where λ is the regularizationParameter.

X = fixed.qlessQRMatrixSolve(A,B,outputType,forgettingFactor,
regularizationParameter) solves the matrix equation A′α, λAα, λX = B where

Aα, λ =

αmλIn
αm

αm− 1

⋱
α

A ,

α is the forgettingFactor, λ is the regularizationParameter, and m is the number of rows in
A.

 fixed.qlessQRMatrixSolve

4-523

Examples

Solve a System of Equations Using Q-Less QR Decomposition

This example shows how to solve the system of linear equations A′A X = B using QR decomposition,
without explicitly calculating the Q factor of the QR decomposition.

rng('default');
m = 6;
n = 3;
p = 1;
A = randn(m,n);
B = randn(n,p);
X = fixed.qlessQRMatrixSolve(A,B)

X = 3×1

 0.2991
 0.0523
 0.4182

The fixed.qlessQRMatrixSolve function is equivalent to the following code, however the
fixed.qlessQRMatrixSolve function is more efficient and supports fixed-point data types.

X = (A'*A)\B

X = 3×1

 0.2991
 0.0523
 0.4182

Solve System of Equations Specifying an Output Data Type

This example shows how to specify an output data type to solve a system of equations with fixed-point
data.

Define the data representing the system of equations. Define the matrix A as a zero-mean, normally
distributed random matrix with a standard deviation of 1.

rng('default');
m = 6;
n = 3;
p = 1;
A0 = randn(m,n);
B0 = randn(n,p);

Specify fixed-point data types for A and B as to avoid overflow during the computation of QR.

T.A = fi([],1,22,16);
T.B = fi([],1,22,16);
A = cast(A0,'like',T.A)

4 Functions

4-524

A =
 0.5377 -0.4336 0.7254
 1.8339 0.3426 -0.0630
 -2.2589 3.5784 0.7147
 0.8622 2.7694 -0.2050
 0.3188 -1.3499 -0.1241
 -1.3077 3.0349 1.4897

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 22
 FractionLength: 16

B = cast(B0,'like',T.B)

B =
 1.4090
 1.4172
 0.6715

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 22
 FractionLength: 16

Specify an output data type to avoid overflow in the back-substitution.

T.X = fi([],1,29,12);

Use the fixed.qlessQRMatrixSolve function to compute the solution, X.

X = fixed.qlessQRMatrixSolve(A,B,T.X)

X =
 0.2988
 0.0522
 0.4180

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 12

Compare this result to the result of the built-in MATLAB® operations in double-precision floating-
point.

X0 = (A0'*A0)\B0

X0 = 3×1

 0.2991
 0.0523
 0.4182

 fixed.qlessQRMatrixSolve

4-525

Input Arguments
A — Coefficient matrix
matrix

Coefficient matrix in the linear system of equations (A'A)X = B.
Data Types: single | double | fi
Complex Number Support: Yes

B — Input array
vector | matrix

Input vector or matrix representing B in the linear system of equations (A'A)X = B.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, X, will have the specified data type. If outputType is
specified as a numeric variable, X will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi | numerictype

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by the
output of the QR decomposition, R after each row of A is processed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
X — Solution
vector | matrix

Solution, returned as a vector or matrix. If A is an m-by-n matrix and B is an m-by-p matrix, then X is
an n-by-p matrix.

4 Functions

4-526

Version History
Introduced in R2020b

Support for Tikhonov regularization parameter

The fixed.qlessqrmatrixsolve function now supports the Tikhonov regularization parameter,
“regularizationParameter” on page 4-0 .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed and use binary-point scaling. Slope-bias representation is not supported for
fixed-point data types.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Topics
“Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B”
“Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B”
“Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B”
“Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B”
“Compute Forgetting Factor Required for Streaming Input Data”

 fixed.qlessQRMatrixSolve

4-527

fixed.qlessqrFixedpointTypes
Determine fixed-point types for transforming A to R in-place, where R is upper-triangular factor of QR
decomposition of A, without computing Q

Syntax
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits,
regularizationParameter)
T = fixed.qlessqrFixedpointTypes(___ ,maxWordLength)

Description
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits) computes fixed-point
types for transforming A to R in-place, where R is the upper-triangular factor of the QR
decomposition of A, without computing Q. T is returned as a struct with field T.A containing a fi
object that specifies the fixed-point type for A, which guarantees no overflow will occur in the QR
algorithm.

The QR algorithm transforms A in-place into upper-triangular R, where QR=A is the QR
decomposition of A.

T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits,

regularizationParameter) computes fixed-point types for transforming
λIn
A

 in-place to

R = Q′
λIn
A

 where λ is the regularizationParameter, QR is the economy size QR decomposition

of
λIn
A

, A is an m-by-n matrix, and In = eye(n). regularizationParameter is an optional

parameter. If not supplied or empty, then the default value is used.

T = fixed.qlessqrFixedpointTypes(___ ,maxWordLength) specifies the maximum word
length of the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty,
then the default value is used.

Examples

Determine Fixed-Point Types for Q-less QR Decomposition

This example shows how to use fixed.qlessqrFixedpointTypes to analytically determine a fixed-
point type for the computation of the Q-less QR decomposition.

Define Matrix Dimensions

Specify the number of rows and columns in matrix A.

m = 10; % Number of rows in matrix A
n = 3; % Number of columns in matrix A

4 Functions

4-528

Generate Matrix A

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between −1 and +1.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);

Select Fixed-Point Type

Use the fixed.qlessqrFixedpointTypes function to select the fixed-point data type for matrix A
that guarantees no overflow will occur in the transformation of A in-place to R = Q′A.

max_abs_A = 1; % Upper bound on max(abs(A(:))
precisionBits = 24; % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)

T = struct with fields:
 A: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 24

Use the Specified Type to Compute the Q-less QR Decomposition

Cast the input to the type determined by fixed.qlessqrFixedpointTypes.

A = cast(A,'like',T.A);

Accelerate fixed.qlessQR by using fiaccel to generate a MATLAB executable (MEX) function.

fiaccel fixed.qlessQR -args {A} -o qlessQR_mex

Compute the QR decomposition.

R = qlessQR_mex(A);

Verify that R is Upper-Triangular

R is an upper-triangular matrix.

R

R =
 2.2180 0.8559 -0.5607
 0 2.0578 -0.4017
 0 0 1.7117

 fixed.qlessqrFixedpointTypes

4-529

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 24

isequal(R,triu(R))

ans = logical
 1

Verify the Accuracy of the Output

To evaluate the accuracy of the fixed.qlessQR function, compute the relative error.

R = Q′A, and Q is orthogonal, so R′R = A′QQ′A = A′A, within rounding error.

relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))

relative_error = 9.3865e-07

Suppress mlint warnings.

%#ok<*NOPTS>

Input Arguments
m — Number of rows in A
positive integer-valued scalar

Number of rows in A, specified as a positive integer-valued scalar.
Data Types: double

max_abs_A — Maximum of absolute value of A
scalar

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double

precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

4 Functions

4-530

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

maxWordLength — Maximum word length of fixed-point types
128 (default) | positive integer

Maximum word length of fixed-point types, specified as a positive integer.

If the word length of the fixed-point type exceeds the specified maximum word length, the default of
128 bits is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
T — Fixed-point type for A
struct

Fixed-point type for A, returned as a struct. The struct T has field T.A that contains a fi object that
specifies a fixed-point type for A that guarantees no overflow will occur in the QR algorithm.

Tips
Use fixed.qlessqrFixedpointTypes to compute fixed-point types for the inputs of these
functions and blocks.

• fixed.qlessQR
• Complex Burst Q-less QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
• Real Burst Q-less QR Decomposition
• Real Partial-Systolic Q-less QR Decomposition
• Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Algorithms
The number of integer bits required to prevent overflow is derived from the following bound on the
growth of R [1]. The required number of integer bits is added to the number of bits of precision,
precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of
approximately 1.6468 [2].

The elements of R are bounded in magnitude by

max R : ≤ mmax A : .

Version History
Introduced in R2021b

 fixed.qlessqrFixedpointTypes

4-531

Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixed-
point types.

Support for Tikhonov regularization parameter

The fixed.qlessqrfixedpointtypes function now supports the Tikhonov regularization
parameter, “regularizationParameter” on page 4-0 .

References
[1] “Perform QR Factorization Using CORDIC”

[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic
Computers EC-8 (1959): 330-334.

See Also
Functions
fixed.qlessQR

Blocks
Complex Burst Q-less QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition |
Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Real Burst Q-less QR
Decomposition | Real Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less QR
Decomposition with Forgetting Factor

4 Functions

4-532

fixed.qlessQRUpdate
Update QR factorization

Syntax
R = fixed.qlessQRUpdate(R, y)
R = fixed.qlessQRUpdate(R, y, forgettingFactor)

Description
R = fixed.qlessQRUpdate(R, y) updates upper-triangular R with vector y.

This syntax is equivalent to

[~,R] = qr([R;y],0);

R = fixed.qlessQRUpdate(R, y, forgettingFactor) updates upper-triangular R with vector
y and multiplies the result by the value specified by forgettingFactor.

This syntax is equivalent to

[~,R] = qr([R;y],0);
R(:) = forgettingFactor * R;

Examples

Update the Upper-Triangular Factor of a Matrix

This example shows how to update the upper-triangular factor of a matrix as new data streams in.

Define a matrix and compute the upper-triangular factor, R, using the fixed.qlessQR function.

rng('default');
m = 20;
n = 4;
A = randn(m,n)

A = 20×4

 0.5377 0.6715 -0.1022 -1.0891
 1.8339 -1.2075 -0.2414 0.0326
 -2.2588 0.7172 0.3192 0.5525
 0.8622 1.6302 0.3129 1.1006
 0.3188 0.4889 -0.8649 1.5442
 -1.3077 1.0347 -0.0301 0.0859
 -0.4336 0.7269 -0.1649 -1.4916
 0.3426 -0.3034 0.6277 -0.7423
 3.5784 0.2939 1.0933 -1.0616
 2.7694 -0.7873 1.1093 2.3505
 ⋮

 fixed.qlessQRUpdate

4-533

R = fixed.qlessQR(A)

R = 4×4

 7.1017 -2.0103 1.1646 0.7999
 0 4.8784 0.5745 -0.3222
 0 0 3.1658 -0.4570
 0 0 0 4.4965

As new data arrives, for example new values from a sensor array, you can use the
fixed.qlessQRUpdate function to update the upper-triangular factor with the new data.

y1 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,y1)

R = 4×4

 7.1718 -1.8513 1.2927 0.9315
 0 5.0412 0.7646 -0.0904
 0 0 3.2332 -0.2584
 0 0 0 4.6074

y2 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,y2)

R = 4×4

 7.2411 -1.6954 1.4184 1.0607
 0 5.1929 0.9371 0.1191
 0 0 3.2892 -0.0962
 0 0 0 4.6928

The result of updating the upper-triangular factor as new data arrives is equivalent to computing the
upper-triangular factor with all of the data.

R = fixed.qlessQR([A;y1;y2])

R = 4×4

 7.2411 -1.6954 1.4184 1.0607
 0 5.1929 0.9371 0.1191
 0 0 3.2892 -0.0962
 0 0 0 4.6928

When you want to stream an indefinite number of rows continuously, such as reading values from a
sensor array continuously, without accumulating the data without bound, specify a forgetting factor.

forgettingFactor = exp(-1/(2*m))

forgettingFactor = 0.9753

y3 = [1, 1, 1, 1];
R = fixed.qlessQRUpdate(R,y3,forgettingFactor)

R = 4×4

4 Functions

4-534

 7.1294 -1.5046 1.5038 1.1582
 0 5.2031 1.0676 0.3020
 0 0 3.2543 0.0379
 0 0 0 4.6431

Input Arguments
R — Upper-triangular input matrix
matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

y — Measurement vector
vector

Measurement input, specified as a vector.
Data Types: single | double | fi
Complex Number Support: Yes

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by R
after each row of R is processed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
R — Updated upper-triangular matrix
matrix

Updated upper-triangular factor, returned as a matrix.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 fixed.qlessQRUpdate

4-535

R and y must be signed and use binary-point scaling. Slope-bias representation is not supported for
fixed-point data types.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR | fixed.qrAB |
fixed.qrMatrixSolve | fixed.qlessQRMatrixSolve

Topics
“Compute Forgetting Factor Required for Streaming Input Data”

4 Functions

4-536

fixed.qrAB
Compute C = Q'B and upper-triangular factor R

Syntax
[C,R] = fixed.qrAB(A,B)
[C,R] = fixed.qrAB(A,B,regularizationParameter)

Description
[C,R] = fixed.qrAB(A,B) computes C = Q'B and upper-triangular factor R. The function
simultaneously performs Givens rotations to A and B to transform A into R and B into C.

This syntax is equivalent to

[C,R] = qr(A,B)

[C,R] = fixed.qrAB(A,B,regularizationParameter) computes C and R using a
regularization parameter value specified by regularizationParameter. When a regularization
parameter is specified, the function simultaneously performs Givens rotations to transform

λIn
A

R

and

0n, p
B

C

where A is an m-by-n matrix, B is a m-by-p matrix, and λ is the regularization parameter.

This syntax is equivalent to

[Q,R] = qr([regularizationParameter*eye(n); A], 0);
C = Q'[zeros(n,p);B];

Examples

Compute C and R Factors

This example shows how to compute the upper-triangular factor R, and C = Q′b.

Define the input matrices, A, and b.

rng('default');
m = 6;
n = 3;
p = 1;
A = randn(m,n)

 fixed.qrAB

4-537

A = 6×3

 0.5377 -0.4336 0.7254
 1.8339 0.3426 -0.0631
 -2.2588 3.5784 0.7147
 0.8622 2.7694 -0.2050
 0.3188 -1.3499 -0.1241
 -1.3077 3.0349 1.4897

b = randn(m,p)

b = 6×1

 1.4090
 1.4172
 0.6715
 -1.2075
 0.7172
 1.6302

The fixed.qrAB function returns the upper-triangular factor, R, and C = Q′b.

[C, R] = fixed.qrAB(A,b)

C = 3×1

 -0.3284
 0.4055
 2.5481

R = 3×3

 3.3630 -2.8841 -1.0421
 0 4.8472 0.6885
 0 0 1.3258

Solve System of Linear Equations Using Regularization

This example shows how to solve a system of linear equations, Ax = b, by computing the upper-
triangular factor R, and C = Q′b. A regularization parameter can improve the conditioning of least
squares problems, and reduce the variance of the estimates when solving linear systems of equations.

Define input matrices, A, and b.

rng('default');
m = 50;
n = 5;
p = 1;
A = randn(m,n);
b = randn(m,p);

Use the fixed.qrAB function to compute the upper-triangular factor, R, and C = Q′b.

4 Functions

4-538

[C, R] = fixed.qrAB(A, b, 0.01)

C = 5×1

 -0.6361
 1.7663
 1.5892
 -2.0638
 -0.1327

R = 5×5

 9.0631 0.7471 0.4126 -0.3606 0.1883
 0 7.2515 -1.1145 0.6011 -0.7544
 0 0 7.6132 -0.9460 -0.7062
 0 0 0 6.3065 -2.3238
 0 0 0 0 5.9297

Use this result to solve Ax = b using x = R\C. Compute x = R\C using the fixed.qrMatrixSolve
function.

x = fixed.qrMatrixSolve(R,C)

x = 5×1

 -0.1148
 0.2944
 0.1650
 -0.3355
 -0.0224

Compare the result to computing x = A\b directly.

x = A\b

x = 5×1

 -0.1148
 0.2944
 0.1650
 -0.3355
 -0.0224

Input Arguments
A — Input coefficient matrix
matrix

Input coefficient matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

 fixed.qrAB

4-539

B — Right-hand side matrix
matrix

Right-hand side matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
C — Linear system factor
matrix

Linear system factor, returned as a matrix that satisfies C = Q'B.

R — Upper-triangular factor
matrix

Upper-triangular factor, returned as a matrix that satisfies A = QR.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed and use binary-point scaling. Slope-bias representation is not supported for
fixed-point data types.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRUpdate | fixed.qrMatrixSolve | fixed.qlessQRMatrixSolve

4 Functions

4-540

Topics
“Determine Fixed-Point Types for QR Decomposition”

 fixed.qrAB

4-541

fixed.qrFixedpointTypes
Determine fixed-point types for transforming A and R and B to C=Q'B in-place, where QR=A is QR
decomposition of A

Syntax
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits)
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits,
regularizationParameter)
T = fixed.qrFixedpointTypes(___ ,maxWordLength)

Description
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits) returns fixed-
point types for A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into
C=Q'B, where QR=A is the QR decomposition of A.

T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits,

regularizationParameter) returns fixed-point types for transforming
λIn
A

 in-place to R = Q′
λIn
A

and
0n, p

B
 in-place to C = Q′

0n, p
B

 where λ is the regularizationParameter, QR is the economy

size QR decomposition of
λIn
A

, A is an m-by-n matrix, p is the number of columns in B, In = eye(n),

and 0n,p = zeros(n,p). regularizationParameter is an optional parameter. If not supplied or
empty, then the default value is used.

T = fixed.qrFixedpointTypes(___ ,maxWordLength) specifies the maximum word length of
the fixed-point types. maxWordLength is an optional parameter. If not supplied or empty, then the
default value is used.

Examples

Determine Fixed-Point Types for QR Decomposition

This example shows how to use fixed.qrFixedpointTypes to analytically determine fixed-point
types for the computation of the QR decomposition.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B. This example sets B to be the identity matrix the same size as the number of
rows of A.

m = 10; % Number of rows in matrices A and B
n = 3; % Number of columns in matrix A

4 Functions

4-542

Generate Matrices A and B

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between −1 and +1. Matrix B is the identity matrix.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);
B = eye(m);

Select Fixed-Point Types

Use fixed.qrFixedpointTypes to select fixed-point data types for matrices A and B that
guarantee no overflow will occur in the transformation of A in-place to R = Q′A and B in-place to
C = Q′B.

max_abs_A = 1; % Upper bound on max(abs(A(:))
max_abs_B = 1; % Upper bound on max(abs(B(:))
precisionBits = 24; % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 24

T.B is the type computed for transforming B to C = Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 24

Use the Specified Types to Compute the QR Decomposition

Cast the inputs to the types determined by fixed.qrFixedpointTypes.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate fixed.qrAB by using fiaccel to generate a MATLAB executable (MEX) function.

 fixed.qrFixedpointTypes

4-543

fiaccel fixed.qrAB -args {A,B} -o qrAB_mex

Compute the QR decomposition.

[C,R] = qrAB_mex(A,B);

Extract the Economy-Size Q

The function fixed.qrAB transforms A to R = Q′A and B to C = Q′B. In this example, B is the
identity matrix, so Q = C′ is the economy-size orthogonal factor of the QR decomposition.

Q = C';

Verify that Q is Orthogonal and R is Upper-Triangular

Q is orthogonal, so Q′Q is the identity matrix within rounding error.

I = Q'*Q

I =
 1.0000 -0.0000 -0.0000
 -0.0000 1.0000 -0.0000
 -0.0000 -0.0000 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 62
 FractionLength: 48

R is an upper-triangular matrix.

R

R =
 2.2180 0.8559 -0.5607
 0 2.0578 -0.4017
 0 0 1.7117

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 24

isequal(R,triu(R))

ans = logical
 1

Verify the Accuracy of the Output

To evaluate the accuracy of the fixed.qrAB function, compute the relative error.

relative_error = norm(double(Q*R - A))/norm(double(A))

relative_error = 1.5886e-06

Suppress mlint warnings.

4 Functions

4-544

%#ok<*NOPTS>

Input Arguments
m — Number of rows in A
positive integer-valued scalar

Number of rows in A, specified as a positive integer-valued scalar.
Data Types: double

max_abs_A — Maximum of absolute value of A
scalar

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double

max_abs_B — Maximum of absolute value of B
scalar

Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double

precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

maxWordLength — Maximum word length of fixed-point types
128 (default) | positive integer

Maximum word length of fixed-point types, specified as a positive integer.

If the word length of the fixed-point type exceeds the specified maximum word length, the default of
128 bits is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 fixed.qrFixedpointTypes

4-545

Output Arguments
T — Fixed-point types for A and B
struct

Fixed-point types for A and B, returned as a struct. The struct T has fields T.A and T.B. These fields
contain fi objects that specify fixed-point types for A and B that guarantee no overflow will occur in
the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into C=Q'B
where QR=A is the QR decomposition of A.

Tips
Use fixed.qrFixedpointTypes to compute fixed-point types for the inputs of these functions and
blocks.

• fixed.qrAB
• Complex Burst QR Decomposition
• Complex Partial-Systolic QR Decomposition
• Real Burst QR Decomposition
• Real Partial-Systolic QR Decomposition

Algorithms
The number of integer bits required to prevent overflow is derived from the following bounds on the
growth of R and C=Q'B [1]. The required number of integer bits is added to the number of bits of
precision, precisionBits, of the input, plus one for the sign bit, plus one bit for intermediate
CORDIC gain of approximately 1.6468 [2].

The elements of R are bounded in magnitude by

max R : ≤ mmax A : .

The elements of C=Q'B are bounded in magnitude by

max C : ≤ mmax B : .

Version History
Introduced in R2021b

Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixed-
point types.

Support for Tikhonov regularization parameter

4 Functions

4-546

The fixed.qrfixedpointtypes function now supports the Tikhonov regularization parameter,
“regularizationParameter” on page 4-0 .

References
[1] “Perform QR Factorization Using CORDIC”

[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic
Computers EC-8 (1959): 330-334.

See Also
Functions
fixed.qrAB

Blocks
Complex Burst QR Decomposition | Complex Partial-Systolic QR Decomposition | Real Burst QR
Decomposition | Real Partial-Systolic QR Decomposition

 fixed.qrFixedpointTypes

4-547

fixed.qrMatrixSolve
Solve system of linear equations Ax = B for x using QR decomposition

Syntax
x = fixed.qrMatrixSolve(A,B)
x = fixed.qrMatrixSolve(A,B, outputType)
x = fixed.qrMatrixSolve(A,B,outputType,regularizationParameter)

Description
x = fixed.qrMatrixSolve(A,B) solves the system of linear equations Ax = B using QR
decomposition.

x = fixed.qrMatrixSolve(A,B, outputType) returns the solution to the system of linear
equations Ax = B as a variable with the output type specified by outputType.

x = fixed.qrMatrixSolve(A,B,outputType,regularizationParameter) returns the
solution to the system of linear equations

λIn
A

x =
0n, p
B

where A is an m-by-n matrix, B is an m-by-p matrix, and λ is the regularization parameter.

Examples

Solve a System of Equations Using QR Decomposition

This example shows how to solve a simple system of linear equations Ax = b, using QR
decomposition.

In this example, define A as a 5-by-3 matrix with a large condition number. To solve a system of linear
equations involving ill-conditioned (large condition number) non-square matrices, you must use QR
decomposition.

rng default;
A = gallery('randsvd', [5,3], 1000000);
b = [1; 1; 1; 1; 1];
x = fixed.qrMatrixSolve(A,b)

x = 3×1
104 ×

 -2.3777
 7.0686
 -2.2703

4 Functions

4-548

Compare the result of the fixed.qrMatrixSolve function with the result of the mldivide or \
function.

x = A\b

x = 3×1
104 ×

 -2.3777
 7.0686
 -2.2703

Specify Regularization Parameter in an Overdetermined System

This example shows the effect of a regularization parameter when solving an overdetermined system.
In this example, a quantity y is measured at several different values of time t to produce the
following observations.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';

Model the data with a decaying exponential function

y(t) = c1 + c2e−t.

The preceding equation says that the vector y should be approximated by a linear combination of two
other vectors. One is a constant vector containing all ones and the other is the vector with
components exp(-t). The unknown coefficients, c1 and c2, can be computed by doing a least-squares
fit, which minimizes the sum of the squares of the deviations of the data from the model. There are
six equations and two unknowns, represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E = 6×2

 1.0000 1.0000
 1.0000 0.7408
 1.0000 0.4493
 1.0000 0.3329
 1.0000 0.2019
 1.0000 0.1003

Use the fixed.qrMatrixSolve function to get the least-squares solution.

c = fixed.qrMatrixSolve(E, y)

c = 2×1

 0.4760
 0.3413

In other words, the least-squares fit to the data is

 fixed.qrMatrixSolve

4-549

y(t) = 0 . 4760 + 0 . 3413e−t .

The following statements evaluate the model at regularly spaced increments in t, and then plot the
result together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

In cases where the input matrices are ill-conditioned, small positive values of a regularization
parameter can improve the conditioning of the least squares problem, and reduce the variance of the
estimates. Explore the effect of the regularization parameter on the least squares solution for this
data.

figure;
lambda = [0:0.1:0.5];
plot(t,y,'o', 'DisplayName', 'Original Data');
for i = 1:length(lambda)
 c = fixed.qrMatrixSolve(E, y, numerictype('double'), lambda(i));
 Y = [ones(size(T)) exp(-T)]*c;
 hold on
 plot(T,Y,'-', 'DisplayName', ['lambda =', num2str(lambda(i))])
end
legend('Original Data', 'lambda = 0', 'lambda = 0.1', 'lambda = 0.2', 'lambda = 0.3', 'lambda = 0.4', 'lambda = 0.5')

4 Functions

4-550

Input Arguments
A — Coefficient matrix
matrix

Coefficient matrix in the linear system of equations Ax = B.
Data Types: single | double | fi
Complex Number Support: Yes

B — Input array
vector | matrix

Input vector or matrix representing B in the linear system of equations Ax = B.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.

 fixed.qrMatrixSolve

4-551

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi | numerictype

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
x — Solution
vector | matrix

Solution, returned as a vector or matrix. If A is an m-by-n matrix and B is an m-by-p matrix, then x is
an n-by-p matrix.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Generate code for double-precision, single-precision, and fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed and use binary-point scaling. Slope-bias representation is not supported for
fixed-point data types.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qlessQRMatrixSolve

Topics
“Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B”
“Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B”
“Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B”
“Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B”

4 Functions

4-552

fixed.Quantizer
Quantize fixed-point numbers

Note fixed.Quantizer is not recommended. Use cast, zeros, ones, eye, or subsasgn instead.
For more information, see Compatibility Considerations.

Description
The fixed.Quantizer object describes data type properties to use for quantization. After you
create a fixed.Quantizer object, use quantize to quantize fi values.

Creation
Syntax
q = fixed.Quantizer
q = fixed.Quantizer(nt,rm,oa)
q = fixed.Quantizer(s,wl,fl,rm,oa)
q = fixed.Quantizer(Name,Value)

Description

q = fixed.Quantizer creates a quantizer object q that quantizes fixed-point numbers using the
fixed-point settings of q.

q = fixed.Quantizer(nt,rm,oa) creates a fixed-point quantizer object with numerictype nt,
rounding method rm, and overflow action oa.

The numerictype, rounding method, and overflow action apply only during the quantization. The
output q does not have an attached fimath.

q = fixed.Quantizer(s,wl,fl,rm,oa) creates a binary-point scaled fixed-point quantizer
object with signedness s, word length wl, fraction length fl, rounding method rm, and overflow
action oa.

q = fixed.Quantizer(Name,Value) creates a quantizer object with the property options
specified by one or more property Name,Value arguments.

Input Arguments

nt — numerictype object
numerictype(true,16,15) (default) | numerictype object

numerictype object that describes a binary-point scaled or a slope-bias scaled fixed-point data type,
specified as a numerictype object.

If fixed.Quantizer uses a numerictype object that has either a Signedness of Auto or
unspecified Scaling, an error occurs.

 fixed.Quantizer

4-553

rm — Rounding method
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use for quantization, specified as one of the following:

• 'Ceiling' — Round up to the next allowable quantized value.
• 'Convergent' — Round to the nearest allowable quantized value. Numbers that are exactly

halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit after rounding would be set to 0.

• 'Floor' — Round down to the next allowable quantized value.
• 'Nearest' — Round to the nearest allowable quantized value. Numbers that are halfway

between the two nearest allowable quantized values are rounded up.
• 'Round' — Round to the nearest allowable quantized value. Numbers that are halfway between

the two nearest allowable quantized values are rounded up in absolute value.
• 'Zero' — Round negative numbers up and positive numbers down to the next allowable

quantized value.

oa — Action to take on overflow
'Wrap' (default) | 'Saturate'

Action to take on overflow, specified as one of these values:

• 'Saturate' — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers as specified by the numeric type properties, these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

• 'Wrap' — Overflows wrap.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers as specified by the numeric type properties, these values are wrapped
back into that range using modular arithmetic relative to the smallest representable number.

s — Whether output is signed
1 or true (default) | 0 or false

Whether output is signed, specified as one of the following:

• 1 or true — Signed
• 0 or false — Unsigned

wl — Word length
16 (default) | positive scalar integer

Word length of the stored integer value of the output data in bits, specified as a positive scalar
integer.

fl — Fraction length
15 (default) | scalar integer

Fraction length of the stored integer value of the output data in bits, specified as a scalar integer.

4 Functions

4-554

Properties
Bias — Bias
0 (default) | scalar integer

Bias associated with the quantizer object, specified as a scalar integer.

The bias is a part of the numerical representation used to interpret a fixed-point number. Along with
the slope, the bias forms the scaling of the number. For more information, see “Fixed-point numbers”
on page 4-558.

FixedExponent — Fixed-point exponent
-15 (default) | scalar integer

Fixed-point exponent associated with the quantizer object, specified as a scalar integer. The exponent
is part of the numerical representation used to interpret a fixed-point number. The exponent of a
fixed-point number is equal to the negative of the fraction length. For more information, see “Fixed-
point numbers” on page 4-558.

FractionLength — Fraction length
15 (default) | scalar integer

Fraction length of the stored integer value of the object, in bits, specified as a scalar integer.

The fraction length automatically defaults to the best precision possible based on the value of the
word length and the real-world value of the fi object being quantized.

OverflowAction — Action to take on overflow
'Wrap' (default) | 'Saturate'

Action to take on overflow, specified as one of these values:

• 'Saturate' — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers, as specified by the numeric type properties, these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

• 'Wrap' — Overflows wrap.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers, as specified by the numeric type properties, these values are wrapped
back into that range using modular arithmetic relative to the smallest representable number.

Data Types: char

RoundingMethod — Rounding method
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use for quantization, specified as one of the following:

• 'Ceiling' — Round up to the next allowable quantized value.
• 'Convergent' — Round to the nearest allowable quantized value. Numbers that are exactly

halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit after rounding would be set to 0.

 fixed.Quantizer

4-555

• 'Floor' — Round down to the next allowable quantized value.
• 'Nearest' — Round to the nearest allowable quantized value. Numbers that are halfway

between the two nearest allowable quantized values are rounded up.
• 'Round' — Round to the nearest allowable quantized value. Numbers that are halfway between

the two nearest allowable quantized values are rounded up in absolute value.
• 'Zero' — Round negative numbers up and positive numbers down to the next allowable

quantized value.

Data Types: char

Signed — Whether output is signed
1 or true (default) | 0 or false

Whether output is signed, specified as one of the following:

• 1 or true — Signed
• 0 or false — Unsigned

Note Although the Signed property is still supported, the Signedness property always appears in
the fixed.Quantizer object display. If you choose to change or set the signedness of your
fixed.Quantizer object using the Signed property, MATLAB updates the corresponding value of
the Signedness property.

Signedness — Whether output is signed
'Signed' (default) | 'Unsigned'

Whether output is signed, specified as 'Signed' or 'Unsigned'.

Slope — Slope associated with object
2^-15 (default) | positive scalar

Slope associated with the object. The slope is part of the numerical representation used to express a
fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. For more
information, see “Fixed-point numbers” on page 4-558.

SlopeAdjustmentFactor — Slope adjustment associated with object
1 (default) | scalar greater than or equal to 1 and less than 2

Slope adjustment associated with the object, specified as a scalar greater than or equal to 1 and less
than 2. The slope adjustment is equivalent to the fractional slope of a fixed-point number. The
fractional slope is part of the numerical representation used to express a fixed-point number. For
more information, see “Fixed-point numbers” on page 4-558.

WordLength — Word length
16 (default) | positive scalar integer

Word length of the stored integer value of the output data, in bits, specified as a positive scalar
integer.

4 Functions

4-556

Object Functions
quantize Quantize fi values using fixed.Quantizer object

Examples

Reduce Word Length Resulting From Adding Two Fixed-Point Numbers

Use fixed.Quantizer to reduce the word length that results from adding two fixed-point numbers.

q = fixed.Quantizer
x1 = fi(0.1,1,16,15);
x2 = fi(0.8,1,16,15);
y = quantize(q,x1+x2)

q =

 fixed.Quantizer with properties:

 Signed: 1
 WordLength: 16
 SlopeAdjustmentFactor: 1
 FixedExponent: -15
 Bias: 0
 Signedness: 'Signed'
 Slope: 3.0518e-05
 FractionLength: 15
 RoundingMethod: 'Floor'
 OverflowAction: 'Wrap'

y =

 0.9000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Quantize Binary-Point Scaled Fixed-Point fi to Slope-Bias Scaled Fixed-Point fi

Use a fixed.Quantizer object to change a binary-point scaled fixed-point fi to a slope-bias scaled
fixed-point fi.

x = fi(pi,1,16,13)
q = fixed.Quantizer(numerictype(1,7,1.6,0.2),'Round','Saturate')
y = quantize(q,x)

x =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 fixed.Quantizer

4-557

 WordLength: 16
 FractionLength: 13

q =

 fixed.Quantizer with properties:

 Signed: 1
 WordLength: 7
 SlopeAdjustmentFactor: 1.6000
 FixedExponent: 0
 Bias: 0.2000
 Signedness: 'Signed'
 Slope: 1.6000
 FractionLength: 0
 RoundingMethod: 'Round'
 OverflowAction: 'Saturate'

y =

 3.4000

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2

More About
Fixed-point numbers

Fixed-point numbers can be represented as

real‐worldvalue = (slope × storedinteger) + bias

where the slope can be expressed as

slope = f ractionalslope × 2f ixedexponent

Tips
• Use y = quantize(q,x) to quantize input array x using the fixed-point settings of the quantizer

object q. x can be any fixed-point fi number, except a Boolean value. If x is a scaled double, the x
and y data will be the same, but y will have fixed-point settings. If x is a double or single, then y
= x. This functionality lets you share the same code for both floating-point data types and fi
objects when quantizers are present.

• Use n = numerictype(q) to get a numerictype for the current settings of the quantizer object
q.

• Use clone(q) to create a quantizer object with the same property values as q.

4 Functions

4-558

Version History
Introduced in R2011b

fixed.Quantizer is not recommended
Not recommended starting in R2013a

fixed.Quantizer is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. There
are no plans to remove fixed.Quantizer.

Starting in R2013a, use cast, zeros, ones, eye, or subsasgn instead. The cast, zeros, ones,
eye, and subsasgn functions can quantize other data types in addition to fi objects.

Not Recommended Recommended
x = fi(pi,1,16,13);

q = fixed.Quantizer(numerictype(1,7,1.6,0.2),'Round','Saturate');
y = quantize(q,x)

y =

 3.4000

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2

x = fi(pi,1,16,13);

F = fimath('RoundingMethod','Round','OverflowAction','Saturate');
nt = fi([],1,7,1.6,0.2,F);
y = cast(x,'like',nt)

y =

 3.4000

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

fixed.Quantizer is a handle object and must be declared as persistent in code generation.

See Also
quantize | fi | numerictype

 fixed.Quantizer

4-559

fixed.realConditionNumberUpperBound
Estimate of upper bound for 2-norm condition number of real-valued matrix

Syntax
C = fixed.realConditionNumberUpperBound(m,n,max_abs_A,noiseStandardDeviation)
C = fixed.realConditionNumberUpperBound(___ ,p_s)
C = fixed.realConditionNumberUpperBound(___ ,regularizationParameter)

Description
C = fixed.realConditionNumberUpperBound(m,n,max_abs_A,noiseStandardDeviation)
returns an estimate of an upper bound for the 2-norm condition number of a real-valued m-by-n matrix
A, where max_abs_A >= max(abs(A(:))) and noiseStandardDeviation is the standard
deviation of the additive random noise in A.

C = fixed.realConditionNumberUpperBound(___ ,p_s) uses the probability p_s that the
estimate of the lower bound of the smallest singular value is larger than the actual smallest singular
value. p_s is an optional parameter. If not supplied or empty, then the default value is used.

C = fixed.realConditionNumberUpperBound(___ ,regularizationParameter) returns an

estimate of an upper bound for the 2-norm condition number of a real-valued matrix
λIn
A

, where λ is

the regularizationParameter, A is an m-by-n matrix with m >= n, and In = eye(n).
regularizationParameter is an optional parameter. If not supplied or empty, then the default
value is used.

Examples

Condition Number of Low Rank Matrix with Additive Noise

Estimate an upper bound for the 2-norm condition number of a low rank, real-valued matrix with
additive noise.

Define a real matrix A with additive noise.

m = 300;
n = 10;
rankA = 3;
A = fixed.example.realRandomLowRankMatrix(m,n,rankA);

noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Estimate an upper bound for the condition number of the matrix A.

C = fixed.realConditionNumberUpperBound(m,n,max(abs(A(:))),noiseStandardDeviation)

4 Functions

4-560

C =

 1.4780e+03

Compare to the actual condition number of the matrix.

C_actual = cond(A)

C_actual =

 275.5870

Condition Number of Low Rank Matrix with Regularization Parameter

Estimate an upper bound for the 2-norm condition number of a low rank, real-valued matrix with
additive noise, using the regularization parameter.

Define a real matrix A with additive noise.

m = 300;
n = 10;
rankA = 3;
A = fixed.example.realRandomLowRankMatrix(m,n,rankA);

noiseStandardDeviation = sqrt(10^(-50/10));
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Define the regularization parameter.

regularizationParameter = 0.01;
A = [regularizationParameter*eye(n);A];

Estimate an upper bound for the condition number of the matrix A with the regularization parameter.
Use the default value for p_s.

C = fixed.realConditionNumberUpperBound(m,n,max(abs(A(:))),noiseStandardDeviation,[],regularizationParameter)

C =

 1.4343e+03

Compare to the actual condition number of the matrix.

C_actual = cond(A)

C_actual =

 293.4647

Condition Number of Full Rank Matrix

Estimate an upper bound for the 2-norm condition number of a full rank random matrix with normally
distributed elements.

Define a full rank, random, real matrix A with normally distributed elements.

 fixed.realConditionNumberUpperBound

4-561

m = 300;
n = 10;
noiseStandardDeviation = 1;
A = fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Estimate an upper bound for the condition number of the matrix A.

C = fixed.realConditionNumberUpperBound(m,n,max(abs(A(:))),noiseStandardDeviation)

C =

 19.0850

Compare to the actual condition number of the matrix.

C_actual = cond(A)

C_actual =

 1.2801

Input Arguments
m — Number of rows in matrix A
positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of columns in matrix A
positive integer-valued scalar

Number of columns in matrix A, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

max_abs_A — Maximum of absolute value of matrix A
scalar

Maximum of absolute value of matrix A, specified as a scalar.
Example: max_abs_A >= max(abs(A(:)))
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

noiseStandardDeviation — Standard deviation of additive random noise in matrix A
(2^-precisionBits)/(sqrt(12)) (default) | scalar

Standard deviation of additive random noise in matrix A, specified as a scalar.

If noiseStandardDeviation is not supplied or empty, then the default value is used, which is the
standard deviation of the quantization noise,

σq = 2−precisionBits

12 .

4 Functions

4-562

This value is calculated by the function fixed.realQuantizationNoiseStandardDeviation.

If noiseStandardDeviation is zero, then fixed.singularValueLowerBound will return zero
for the estimate of the smallest singular value, and fixed.realConditionNumberUpperBound will
return an infinite condition number.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p_s — Probability that estimate of lower bound of smallest singular value is larger than
actual smallest singular value of matrix A
2.8665e-07 (default) | scalar

Probability that estimate of lower bound of smallest singular value is larger than actual smallest
singular value of matrix A, specified as a scalar.

If p_s is not supplied or empty, then the default of p_s = (1/2)*(1+erf(-5/sqrt(2))) =
2.8665e-07 is used, which is five standard deviations below the mean. So, the probability that the
estimated lower bound for the smallest singular value is less than the actual smallest singular value is
1 - p_s = 0.99999971 - p_s = 0.9999997.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the matrix
[regularizationParameter*eye(n); A], where A is an m-by-n matrix with m >= n.
Data Types: single | double

More About
Condition Number for Inversion

A condition number for a matrix and computational task measures how sensitive the answer is to
changes in the input data and roundoff errors in the solution process. The condition number for
inversion of a matrix measures the sensitivity of the solution of a system of linear equations to errors
in the data. The condition number for inversion gives an indication of the accuracy of the results from
matrix inversion and the linear equation solution.

A large condition number indicates that a small change in the coefficient matrix A can lead to larger
changes in the output b in the linear equation Ax = b. The extreme case is when A is so poorly
conditioned that it is singular (an infinite condition number), in which case it has no inverse and the
linear equation has no unique solution.

Algorithms
The condition number with respect to the inversion of matrix A is the ratio of the largest singular
value of A to the smallest singular value of A. The fixed.realSingularValueLowerBound function

 fixed.realConditionNumberUpperBound

4-563

estimates the lower bound of the smallest singular value, s_n, of A. The
fixed.singularValueUpperBound function determines an upper bound for the largest singular
value, svdUpperBound, of A. A bound on the condition number of A is then cond(A) =
max(svd(A))/min(svd(A)) <= svdUpperBound/s_n [1][2][3].

Version History
Introduced in R2022b

References
[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for

"Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947,
130. 2022.

[2] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."
U.S. Patent Application No. 16/947, 130. 2020.

[3] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/
10.1137/040616413.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fixed.singularValueUpperBound | fixed.complexConditionNumberUpperBound |
fixed.realSingularValueLowerBound |
fixed.realQuantizationNoiseStandardDeviation | cond

4 Functions

4-564

fixed.realQlessQRMatrixSolveFixedpointTypes
Determine fixed-point types for matrix solution of real-valued A'AX=B using QR decomposition

Syntax
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,noiseStandardDeviation)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,p_s)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,regularizationParameter)
T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,maxWordLength)

Description
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits) computes fixed-point types for the matrix solution of real-valued A'AX=B using QR
decomposition. T is returned as a struct with fields that specify fixed-point types for A and B that
guarantee no overflow will occur in the QR algorithm transforming A in-place into upper-triangular R,
where QR=A is the QR decomposition of X, and X such that there is a low probability of overflow.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,noiseStandardDeviation)
specifies the standard deviation of the additive random noise in A. noiseStandardDeviation is an
optional parameter. If not supplied or empty, then the default value is used.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,p_s) specifies the probability
that the estimate of the lower bound for the smallest singular value of A is larger than the actual
smallest singular value of the matrix. p_s is an optional parameter. If not supplied or empty, then the
default value is used.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,regularizationParameter)
computes fixed-point types for the matrix solution of real-valued

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

where λ is the regularizationParameter, A is an m-by-n matrix, and In = eye(n).
regularizationParameter is an optional parameter. If not supplied or empty, then the default
value is used.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(___ ,maxWordLength) specifies the
maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not
supplied or empty, then the default value is used.

Examples

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-565

Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the fixed.realQlessQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the real matrix equation
A′AX = B, where A is an m-by-n matrix with m > n, B is n-by-p, and X is n-by-p.

Overview

You can solve the fixed-point matrix equation A′AX = B using QR decomposition. Using a sequence of
orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R,
where QR = A is the economy-size QR decomposition. This reduces the equation to an upper-
triangular system of equations R′RX = B. To solve for X, compute X = R\(R′\B) through forward- and
backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation A′AX = B by selecting the
fraction length based on the number of bits of precision defined by your requirements. The
fixed.realQlessQRMatrixSolveFixedpointTypes function analytically computes the following
upper bounds on R, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.realQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation (A′A)X = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a2/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

4 Functions

4-566

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for X = (A'A)\B

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Proof of Upper Bound for X = (A'A)\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
nmax(|B(:) |)/min(svd(A))2 = ∞and so the inequality is true.

If A′Ax = b and QR = A is the economy-size QR decomposition of A, then A′Ax = R′Q′QRx = R′Rx = b.
If A is full rank then x = R−1 ⋅ ((R′)−1b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the j
th column of B. Then

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-567

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ ((R′)−1b) | |2
≤ | |R−1 | |2 | | (R′)−1 | |2 | |b | |2
= 1/min(svd(A))2 ⋅ | |b | |2

= ||b | |2/min(svd(A))2

≤ n | |b | |∞/min(svd(A))2

= nmax(|b(:) |)/min(svd(A))2 .

Since max(|x(:) |) ≤ nmax(|b(:) |)/min(svd(A))2 for all rows and columns of B and X, then

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for real-valued A using the following formula,

s = σN 2γ−1 ps Γ(m− n + 1)Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

≤ nmax(|B(:) |)
s2 with probability 1− ps.

You can compute s using the fixed.realSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, and X = (A′A)\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

4 Functions

4-568

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing a real signal is 2−precisionBits/ 12 [4,5]. Use
fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-569

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
 FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-570

 WordLength: 40
 FractionLength: 24

Upper Bound for R

The upper bound for R is computed using the formula max(|R(:) |) ≤ mmax(| A(:) |), where m is the
number of rows of matrix A. This upper bound is used to select a fixed-point type with the required
number of bits of precision to avoid an overflow in the upper bound.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 17.3205

Lower Bound for min(svd(A)) for Real A

A lower bound for min(svd(A)) is estimated by the fixed.realSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.realSingularValueLowerBound function.

estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples,...
 noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 17.3205

max(actualMaxR)

ans = 8.1682

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0371

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-571

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0421

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
 noiseStandardDeviation,singularValues,...
 estimatedSingularValueLowerBound,"real");

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

4 Functions

4-572

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.realQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 7.2565e+03

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 582.6761

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"real normally distributed random");

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-573

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation A′AX = B. It returns the maximum values of R = Q′A, the singular values of A, and the
values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
 % Adding random noise makes A non-singular.
 A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,n,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [~,R] = qr(A,0);
 X = R\(R'\B);
 actualMaxR(j) = max(abs(R(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;

4 Functions

4-574

 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010. url: https://www.mathworks.com/help/fixedpoint/ug/perform-qr-
factorization-using-cordic.html.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B

This example shows how to use the fixed.realQlessQRMatrixSolveFixedpointTypes function
to analytically determine fixed-point types for the solution of the real least-squares matrix equation
A′AX = B, where A is an m-by-n matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation A′AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-575

https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://dx.doi.org/10.1137/040616413

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

4 Functions

4-576

Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
 FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 24

Use the Specified Types to Solve the Matrix Equation A'AX=B

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-577

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qlessQRMatrixSolve -args {A,B,T.X} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X = (A′A)\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the ouput.

relative_error = norm(double(A'*A*X - B))/norm(double(B))

relative_error = 0.0561

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Determine Fixed-Point Types for Real Q-less QR Matrix Solve with Tikhonov Regularization

This example shows how to use the fixed.realQlessQRMatrixSolveFixedpointTypes function
to analytically determine fixed-point types for the solution of the real least-squares matrix equation

λIn
A

T λIn
A

X = (λ2In + ATA)X = B

where A is an m-by-n matrix with m ≥ n, B is n-by-p, X is n-by-p, In = eye(n), and λ is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

4 Functions

4-578

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 6.7212e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-579

Use the fixed.realQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming
λIn
A

 to R = QT λIn
A

 in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 39
 FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 35
 FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

T λIn
A

\B so that there is a low probability that it

overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 48
 FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

4 Functions

4-580

rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel +fixed/qlessQRMatrixSolve -args {A,B,T.X,[],regularizationParameter} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X =
λIn
A

T λIn
A

\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X,[],regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

Xdouble =
λIn
A

T λIn
A

\B

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 1.0133e-05

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Input Arguments
m — Number of rows in A and B
positive integer-valued scalar

Number of rows in A and B, specified as a positive integer-valued scalar.
Data Types: double

n — Number of columns in A
positive integer-valued scalar

Number of columns in A, specified as a positive integer-valued scalar.
Data Types: double

max_abs_A — Maximum of absolute value of A
scalar

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-581

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double

max_abs_B — Maximum of absolute value of B
scalar

Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double

precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision of the input and output, specified as a positive integer-valued
scalar.
Data Types: double

noiseStandardDeviation — Standard deviation of additive random noise in A
scalar

Standard deviation of additive random noise in A, specified as a scalar.

If noiseStandardDeviation is not specified, then the default is the standard deviation of the real-
valued quantization noise σq = 2−precisionBits / 12 , which is calculated by
fixed.realQuantizationNoiseStandardDeviation.
Data Types: double

p_s — Probability that estimate of lower bound s is larger than actual smallest singular
value of matrix
≈3·10-7 (default) | scalar

Probability that estimate of lower bound s is larger than actual smallest singular value of matrix,
specified as a scalar. Use fixed.realSingularValueLowerBound to estimate the smallest
singular value, s, of A. If p_s is not specified, the default value is
ps = 1/2 ⋅ 1 + erf −5/ 2 ≈ 3 ⋅ 10−7 which is 5 standard deviations below the mean, so the
probability that the estimated bound for the smallest singular value is less than the actual smallest
singular value is 1-ps ≈ 0.9999997.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the matrix problem

4 Functions

4-582

λIn
A

′ ⋅
λIn
A

X = λ2In + A′A X = B

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

maxWordLength — Maximum word length of fixed-point types
128 (default) | positive integer

Maximum word length of fixed-point types, specified as a positive integer.

If the word length of the fixed-point type exceeds the specified maximum word length, the default of
128 bits is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
T — Fixed-point types for A, B, and X
struct

Fixed-point types for A, B, and X, returned as a struct. The struct T has fields T.A, T.B, and T.X.
These fields contain fi objects that specify fixed-point types for:

• A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R, where QR=A is the QR
decomposition of A.

• X such that there is a low probability of overflow.

Tips
Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types for the
inputs of these functions and blocks.

• fixed.qlessQRMatrixSolve
• Real Burst Matrix Solve Using Q-less QR Decomposition
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Algorithms
The fixed-point type for A is computed using fixed.qlessqrFixedpointTypes. The required
number of integer bits to prevent overflow is derived from the following bound on the growth of R [1].
The required number of integer bits is added to the number of bits of precision, precisionBits, of
the input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately
1.6468 [2].

The elements of R are bounded in magnitude by

max R : ≤ mmax A : .

 fixed.realQlessQRMatrixSolveFixedpointTypes

4-583

Matrix B is not transformed, so it does not need any additional growth bits.

The elements of X=R\(R'\B) are bounded in magnitude by

max X : ≤ n ⋅max B :
min svd A 2 .

Computing the singular value decomposition to derive the above bound on X is more computationally
intensive than the entire matrix solve, so the fixed.realSingularValueLowerBound function is
used to estimate a bound on min(svd(A)).

Version History
Introduced in R2021b

Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixed-
point types.

Support for Tikhonov regularization parameter

The fixed.realQlessQRMatrixSolveFixedpointTypes function now supports the Tikhonov
regularization parameter, “regularizationParameter” on page 4-0 .

References
[1] “Perform QR Factorization Using CORDIC”

[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic
Computers EC-8 (1959): 330-334.

See Also
Functions
fixed.realQuantizationNoiseStandardDeviation |
fixed.realSingularValueLowerBound | fixed.qlessqrFixedpointTypes |
fixed.qlessQRMatrixSolve

Blocks
Real Burst Matrix Solve Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-
less QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with
Forgetting Factor

4 Functions

4-584

fixed.realQRMatrixSolveFixedpointTypes
Determine fixed-point types for matrix solution of real-valued AX=B using QR decomposition

Syntax
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits)
T = fixed.realQRMatrixSolveFixedpointTypes(___ ,noiseStandardDeviation)
T = fixed.realQRMatrixSolveFixedpointTypes(___ ,p_s)
T = fixed.realQRMatrixSolveFixedpointTypes(___ ,regularizationParameter)
T = fixed.realQRMatrixSolveFixedpointTypes(___ ,maxWordLength)

Description
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,
precisionBits) computes fixed-point types for the matrix solution of real-valued AX=B using QR
decomposition. T is returned as a struct with fields that specify fixed-point types for A and B that
guarantee no overflow will occur in the QR algorithm, and X such that there is a low probability of
overflow.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into
C=Q'B, where QR=A is the QR decomposition of A.

T = fixed.realQRMatrixSolveFixedpointTypes(___ ,noiseStandardDeviation) specifies
the standard deviation of the additive random noise in A. noiseStandardDeviation is an optional
parameter. If not supplied or empty, then the default value is used.

T = fixed.realQRMatrixSolveFixedpointTypes(___ ,p_s) specifies the probability that the
estimate of the lower bound for the smallest singular value of A is larger than the actual smallest
singular value of the matrix. p_s is an optional parameter. If not supplied or empty, then the default
value is used.

T = fixed.realQRMatrixSolveFixedpointTypes(___ ,regularizationParameter)

computes fixed-point types for the matrix solution of real-valued
λIn
A

X =
0n, p

B
 where λ is the

regularizationParameter, A is an m-by-n matrix, p is the number of columns in B, In = eye(n),
and 0n,p = zeros(n,p). regularizationParameter is an optional parameter. If not supplied or
empty, then the default value is used.

T = fixed.realQRMatrixSolveFixedpointTypes(___ ,maxWordLength) specifies the
maximum word length of the fixed-point types. maxWordLength is an optional parameter. If not
supplied or empty, then the default value is used.

Examples

 fixed.realQRMatrixSolveFixedpointTypes

4-585

Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed.realQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the real least-squares
matrix equation AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Overview

You can solve the fixed-point least-squares matrix equation AX = B using QR decomposition. Using a
sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper
triangular R, and transforms matrix B in-place to C = Q′B, where QR = A is the economy-size QR
decomposition. This reduces the equation to an upper-triangular system of equations RX = C. To
solve for X, compute X = R\C through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation AX = B by
selecting the fraction length based on the number of bits of precision defined by your requirements.
The fixed.realQRMatrixSolveFixedpointTypes function analytically computes the following
upper bounds on R, C = Q′B, and X to determine the number of integer bits required to avoid
overflow [1,2,3].

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(:) |) ≤ mmax(|B(:) |).

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.realQRMatrixSolveFixedpointTypes function estimates a lower bound of min(svd(A)).

Fixed-point types for the solution of the matrix equation AX = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

4 Functions

4-586

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(:) |) ≤ mmax(|B(:) |).

Proof of Upper Bound for C = Q'B

The proof of the upper bound for C = Q′B is the same as the proof of the upper bound for R = Q′A by
substituting C for R and B for A.

Upper Bound for X = A\B

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Proof of Upper Bound for X = A\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
mmax(|B(:) |)/min(svd(A)) = ∞ and so the inequality is true.

 fixed.realQRMatrixSolveFixedpointTypes

4-587

If A is full rank, then x = R−1(Q′b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the jth
column of B. Then

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ (Q′b) | |2
≤ | |R−1 | |2 | |Q′ | |2 | |b | |2
= 1/min(svd(A)) ⋅ 1 ⋅ | |b | |2
= ||b | |2/min(svd(A))

≤ m | |b | |∞/min(svd(A))

= mmax(|b(:) |)/min(svd(A)) .

Since max(|x(:) |) ≤ mmax(|b(:) |)/min(svd(A)) for all rows and columns of B and X, then

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for real-valued A using the following formula,

s = σN 2γ−1 ps Γ(m− n + 1)Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) ≤ mmax(|B(:) |)

s with probability 1− ps.

You can compute s using the fixed.realSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7,
so the probability that the estimated bound for the smallest singular value s is less than the actual
smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, C = Q′B, and X = A\B.

4 Functions

4-588

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the elements of a real signal is 2−precisionBits/ 12
[4,5]. Use the fixed.realQuantizationNoiseStandardDeviation function to compute this. See
that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

 fixed.realQRMatrixSolveFixedpointTypes

4-589

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.B is the type computed for transforming B to Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-590

 Signedness: Signed
 WordLength: 36
 FractionLength: 24

Upper Bounds for R and C=Q'B

The upper bounds for R and C = Q′B are computed using the following formulas, where m is the
number of rows of matrices A and B.

max(|R(:) |) ≤ mmax(| A(:) |)

max(|C(:) |) ≤ mmax(|B(:) |)

These upper bounds are used to select a fixed-point type with the required number of bits of precision
to avoid overflows.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 17.3205

upperBoundQB = sqrt(m)*max_abs_B

upperBoundQB = 17.3205

Lower Bound for min(svd(A)) for Real A

A lower bound for min(svd(A)) is estimated by the fixed.realSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.realSingularValueLowerBound function.

estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

 fixed.realQRMatrixSolveFixedpointTypes

4-591

upperBoundR = 17.3205

max(actualMaxR)

ans = 8.3029

You can see that the upper bound on C = Q′B compared to the measured simulation results of the
maximum value of C = Q′B over all runs is also within an order of magnitude.

upperBoundQB

upperBoundQB = 17.3205

max(actualMaxQB)

ans = 2.5707

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0371

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0420

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,noiseStandardDeviation,...
 singularValues,estimatedSingularValueLowerBound,"real");

4 Functions

4-592

Zoom in to smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.realQRMatrixSolveFixedpointTypes

4-593

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.realMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 466.5772

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 44.8056

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"real normally distributed random");

4 Functions

4-594

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation AX = B. It returns the maximum values of R = Q′A and C = Q′B, the singular values of
A, and the values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 actualMaxQB = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
 % Adding normally distributed random noise makes A non-singular.
 A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,m,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [Q,R] = qr(A,0);
 C = Q'*B;
 X = R\C;
 actualMaxR(j) = max(abs(R(:)));

 fixed.realQRMatrixSolveFixedpointTypes

4-595

 actualMaxQB(j) = max(abs(C(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B

This example shows how to use the fixed.realQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the real least-squares matrix equation
AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

4 Functions

4-596

http://dx.doi.org/10.1137/040616413

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

 fixed.realQRMatrixSolveFixedpointTypes

4-597

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.B is the type computed for transforming B to C = Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 36
 FractionLength: 24

Use the Specified Types to Solve the Matrix Equation AX=B

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

4 Functions

4-598

rng('default');
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X} -o qrRealMatrixSolve_mex

Specify output type T.X and compute fixed-point X = A\B using the QR method.

X = qrRealMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the output.

relative_error = norm(double(A*X - B))/norm(double(B))

relative_error = 0.0063

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Determine Fixed-Point Types for Real Least-Squares Matrix Solve with Tikhonov
Regularization

This example shows how to use the fixed.realQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the real least-squares matrix equation

λIn
A

X =
0n, p

B
,

where A is an m-by-n matrix with m ≥ n, B is m-by-p, X is n-by-p, In = eye(n), 0n, p = zeros(n, p), and λ
is a regularization parameter.

The least-squares solution is

XLS = (λ2In + ATA)−1ATB

but is computed without squares or inverses.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

 fixed.realQRMatrixSolveFixedpointTypes

4-599

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 6.7212e-11

4 Functions

4-600

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming
λIn
A

 to R = QT λIn
A

 in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 39
 FractionLength: 32

T.B is the type computed for transforming
0n, p

B
 to C = QT 0n, p

B
 in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 39
 FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

\
0n, p

B
, so that there is a low probability that it

overflows.

T.X

ans =

 fixed.realQRMatrixSolveFixedpointTypes

4-601

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 44
 FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

rng('default');
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X,regularizationParameter} -o qrRealMatrixSolve_mex

Specify output type T.X and compute fixed-point X = A\B using the QR method.

X = qrRealMatrixSolve_mex(A,B,T.X,regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and the output from MATLAB using the
default double-precision floating-point values is small.

Xdouble =
λIn
A

\
0n, p

B

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 5.1152e-06

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Input Arguments
m — Number of rows in A and B
positive integer-valued scalar

4 Functions

4-602

Number of rows in A and B, specified as a positive integer-valued scalar.
Data Types: double

n — Number of columns in A
positive integer-valued scalar

Number of columns in A, specified as a positive integer-valued scalar.
Data Types: double

max_abs_A — Maximum of absolute value of A
scalar

Maximum of the absolute value of A, specified as a scalar.
Example: max(abs(A(:)))
Data Types: double

max_abs_B — Maximum of absolute value of B
scalar

Maximum of the absolute value of B, specified as a scalar.
Example: max(abs(B(:)))
Data Types: double

precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision of the input and output, specified as a positive integer-valued
scalar.
Data Types: double

noiseStandardDeviation — Standard deviation of additive random noise in A
scalar

Standard deviation of additive random noise in A, specified as a scalar.

If noiseStandardDeviation is not specified, then the default is the standard deviation of the real-
valued quantization noise σq = 2−precisionBits / 12 , which is calculated by
fixed.realQuantizationNoiseStandardDeviation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

p_s — Probability that estimate of lower bound s is larger than the actual smallest singular
value of the matrix
≈3·10-7 (default) | scalar

Probability that estimate of lower bound s is larger than the actual smallest singular value of the
matrix, specified as a scalar. Use fixed.realSingularValueLowerBound to estimate the smallest
singular value, s, of A. If p_s is not specified, the default value is
ps = 1/2 ⋅ 1 + erf −5/ 2 ≈ 3 ⋅ 10−7 which is 5 standard deviations below the mean, so the

 fixed.realQRMatrixSolveFixedpointTypes

4-603

probability that the estimated bound for the smallest singular value is less than the actual smallest
singular value is 1-ps ≈ 0.9999997.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the least-squares problem
λIn
A

X =
0n, p

B
.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

maxWordLength — Maximum word length of fixed-point types
128 (default) | positive integer

Maximum word length of fixed-point types, specified as a positive integer.

If the word length of the fixed-point type exceeds the specified maximum word length, the default of
128 bits is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
T — Fixed-point types for A, B, and X
struct

Fixed-point types for A, B, and X, returned as a struct. The struct T has fields T.A, T.B, and T.X.
These fields contain fi objects that specify fixed-point types for

• A and B that guarantee no overflow will occur in the QR algorithm.

The QR algorithm transforms A in-place into upper-triangular R and transforms B in-place into
C=Q'B, where QR=A is the QR decomposition of A.

• X such that there is a low probability of overflow.

Tips
Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types for the inputs of
these functions and blocks.

• fixed.qrMatrixSolve
• Real Burst Matrix Solve Using QR Decomposition

4 Functions

4-604

• Real Partial-Systolic Matrix Solve Using QR Decomposition

Algorithms
T.A and T.B are computed using fixed.qrFixedpointTypes. The number of integer bits required
to prevent overflow is derived from the following bounds on the growth of R and C=Q'B [1]. The
required number of integer bits is added to the number of bits of precision, precisionBits, of the
input, plus one for the sign bit, plus one bit for intermediate CORDIC gain of approximately 1.6468
[2].

The elements of R are bounded in magnitude by

max R : ≤ mmax A : .

The elements of C=Q'B are bounded in magnitude by

max C : ≤ mmax B : .

T.X is computed by bounding the output, X, in the least-squares solution of AX=B using the following
formula [3] [4].

The elements of X=R\(Q'B) are bounded in magnitude by

max X : ≤ mmax B :
min svd A .

Computing the singular value decomposition to derive the above bound on X is more computationally
expensive than the entire matrix solve, so the fixed.realSingularValueLowerBound function is
used to estimate a bound on min(svd(A)).

Version History
Introduced in R2021b

Support for maximum word length

You can now use the maxWordLenth parameter to specify the maximum word length of the fixed-
point types.

Support for Tikhonov regularization parameter

The fixed.realQRMatrixSolveFixedpointTypes function now supports the Tikhonov
regularization parameter, “regularizationParameter” on page 4-0 .

References
[1] “Perform QR Factorization Using CORDIC”

[2] Voler, Jack E. "The CORDIC Trigonometric Computing Technique." IRE Transactions on Electronic
Computers EC-8 (1959): 330-334.

 fixed.realQRMatrixSolveFixedpointTypes

4-605

[3] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."
U.S. Patent Application No. 16/947, 130. 2020.

[4] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no.3 (July 2005): 603-620.

See Also
Functions
fixed.realQuantizationNoiseStandardDeviation |
fixed.realSingularValueLowerBound | fixed.qrFixedpointTypes |
fixed.qrMatrixSolve

Blocks
Real Burst Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using QR
Decomposition

4 Functions

4-606

fixed.realQuantizationNoiseStandardDeviation
Estimate standard deviation of quantization noise of real-valued signal

Syntax
noiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(
precisionBits)

Description
noiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(
precisionBits) returns an estimate of the quantization noise standard deviation of a real-valued
signal with a quantization level q=2-precisionBits, where precisionBits is the required number of bits
of precision.

Examples

Estimate Standard Deviation of Quantization Noise of Real-Valued Signal

Quantizing a real signal to p bits of precision can be modeled as a linear system that adds normally

distributed noise with a standard deviation of ϛnoise = 2−p

12 [1,2].

Compute the theoretical quantization noise standard deviation with p bits of precision using the
fixed.realQuantizationNoiseStandardDeviation function.

p = 14;
theoreticalQuantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(p);

The returned value is ϛnoise = 2−p

12.

Create a real signal with n samples.

rng('default');
n = 1e6;
x = rand(1,n);

Quantize the signal with p bits of precision.

wordLength = 16;
x_quantized = quantizenumeric(x,1,wordLength,p);

Compute the quantization noise by taking the difference between the quantized signal and the
original signal.

quantizationNoise = x_quantized - x;

Compute the measured quantization noise standard deviation.

 fixed.realQuantizationNoiseStandardDeviation

4-607

measuredQuantizationNoiseStandardDeviation = std(quantizationNoise)

measuredQuantizationNoiseStandardDeviation = 1.7607e-05

Compare the actual quantization noise standard deviation to the theoretical and see that they are
close for large values of n.

theoreticalQuantizationNoiseStandardDeviation

theoreticalQuantizationNoiseStandardDeviation = 1.7619e-05

References

1 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

2 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

Input Arguments
precisionBits — Required number of bits of precision
positive integer-valued scalar

Required number of bits of precision, specified as a positive integer-valued scalar.
Data Types: double

Output Arguments
noiseStandardDeviation — Noise standard deviation
scalar

Noise standard deviation, returned as a scalar.

Tips
fixed.realQuantizationNoiseStandardDeviation is used in these functions.

• fixed.realQRMatrixSolveFixedpointTypes
• fixed.realQlessQRMatrixSolveFixedpointTypes

Algorithms
The variance of a real-valued error sequence e(k) with quantization level q=2-precisionBits [1][2] is

σq
2 = 1

q∫−q/2
q/2

e2de = q2

12 = 2−2precisionBits

12 .

The standard deviation of a real error sequence e(k) is

σq = 2−precisionBits

12 .

4 Functions

4-608

Version History
Introduced in R2021b

References
[1] Widrow, Bernard. "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling

Theory." IRE Transactions on Circuit Theory 3, no.4 (December 1956): 266-276.

[2] Widrow, Bernard, and Kollár, István. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University
Press, 2008.

See Also
fixed.realQRMatrixSolveFixedpointTypes |
fixed.realQlessQRMatrixSolveFixedpointTypes

 fixed.realQuantizationNoiseStandardDeviation

4-609

fixed.realSingularValueLowerBound
Estimate lower bound for smallest singular value of real-valued matrix

Syntax
s_n = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n)
s_n = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n,
regularizationParameter)

Description
s_n = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n)
returns an estimate of a lower bound for the smallest singular value of a real-valued matrix with m
rows and n columns, where m≥n.

s_n = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation,p_s_n,
regularizationParameter) returns an estimate of a lower bound for the smallest singular value

of a real-valued matrix
λIn
A

 where λ is the regularizationParameter, A is an m-by-n matrix with

m >= n, and In = eye(n).

p_s_n and regularizationParameter are optional parameters. If not supplied or empty, then
their default values are used.

Examples

Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B

This example shows the algorithms that the fixed.realQlessQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the real matrix equation
A′AX = B, where A is an m-by-n matrix with m > n, B is n-by-p, and X is n-by-p.

Overview

You can solve the fixed-point matrix equation A′AX = B using QR decomposition. Using a sequence of
orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R,
where QR = A is the economy-size QR decomposition. This reduces the equation to an upper-
triangular system of equations R′RX = B. To solve for X, compute X = R\(R′\B) through forward- and
backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation A′AX = B by selecting the
fraction length based on the number of bits of precision defined by your requirements. The
fixed.realQlessQRMatrixSolveFixedpointTypes function analytically computes the following
upper bounds on R, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(:) |) ≤ mmax(| A(:) |).

4 Functions

4-610

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.realQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation (A′A)X = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a2/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

 fixed.realSingularValueLowerBound

4-611

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for X = (A'A)\B

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

Proof of Upper Bound for X = (A'A)\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
nmax(|B(:) |)/min(svd(A))2 = ∞and so the inequality is true.

If A′Ax = b and QR = A is the economy-size QR decomposition of A, then A′Ax = R′Q′QRx = R′Rx = b.
If A is full rank then x = R−1 ⋅ ((R′)−1b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the j
th column of B. Then

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ ((R′)−1b) | |2
≤ | |R−1 | |2 | | (R′)−1 | |2 | |b | |2
= 1/min(svd(A))2 ⋅ | |b | |2

= ||b | |2/min(svd(A))2

≤ n | |b | |∞/min(svd(A))2

= nmax(|b(:) |)/min(svd(A))2 .

Since max(|x(:) |) ≤ nmax(|b(:) |)/min(svd(A))2 for all rows and columns of B and X, then

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

.

4 Functions

4-612

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for real-valued A using the following formula,

s = σN 2γ−1 ps Γ(m− n + 1)Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ nmax(|B(:) |)
min(svd(A))2

≤ nmax(|B(:) |)
s2 with probability 1− ps.

You can compute s using the fixed.realSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, and X = (A′A)\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

 fixed.realSingularValueLowerBound

4-613

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing a real signal is 2−precisionBits/ 12 [4,5]. Use
fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]
 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

4 Functions

4-614

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 27
 FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 24

Upper Bound for R

The upper bound for R is computed using the formula max(|R(:) |) ≤ mmax(| A(:) |), where m is the
number of rows of matrix A. This upper bound is used to select a fixed-point type with the required
number of bits of precision to avoid an overflow in the upper bound.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 17.3205

Lower Bound for min(svd(A)) for Real A

A lower bound for min(svd(A)) is estimated by the fixed.realSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.realSingularValueLowerBound function.

estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)

 fixed.realSingularValueLowerBound

4-615

estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples,...
 noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 17.3205

max(actualMaxR)

ans = 8.1682

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0371

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0421

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
 noiseStandardDeviation,singularValues,...
 estimatedSingularValueLowerBound,"real");

4 Functions

4-616

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.realSingularValueLowerBound

4-617

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.realQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 7.2565e+03

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 582.6761

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"real normally distributed random");

4 Functions

4-618

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation A′AX = B. It returns the maximum values of R = Q′A, the singular values of A, and the
values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
 % Adding random noise makes A non-singular.
 A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,n,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [~,R] = qr(A,0);
 X = R\(R'\B);
 actualMaxR(j) = max(abs(R(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;

 fixed.realSingularValueLowerBound

4-619

 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010. url: https://www.mathworks.com/help/fixedpoint/ug/perform-qr-
factorization-using-cordic.html.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B

This example shows the algorithms that the fixed.realQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the real least-squares
matrix equation AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Overview

You can solve the fixed-point least-squares matrix equation AX = B using QR decomposition. Using a
sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper
triangular R, and transforms matrix B in-place to C = Q′B, where QR = A is the economy-size QR
decomposition. This reduces the equation to an upper-triangular system of equations RX = C. To
solve for X, compute X = R\C through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation AX = B by
selecting the fraction length based on the number of bits of precision defined by your requirements.
The fixed.realQRMatrixSolveFixedpointTypes function analytically computes the following
upper bounds on R, C = Q′B, and X to determine the number of integer bits required to avoid
overflow [1,2,3].

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

The upper bound for the magnitude of the elements of C = Q′B is

4 Functions

4-620

https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/perform-qr-factorization-using-cordic.html
https://dx.doi.org/10.1137/040616413

max(|C(:) |) ≤ mmax(|B(:) |).

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.realQRMatrixSolveFixedpointTypes function estimates a lower bound of min(svd(A)).

Fixed-point types for the solution of the matrix equation AX = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(:) |)

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(:) |) ≤ mmax(| A(:) |).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

 fixed.realSingularValueLowerBound

4-621

max(|R(: , j) |) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) |)
≤ mmax(| A(:) |) .

Since max(|R(: , j) |) ≤ mmax(| A(:) |) for all 1 ≤ j, then

max(|R(:) |) ≤ mmax(| A(:) |) .

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(:) |) ≤ mmax(|B(:) |).

Proof of Upper Bound for C = Q'B

The proof of the upper bound for C = Q′B is the same as the proof of the upper bound for R = Q′A by
substituting C for R and B for A.

Upper Bound for X = A\B

The upper bound for the magnitude of the elements of X = A\B is

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Proof of Upper Bound for X = A\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
mmax(|B(:) |)/min(svd(A)) = ∞ and so the inequality is true.

If A is full rank, then x = R−1(Q′b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the jth
column of B. Then

max(|x(:) |) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ (Q′b) | |2
≤ | |R−1 | |2 | |Q′ | |2 | |b | |2
= 1/min(svd(A)) ⋅ 1 ⋅ | |b | |2
= ||b | |2/min(svd(A))

≤ m | |b | |∞/min(svd(A))

= mmax(|b(:) |)/min(svd(A)) .

4 Functions

4-622

Since max(|x(:) |) ≤ mmax(|b(:) |)/min(svd(A)) for all rows and columns of B and X, then

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) .

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for real-valued A using the following formula,

s = σN 2γ−1 ps Γ(m− n + 1)Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(:) |) ≤ mmax(|B(:) |)
min(svd(A)) ≤ mmax(|B(:) |)

s with probability 1− ps.

You can compute s using the fixed.realSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7,
so the probability that the estimated bound for the smallest singular value s is less than the actual
smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, C = Q′B, and X = A\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

 fixed.realSingularValueLowerBound

4-623

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the elements of a real signal is 2−precisionBits/ 12
[4,5]. Use the fixed.realQuantizationNoiseStandardDeviation function to compute this. See
that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
 precisionBits,noiseStandardDeviation)

T = struct with fields:
 A: [0x0 embedded.fi]

4 Functions

4-624

 B: [0x0 embedded.fi]
 X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.B is the type computed for transforming B to Q′B in-place so that it does not overflow.

T.B

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 31
 FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 36
 FractionLength: 24

Upper Bounds for R and C=Q'B

The upper bounds for R and C = Q′B are computed using the following formulas, where m is the
number of rows of matrices A and B.

max(|R(:) |) ≤ mmax(| A(:) |)

max(|C(:) |) ≤ mmax(|B(:) |)

These upper bounds are used to select a fixed-point type with the required number of bits of precision
to avoid overflows.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 17.3205

 fixed.realSingularValueLowerBound

4-625

upperBoundQB = sqrt(m)*max_abs_B

upperBoundQB = 17.3205

Lower Bound for min(svd(A)) for Real A

A lower bound for min(svd(A)) is estimated by the fixed.realSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.realSingularValueLowerBound function.

estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 17.3205

max(actualMaxR)

ans = 8.3029

You can see that the upper bound on C = Q′B compared to the measured simulation results of the
maximum value of C = Q′B over all runs is also within an order of magnitude.

upperBoundQB

upperBoundQB = 17.3205

max(actualMaxQB)

ans = 2.5707

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

4 Functions

4-626

estimatedSingularValueLowerBound = 0.0371

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0420

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,noiseStandardDeviation,...
 singularValues,estimatedSingularValueLowerBound,"real");

Zoom in to smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);

 fixed.realSingularValueLowerBound

4-627

Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.realMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 466.5772

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 44.8056

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
 X_values,estimated_largest_X,"real normally distributed random");

4 Functions

4-628

Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation AX = B. It returns the maximum values of R = Q′A and C = Q′B, the singular values of
A, and the values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
 numSamples,noiseStandardDeviation,T)
 precisionBits = T.A.FractionLength;
 A_WordLength = T.A.WordLength;
 B_WordLength = T.B.WordLength;
 actualMaxR = zeros(1,numSamples);
 actualMaxQB = zeros(1,numSamples);
 singularValues = zeros(n,numSamples);
 X_values = zeros(n,numSamples);
 for j = 1:numSamples
 A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
 % Adding normally distributed random noise makes A non-singular.
 A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
 A = quantizenumeric(A,1,A_WordLength,precisionBits);
 B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,m,p);
 B = quantizenumeric(B,1,B_WordLength,precisionBits);
 [Q,R] = qr(A,0);
 C = Q'*B;
 X = R\C;
 actualMaxR(j) = max(abs(R(:)));

 fixed.realSingularValueLowerBound

4-629

 actualMaxQB(j) = max(abs(C(:)));
 singularValues(:,j) = svd(A);
 X_values(:,j) = X;
 end
end

References

1 Thomas A. Bryan and Jenna L. Warren. “Systems and Methods for Design Parameter Selection”.
Patent pending. U.S. Patent Application No. 16/947,130. 2020.

2 Perform QR Factorization Using CORDIC. Derivation of the bound on growth when computing
QR. MathWorks. 2010.

3 Zizhong Chen and Jack J. Dongarra. “Condition Numbers of Gaussian Random Matrices”. In:
SIAM J. Matrix Anal. Appl. 27.3 (July 2005), pp. 603–620. issn: 0895-4798. doi:
10.1137/040616413. url: https://dx.doi.org/10.1137/040616413.

4 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.

5 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

6 Gene H. Golub and Charles F. Van Loan. Matrix Computations. Second edition. Baltimore: Johns
Hopkins University Press, 1989.

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

Input Arguments
m — Number of rows in matrix
positive integer-valued scalar

Number of rows in matrix, specified as a positive integer-valued scalar. The number of rows, m, must
be greater than or equal to the number of columns, n.
Data Types: double

n — Number of columns in matrix
positive integer-valued scalar

Number of columns in matrix, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: double

noiseStandardDeviation — Standard deviation of additive random noise in matrix
scalar

Standard deviation of additive random noise in matrix, specified as a scalar.
Data Types: double

4 Functions

4-630

http://dx.doi.org/10.1137/040616413

p_s_n — Probability that estimate of lower bound is larger than actual smallest singular
value of matrix
2.8665e-07 (default) | scalar

Probability that estimate of lower bound is larger than actual smallest singular value of matrix,
specified as a scalar.

If p_s_n is not supplied or empty, then the default of p_s_n = (1/2)*(1+erf(-5/sqrt(2))) =
2.8665e-07 is used, which is 5 standard deviations below the mean, so the probability that the
estimated lower bound for the smallest singular value is less than the actual smallest singular value is
1 - p_s = 0.99999971 - p_s = 0.9999997.
Data Types: double

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

regularizationParameter is the Tikhonov regularization parameter of the matrix
λIn
A

 where λ is

the regularizationParameter, A is an m-by-n matrix with m >= n, and I = eye(n).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
s_n — Estimate of lower bound for smallest singular value of real-valued matrix
scalar

Estimate of lower bound for smallest singular value of real-valued matrix, returned as a scalar.

Tips
• Use fixed.realSingularValueLowerBound to estimate the smallest singular value of a matrix

to estimate a bound for max(|X(:)|). For example, in
fixed.realQRMatrixSolveFixedpointTypes, the elements of X=R\(Q'B) are bounded in
magnitude by

max X : ≤ mmax B :
min svd A ≤ mmax B :

s

with probability 1-ps.
• max(|X(:)|) is smaller when the denominator in the above equation is larger.
• If nothing else is known about a matrix, then generally, the smallest singular value will be larger

if:

• there is additive random noise.

 fixed.realSingularValueLowerBound

4-631

• the number of rows, m, is much larger than the number of columns, n.
• If the noise standard deviation is not known, you can approximate it as the standard deviation of

the quantization error. You can compute the quantization error using
fixed.realQuantizationNoiseStandardDeviation.

• For s to be a useful bound on the smallest singular value of A, the probability that s is greater than
the smallest singular value of A should be small. A practical value to use is

ps = 1/2 ⋅ 1 + erf −5/ 2 ≈ 3 ⋅ 10−7

which is 5 standard deviations below the mean, so the probability that the estimated bound for the
smallest singular value is less than the actual smallest singular value is 1-ps ≈ 0.9999997.

• fixed.realSingularValueLowerBound is used in these functions.

• fixed.realQlessQRMatrixSolveFixedpointTypes
• fixed.realQRMatrixSolveFixedpointTypes

Algorithms
Given a m-by-n real-valued matrix A and standard deviation σN of additive random noise on the
elements of A, you can compute an estimate of a lower bound for the smallest singular value of A, s,
such that the probability, ps, of s being greater than the smallest singular value of A using this
formula [1][2].

s = σN 2γ−1 psΓ m− n + 1 Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

Version History
Introduced in R2021b

Support for Tikhonov regularization parameter

The fixed.realSingularValueLowerBound function now supports the Tikhonov regularization
parameter, “regularizationParameter” on page 4-0 .

References
[1] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."

U.S. Patent Application No. 16/947, 130. 2020.

[2] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/
10.1137/040616413.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-632

See Also
fixed.realQRMatrixSolveFixedpointTypes |
fixed.realQuantizationNoiseStandardDeviation |
fixed.realQlessQRMatrixSolveFixedpointTypes |
fixed.realQRMatrixSolveFixedpointTypes

 fixed.realSingularValueLowerBound

4-633

fixed.singularValueUpperBound
Upper bound of largest singular value of matrix

Syntax
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A)
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A,
regularizationParameter)

Description
svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A) returns an upper
bound of the largest singular value of an m-by-n matrix A, where m >= n and max_abs_A >=
max(abs(A(:))).

svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A,
regularizationParameter) returns an upper bound of the largest singular value of the matrix
[regularizationParameter*eye(n); A], where A is an m-by-n matrix with m >= n.

Examples

Upper Bound of Largest Singular Value of Real-Valued Matrix

Define a real-valued matrix, A.

m = 5;
n = 3;
A = ones(m,n);
max_abs_A = 1;

Determine an upper bound for the largest singular value of the matrix.

svdUpperBound = fixed.singularValueUpperBound(m,n,max_abs_A)

svdUpperBound = 3.8730

Compare to the actual largest singular value of the matrix.

actual_largest_singular_value = max(svd(A))

actual_largest_singular_value = 3.8730

Upper Bound of Largest Singular Value of a Low Rank Matrix with Regularization

Use the helper function realRandomLowRankMatrix to define a real-valued, low rank matrix A.

m = 300;
n = 10;

4 Functions

4-634

rankA = 3;
A = realRandomLowRankMatrix(m,n,rankA);

Determine an upper bound for the largest singular value of the matrix of the Tikhonov regularized
problem.

regularizationParameter = 0.01;
A = [regularizationParameter*eye(n);A];
svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))),regularizationParameter)

svdUpperBound = 54.7823

Compare to the actual largest singular value of the matrix.

actual_largest_singular_value = max(svd(A))

actual_largest_singular_value = 13.3424

Input Arguments
m — Number of rows in matrix A
positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of columns in matrix A
positive integer-valued scalar

Number of columns in matrix A, specified as a positive integer-valued scalar. The number of rows, m,
must be greater than or equal to the number of columns, n.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

max_abs_A — Maximum of absolute value of matrix A
scalar

Maximum of absolute value of matrix A, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

regularizationParameter — Regularization parameter
0 (default) | nonnegative scalar

Regularization parameter, specified as a nonnegative scalar.
Data Types: single | double

Algorithms
The upper bound for the largest singular value of matrix A is svdUpperBound =
sqrt(m*n)*max(abs(A(:))). If there is a regularization parameter, then the upper bound is
svdUpperBound = sqrt(m*n)*max(abs(A(:))) + abs(regularizationParameter) [1][2]
[3].

 fixed.singularValueUpperBound

4-635

Version History
Introduced in R2022b

References
[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for

"Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947,
130. 2022.

[2] Bryan, Thomas A., and Jenna L. Warren. "Systems and Methods for Design Parameter Selection."
U.S. Patent Application No. 16/947, 130. 2020.

[3] Chen, Zizhong, and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM
Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603—620. https://doi.org/
10.1137/040616413.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fixed.realSingularValueLowerBound | fixed.complexSingularValueLowerBound |
fixed.svd

4 Functions

4-636

fixed.svd
Fixed-point singular value decomposition

Syntax
S = fixed.svd(A)
[U,S,V] = fixed.svd(A)
[U,S,V] = fixed.svd(A,0)
[U,S,V] = fixed.svd(A,'econ')
[___] = fixed.svd(___ ,sigmaForm)

Description
S = fixed.svd(A) returns the singular values of matrix A in descending order.

[U,S,V] = fixed.svd(A) performs a singular value decomposition of matrix A such that A =
U*S*V'. S is a diagonal matrix of the same dimension as A with nonnegative diagonal elements in
decreasing order. U and V are unitary matrices.

[U,S,V] = fixed.svd(A,0) produces an economy-size decomposition of A. If A is an m-by-n
matrix, then:

• m > n — Only the first n columns of U are computed, and S is n-by-n.
• m <= n — fixed.svd(A,0) is equivalent to fixed.svd(A).

[U,S,V] = fixed.svd(A,'econ') produces a different economy-size decomposition of A. If A is
an m-by-n matrix, then:

• m >= n — fixed.svd(A,'econ') is equivalent to fixed.svd(A,0).
• m < n — Only the first m columns of V are computed, and S is m-by-m.

[___] = fixed.svd(___ ,sigmaForm) optionally specifies the output format for the singular
values. You can use this option with any of the previous input or output combinations. Specify
'vector' to return the singular values as a column vector. Specify 'matrix' to return the singular
values in a diagonal matrix.

Examples

Singular Values of Fixed-Point Matrix

Compute the singular values of a full rank scaled-double matrix.

A = [1 0 1; -1 -2 0; 0 1 -1];

Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound
function to determine the upper bound on the singular values. Then define the integer length based
on the value of the upper bound, with one additional bit for the sign and another additional bit for
intermediate CORDIC growth. Compute the fraction length based on the integer length and the
desired word length.

 fixed.svd

4-637

svdUpperBound = fixed.singularValueUpperBound(3,3,max(abs(A(:))))
integerLength = ceil(log2(svdUpperBound)) + 2
wordLength = 16
fractionLength = wordLength - integerLength

Cast the matrix A to the scaled-double type.

T.A = fi([],1,wordLength,fractionLength,'DataType','ScaledDouble');
A = cast(A,'like',T.A)

A =

 1 0 1
 -1 -2 0
 0 1 -1

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Compute the singular values.

s = fixed.svd(A)

s =

 2.4605
 1.6996
 0.2391

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

The singular values are returned in a column vector in decreasing order, and have the same data type
as A.

Fixed-Point Singular Value Decomposition

Find the singular value decomposition of the rectangular fixed-point matrix A.

Define the rectangular matrix A.

m = 4;
n = 2;
A = 10*randn(m,n);

Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound
function to determine the upper bound on the singular values. Then define the integer length based
on the value of the upper bound, with one additional bit for the sign and another additional bit for
intermediate CORDIC growth. Compute the fraction length based on the integer length and the
desired word length.

4 Functions

4-638

svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;

Cast the matrix A to the signed fixed-point type.

T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)

A =

 15.4421 -10.6158
 0.8593 23.5046
 -14.9159 -6.1560
 -7.4230 7.4808

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 23

Find the singular value decomposition of the fixed-point matrix A.

[U,S,V] = fixed.svd(A)

U =

 0.5447 -0.4890 0.6086 0.3061
 -0.7662 -0.4192 0.4466 -0.1942
 0.0163 0.7393 0.6558 -0.1519
 -0.3405 0.1964 0 0.9195

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 28.2808 0
 0 21.8173
 0 0
 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 23

V =

 0.3549 -0.9349
 -0.9349 -0.3549

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

 fixed.svd

4-639

Confirm the relation A = U*S*V'.

U*S*V'

ans =

 15.4421 -10.6158
 0.8593 23.5046
 -14.9159 -6.1560
 -7.4230 7.4808

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 99
 FractionLength: 83

Economy-Size Decomposition

Calculate the complete and economy-size decomposition of a rectangular fixed-point matrix.

Define the matrix A.

A = [1 2; 3 4; 5 6; 7 8];

Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound
function to determine the upper bound on the singular values. Then define the integer length based
on the value of the upper bound, with one additional bit for the sign and another additional bit for
intermediate CORDIC growth. Compute the fraction length based on the integer length and the
desired word length.

svdUpperBound = fixed.singularValueUpperBound(4,2,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;

Cast the matrix A to the signed fixed-point type.

T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)

A =

 1 2
 3 4
 5 6
 7 8

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 25

Compute the complete decomposition.

[U,S,V] = fixed.svd(A)

U =

4 Functions

4-640

 -0.1525 0.8226 -0.4082 0.3651
 -0.3499 0.4214 0.8165 -0.1826
 -0.5474 0.0201 -0.4082 -0.7303
 -0.7448 -0.3812 0 0.5477

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 14.2691 0
 0 0.6268
 0 0
 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 25

V =

 -0.6414 -0.7672
 -0.7672 0.6414

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Compute the economy-size decomposition.

[U,S,V] = fixed.svd(A,'econ')

U =

 -0.1525 0.8226
 -0.3499 0.4214
 -0.5474 0.0201
 -0.7448 -0.3812

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 14.2691 0
 0 0.6268

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 25

 fixed.svd

4-641

V =

 -0.6414 -0.7672
 -0.7672 0.6414

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Since A is 4-by-2, fixed.svd(A,'econ') returns fewer columns in U and fewer rows in S compared
to a complete decomposition. Extra rows of zeros in S are excluded, along with the corresponding
columns in U that would multiply with those zeros in the expression A = U*S*V'.

Control Singular Value Output Format

Create a 3-by-3 magic square matrix and calculate the singular value decomposition. By default, the
fixed.svd function returns the singular values in a diagonal matrix when you specify multiple
outputs.

Define the matrix A.

m = 3; n = m;
A = magic(m);

Define fixed-point types that will never overflow. First, use the fixed.singularValueUpperBound
function to determine the upper bound on the singular values. Then define the integer length based
on the value of the upper bound, with one additional bit for the sign and another additional bit for
intermediate CORDIC growth. Compute the fraction length based on the integer length and the
desired word length.

svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;

Cast the matrix A to the signed fixed-point type.

T.A = fi([],1,wordLength,fractionLength,'DataType','Fixed');
A = cast(A,'like',T.A)

A =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 25

Compute the singular value decomposition.

[U,S,V] = fixed.svd(A)

4 Functions

4-642

U =

 0.5774 0.7071 0.4082
 0.5774 -0.0000 -0.8165
 0.5774 -0.7071 0.4082

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 15.0000 0 0
 0 6.9282 0
 0 0 3.4641

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 25

V =

 0.5774 0.4082 0.7071
 0.5774 -0.8165 0.0000
 0.5774 0.4082 -0.7071

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Specify the 'vector' option to return the singular values in a column vector.

[U,S,V] = fixed.svd(A,'vector')

U =

 0.5774 0.7071 0.4082
 0.5774 -0.0000 -0.8165
 0.5774 -0.7071 0.4082

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 15.0000
 6.9282
 3.4641

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 25

 fixed.svd

4-643

V =

 0.5774 0.4082 0.7071
 0.5774 -0.8165 0.0000
 0.5774 0.4082 -0.7071

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

If you specify one output argument, such as S = fixed.svd(A), then fixed.svd switches behavior
to return the singular values in a column vector by default. In that case, you can specify the
'matrix' option to return the singular values as a diagonal matrix.

Compute Fixed-Point Singular Value Decomposition and Generate Code

Compute the fixed-point singular value decomposition, verify the results, and generate purely-integer
C code.

Define the input matrix A.

rng('default');
m = 10; n = 4;
A = 10*randn(m,n);

The fixed.svd function also accepts complex inputs.

A = 10*complex(rand(m,n),rand(m,n));

Define fixed-point types that will never overflow. Use the fixed.singularValueUpperBound
function to determine the upper bound on the singular values. Define the integer length based on the
value of the upper bound, with one additional bit for the sign and another additional bit for
intermediate CORDIC growth. Compute the fraction length based on the integer length and the
desired word length.

svdUpperBound = fixed.singularValueUpperBound(m,n,max(abs(A(:))));
integerLength = ceil(log2(svdUpperBound)) + 2;
wordLength = 32;
fractionLength = wordLength - integerLength;

Specify the desired data type for the input matrix A.

dataType = 'Fixed';
T.A = fi([],1,wordLength,fractionLength,'DataType',dataType);
disp(T.A)

T =

 struct with fields:

 A: [0×0 embedded.fi]

[]

4 Functions

4-644

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 22

Cast the matrix A to the signed fixed-point type.

A = cast(A,'like',T.A);

Generate a MATLAB executable (MEX) file for execution speed. Use the 'econ' flag to compute the
economy-size singular-value decomposition. Use the 'vector' flag to return the singular values as a
vector, s. The flags must be constant for code generation. Use the -nargout 3 flag to indicate to the
codegen function that it is to generate code for the three-output syntax.

codegen +fixed/svd -o fixedSVD -args {A,coder.Constant('econ'),coder.Constant('vector')} -nargout 3

Code generation successful.

Run the MEX file.

[U,s,V] = fixedSVD(A,'econ','vector')

U =

 -0.1125 -0.2967 -0.3376 0.0734
 0.5462 0.1609 0.4313 -0.1777
 -0.1650 0.4846 0.1004 -0.4510
 0.0834 0.0250 -0.6150 -0.3866
 0.2233 0.5125 -0.4713 -0.0149
 -0.2651 -0.1176 0.1186 -0.5239
 -0.0964 -0.0185 -0.0812 -0.2699
 0.2060 0.1754 0.1886 -0.1957
 0.4435 -0.5827 -0.0487 -0.4123
 0.5350 0.0589 -0.1759 0.2331

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

s =

 66.4423
 46.0313
 28.0940
 22.4663

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 22

V =

 0.7503 -0.5375 -0.3611 0.1334
 0.5419 0.2510 0.5298 -0.6022
 -0.1966 -0.0349 -0.6328 -0.7481
 -0.3238 -0.8043 0.4341 -0.2446

 fixed.svd

4-645

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Verify the singular values. Since singular values are unique, you can use the svd function to verify
that fixed.svd gives a comparable result within the precision of the selected fixed-point type.

sExpected = svd(double(A))
singularValueRelativeError = norm(double(s)-double(sExpected))/norm(double(sExpected))

sExpected =

 66.4423
 46.0313
 28.0939
 22.4663

singularValueRelativeError =

 6.6157e-07

Singular vectors are not unique. You can verify the singular vectors by confirming that A ≈ U*S*V'
and that the singular vector matrices are orthonormal.

First, expand the singular value vector s into matrix S.

S = zeros(size(U,2),size(V,2),'like',s);
for i = 1:min(m,n)
 S(i,i) = s(i);
end

S

S =

 66.4423 0 0 0
 0 46.0313 0 0
 0 0 28.0940 0
 0 0 0 22.4663

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 22

Verify that U*S*V' is approximately equal to A.

decompositionRelativeError = norm(double(U*S*V')-double(A))/norm(double(A))

decompositionRelativeError =

 9.8773e-07

U and V are orthonormal. Verify that U'U and V'V are approximately equal to the identity matrix.

4 Functions

4-646

UtransposeU = double(U'*U)
VtransposeV = double(V'*V)

UtransposeU =

 1.0000 -0.0000 -0.0000 -0.0000
 -0.0000 1.0000 0.0000 0.0000
 -0.0000 0.0000 1.0000 -0.0000
 -0.0000 0.0000 -0.0000 1.0000

VtransposeV =

 1.0000 -0.0000 0.0000 -0.0000
 -0.0000 1.0000 -0.0000 -0.0000
 0.0000 -0.0000 1.0000 -0.0000
 -0.0000 -0.0000 -0.0000 1.0000

Generate C code. If the input is fixed point, you can verify that the generated C code consists only of
integer types.

cfg = coder.config('lib');

if isfi(A) && isfixed(A)
 cfg.PurelyIntegerCode = true;
end

codegen +fixed/svd -args {A, coder.Constant('econ'), coder.Constant('vector')} -config cfg -nargout 3 -launchreport

Code generation successful: View report

The MATLAB code for fixed.svd does not appear in the code generation report because
fixed.svd is a MATLAB toolbox function.

Input Arguments
A — Input matrix
matrix

Input matrix, specified as a matrix. A can be a signed fixed-point fi, a signed scaled double fi,
double, or single data type.
Data Types: single | double | fi
Complex Number Support: Yes

sigmaForm — Output format of singular values
'vector' | 'matrix'

Output format of singular values, specified as one of these values:

• 'vector' — S is a column vector. This behavior is the default when you specify one output, S =
fixed.svd(A).

• 'matrix' — S is a diagonal matrix. This behavior is the default when you specify multiple
outputs, [U,S,V] = fixed.svd(A).

Example: [U,S,V] = fixed.svd(X,'vector') returns S as a column vector instead of a diagonal
matrix.

 fixed.svd

4-647

Example: S = fixed.svd(X,'matrix') returns S as a diagonal matrix instead of a column vector.
Data Types: char | string

Output Arguments
U — Left singular vectors
columns of matrix

Left singular vectors, returned as the columns of a matrix.

For fixed-point and scaled-double inputs, U is returned as a signed fixed-point or scaled-double fi
with the same word length as A and fraction length equal to two less than the word length. One of
these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, U has the same data type as A.

S — Singular values
diagonal matrix | column vector

Singular values, returned as a diagonal matrix or column vector. The singular values are nonnegative
and returned in decreasing order. The singular values S have the same data type as A.

V — Right singular vectors
matrix

Right singular vectors, returned as the columns of a matrix.

For fixed-point input and scaled-double inputs, V is returned as a signed fixed-point or scaled-double
fi with the same word length as A and fraction length equal to two less than the word length. One of
these integer bits is used for the sign. The other integer bit allows +1 to be represented exactly.

For floating-point input, V has the same data type as A. One of these integer bits is used for the sign,
and the other integer bit is so that +1 can be represented exactly.

Tips
The fixed.svd function allows full control over the fixed-point types. fixed.svd computes in-place
in the same data type as the input, which may overflow but will produce efficient code. The svd
function adjusts the data type of a fixed-point input to avoid overflow and increase precision.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

fixed.svd generates efficient, purely integer C code.

4 Functions

4-648

See Also
svd | svd

Topics
“Singular Values”

 fixed.svd

4-649

fixpt_instrument_purge
Remove corrupt fixed-point instrumentation from model

Compatibility

Note fixpt_instrument_purge will be removed in a future release.

Syntax
fixpt_instrument_purge
fixpt_instrument_purge(modelName, interactive)

Description
The fixpt_instrument_purge script finds and removes fixed-point instrumentation from a model
left by the Fixed-Point Tool and the fixed-point autoscaling script. The Fixed-Point Tool and the fixed-
point autoscaling script each add callbacks to a model. For example, the Fixed-Point Tool appends
commands to model-level callbacks. These callbacks make the Fixed-Point Tool respond to simulation
events. Similarly, the autoscaling script adds instrumentation to some parameter values that gathers
information required by the script.

Normally, these types of instrumentation are automatically removed from a model. The Fixed-Point
Tool removes its instrumentation when the model is closed. The autoscaling script removes its
instrumentation shortly after it is added. However, there are cases where abnormal termination of a
model leaves fixed-point instrumentation behind. The purpose of fixpt_instrument_purge is to
find and remove fixed-point instrumentation left over from abnormal termination.

fixpt_instrument_purge(modelName, interactive) removes instrumentation from model
modelName. interactive is true by default, which prompts you to make each change. When
interactive is set to false, all found instrumentation is automatically removed from the model.

Version History
Introduced before R2006a

See Also
autofixexp | fxptdlg

4 Functions

4-650

floor
Round toward negative infinity

Syntax
y = floor(a)

Description
y = floor(a) rounds fi object a to the nearest integer in the direction of negative infinity and
returns the result in fi object y.

Examples

Use floor on a Signed fi Object

The following example demonstrates how the floor function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = floor(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 5
 FractionLength: 0

The following example demonstrates how the floor function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

 floor

4-651

y = floor(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity.
• The fix function rounds values to the nearest integer toward zero.
• The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]

y =
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.7500 -1.0000 -1.0000 -2.0000
 -1.2500 -1.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 1.0000 0 0
 1.2500 2.0000 1.0000 1.0000
 1.7500 2.0000 1.0000 1.0000
 2.5000 3.0000 2.0000 2.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

4 Functions

4-652

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

floor does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.

 floor

4-653

• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | nearest | round

4 Functions

4-654

floorDiv
Round the result of division toward negative infinity

Syntax
y = floorDiv(x,d)
y = floorDiv(x,d,m)

Description
y = floorDiv(x,d) returns the result of x/d rounded to the nearest integer value in the direction
of negative infinity.

y = floorDiv(x,d,m) returns the result of x/d rounded to the nearest multiple of m in the
direction of negative infinity.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Examples

Divide and Round to Floor

Perform a division operation and round to the nearest integer value in the direction of negative
infinity.

floorDiv(int16(201),10)

ans =
 20

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

Perform a division operation and round to the nearest multiple of 7 in the direction of negative
infinity.

floorDiv(int16(201),10,7)

ans =
 14

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

 floorDiv

4-655

Divide and Generate Code

Define a function that uses floorDiv.

function y = floorDiv_example(x,d)
y = floorDiv(x,d);
end

Define inputs and execute the function in MATLAB®.

x = fi(pi);
d = fi(2);
y = floorDiv_example(x,d)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

To generate code for this function, the denominator d must be defined as a constant.

codegen floorDiv_example -args {x, coder.Constant(d)}

Code generation successful.

Alternatively, you can define the denominator, d, as constant in the body of the code.

function y = floorDiv10(x)
y = floorDiv(x,10);
end

x = fi(5*pi);
y = floorDiv10(x)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

codegen floorDiv10 -args {x}

Code generation successful.

Input Arguments
x — Dividend
scalar

Dividend, specified as a scalar.

4 Functions

4-656

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

d — Divisor
scalar

Divisor, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

m — Value to round to nearest multiple of
1 (default) | scalar

Value to round to nearest multiple of, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
y — Result of division and round to floor
scalar

Result of division and round to floor, returned as a scalar.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

To generate code, the denominator d must be declared as constant.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
ceilDiv | fixDiv | nearestDiv

 floorDiv

4-657

fma
Multiply and add using fused multiply add approach

Syntax
X = fma(A, B, C)

Description
X = fma(A, B, C) computes A.*B+C using a fused multiply add approach. Fused multiply add
operations round only once, often making the result more accurate than performing a multiplication
operation followed by an addition.

Examples

Multiply and Add Three Inputs Using Fused Multiply Add

This example shows how to use the fma function to calculate A × B + C using a fused multiply add
approach.

Define the inputs and use the fma function to compute the multiply add operation.

a = half(10);
b = half(10);
c = half(2);
x = fma(a, b, c)

x =

 half

 102

Compare the result of the fma function with the two-step approach of computing the product and
then the sum.

temp = a * b;
x = temp + c

x =

 half

 102

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

4 Functions

4-658

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and
B are matrices, fma performs element-wise multiplication followed by addition.
Data Types: single | double | half

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and
B are matrices, fma performs element-wise multiplication followed by addition.
Data Types: single | double | half

C — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array.
Data Types: single | double | half

Output Arguments
X — Result of multiply and add operation
scalar | vector | matrix | multidimensional array

Result of multiply and add operation, A.*B+C, returned as a scalar, vector, matrix, or
multidimensional array.

Version History
Introduced in R2019a

See Also
half

 fma

4-659

for
for loop to repeat specified number of times

Syntax
for index = values
 statements
end

Description
for index = values, statements, end executes a group of statements in a loop for a specified
number of times.

If a colon, : operation with fi objects is used as the index, then the fi objects must be whole
numbers.

Refer to the MATLAB for reference page for more information.

Examples

Use fi in a For Loop

Use a fi object as the index of a for loop.

a = fi(1,0,8,0);
b = fi(2,0,8,0);
c = fi(10,0,8,0);

for x = a:b:c
 x
end

x =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 5

4 Functions

4-660

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 7

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

Version History
Introduced in R2014b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

 for

4-661

fractionlength
Fraction length of quantizer object

Syntax
fractionlength(q)

Description
fractionlength(q) returns the fraction length of quantizer object q.

Algorithms
For floating-point quantizer objects, f = w - e - 1, where w is the word length and e is the exponent
length.

For fixed-point quantizer objects, f is part of the format [w f].

Version History
Introduced before R2006a

See Also
fi | numerictype | quantizer | wordlength

4 Functions

4-662

fxpopt
Optimize data types of a system

Syntax
result = fxpopt(model, sud, options)

Description
result = fxpopt(model, sud, options) optimizes the data types in the model or subsystem
specified by sud in the model, model, with additional options specified in the
fxpOptimizationOptions object, options.

Examples

Optimize Fixed-Point Data Types

This example shows how to optimize the data types used by a system based on specified tolerances.

To begin, open the system for which you want to optimize the data types.

model = 'ex_auto_gain_controller';
sud = 'ex_auto_gain_controller/sud';
open_system(model)

Create an fxpOptimizationOptions object to define constraints and tolerances to meet your
design goals. Set the UseParallel property of the fxpOptimizationOptions object to true to
run iterations of the optimization in parallel. You can also specify word lengths to allow in your design
through the AllowableWordLengths property.

opt = fxpOptimizationOptions('AllowableWordLengths', 10:24, 'UseParallel', true)

 fxpopt

4-663

opt =

 fxpOptimizationOptions with properties:

 MaxIterations: 50
 MaxTime: 600
 Patience: 10
 Verbosity: High
 AllowableWordLengths: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
 UseParallel: 1

 Advanced Options
 AdvancedOptions: [1×1 struct]

Use the addTolerance method to define tolerances for the differences between the original
behavior of the system, and the behavior using the optimized fixed-point data types.

tol = 10e-2;
addTolerance(opt, [model '/output_signal'], 1, 'AbsTol', tol);

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in your
system under design and the constraints specified in the fxpOptimizationOptions object to apply
heterogeneous data types to your system while minimizing total bit width.

result = fxpopt(model, sud, opt);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
 + Preprocessing
 + Modeling the optimization problem
 - Constructing decision variables
 + Running the optimization solver
Analyzing and transferring files to the workers ...done.
 - Evaluating new solution: cost 180, does not meet the tolerances.
 - Evaluating new solution: cost 198, does not meet the tolerances.
 - Evaluating new solution: cost 216, does not meet the tolerances.
 - Evaluating new solution: cost 234, does not meet the tolerances.
 - Evaluating new solution: cost 252, does not meet the tolerances.
 - Evaluating new solution: cost 270, does not meet the tolerances.
 - Evaluating new solution: cost 288, does not meet the tolerances.
 - Evaluating new solution: cost 306, meets the tolerances.
 - Evaluating new solution: cost 324, meets the tolerances.
 - Evaluating new solution: cost 342, meets the tolerances.
 - Evaluating new solution: cost 360, meets the tolerances.
 - Evaluating new solution: cost 378, meets the tolerances.
 - Evaluating new solution: cost 396, meets the tolerances.
 - Evaluating new solution: cost 414, meets the tolerances.
 - Evaluating new solution: cost 432, meets the tolerances.
 - Updated best found solution, cost: 306
 - Evaluating new solution: cost 304, meets the tolerances.
 - Evaluating new solution: cost 304, meets the tolerances.
 - Evaluating new solution: cost 301, meets the tolerances.
 - Evaluating new solution: cost 305, does not meet the tolerances.
 - Evaluating new solution: cost 305, meets the tolerances.
 - Evaluating new solution: cost 301, meets the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.

4 Functions

4-664

 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 296, meets the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 291, meets the tolerances.
 - Evaluating new solution: cost 296, does not meet the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 300, meets the tolerances.
 - Evaluating new solution: cost 296, does not meet the tolerances.
 - Evaluating new solution: cost 301, meets the tolerances.
 - Evaluating new solution: cost 303, meets the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 304, does not meet the tolerances.
 - Evaluating new solution: cost 300, meets the tolerances.
 - Updated best found solution, cost: 304
 - Updated best found solution, cost: 301
 - Updated best found solution, cost: 299
 - Updated best found solution, cost: 296
 - Updated best found solution, cost: 291
 - Evaluating new solution: cost 280, meets the tolerances.
 - Evaluating new solution: cost 287, meets the tolerances.
 - Evaluating new solution: cost 288, does not meet the tolerances.
 - Evaluating new solution: cost 287, does not meet the tolerances.
 - Evaluating new solution: cost 283, meets the tolerances.
 - Evaluating new solution: cost 283, does not meet the tolerances.
 - Evaluating new solution: cost 262, does not meet the tolerances.
 - Evaluating new solution: cost 283, does not meet the tolerances.
 - Evaluating new solution: cost 282, does not meet the tolerances.
 - Evaluating new solution: cost 288, meets the tolerances.
 - Evaluating new solution: cost 289, meets the tolerances.
 - Evaluating new solution: cost 288, meets the tolerances.
 - Evaluating new solution: cost 290, meets the tolerances.
 - Evaluating new solution: cost 281, does not meet the tolerances.
 - Evaluating new solution: cost 286, does not meet the tolerances.
 - Evaluating new solution: cost 287, meets the tolerances.
 - Evaluating new solution: cost 284, meets the tolerances.
 - Evaluating new solution: cost 282, meets the tolerances.
 - Evaluating new solution: cost 285, does not meet the tolerances.
 - Evaluating new solution: cost 277, meets the tolerances.
 - Updated best found solution, cost: 280
 - Updated best found solution, cost: 277
 - Evaluating new solution: cost 272, meets the tolerances.
 - Evaluating new solution: cost 266, meets the tolerances.
 - Evaluating new solution: cost 269, meets the tolerances.
 - Evaluating new solution: cost 271, does not meet the tolerances.
 - Evaluating new solution: cost 274, meets the tolerances.
 - Evaluating new solution: cost 275, meets the tolerances.
 - Evaluating new solution: cost 274, does not meet the tolerances.
 - Evaluating new solution: cost 275, meets the tolerances.
 - Evaluating new solution: cost 276, does not meet the tolerances.
 - Evaluating new solution: cost 271, meets the tolerances.
 - Evaluating new solution: cost 267, meets the tolerances.
 - Evaluating new solution: cost 270, meets the tolerances.
 - Evaluating new solution: cost 272, meets the tolerances.
 - Evaluating new solution: cost 264, does not meet the tolerances.
 - Evaluating new solution: cost 265, does not meet the tolerances.
 - Evaluating new solution: cost 269, meets the tolerances.
 - Evaluating new solution: cost 270, meets the tolerances.
 - Evaluating new solution: cost 269, meets the tolerances.

 fxpopt

4-665

 - Evaluating new solution: cost 276, meets the tolerances.
 - Evaluating new solution: cost 274, meets the tolerances.
 - Updated best found solution, cost: 272
 - Updated best found solution, cost: 266
 + Optimization has finished.
 - Neighborhood search complete.
 - Maximum number of iterations completed.
 + Fixed-point implementation that met the tolerances found.
 - Total cost: 266
 - Maximum absolute difference: 0.087035
 - Use the explore method of the result to explore the implementation.

Use the explore method of the OptimizationResult object, result, to launch Simulation Data
Inspector and explore the design containing the smallest total number of bits while maintaining the
numeric tolerances specified in the opt object.

 explore(result);

4 Functions

4-666

You can revert your model back to its original state using the revert method of the
OptimizationResult object.

 revert(result);

Input Arguments
model — Model containing system under design, sud
character vector

Name of the model containing the system that you want to optimize.
Data Types: char

sud — Model or subsystem whose data types you want to optimize
character vector

Model or subsystem whose data types you want to optimize, specified as a character vector
containing the path to the system.
Data Types: char

options — Additional optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying additional options to use during the data type
optimization process.

Output Arguments
result — Object containing the optimized design
OptimizationResult object

Result of the optimization, returned as an OptimizationResult object. Use the explore method of
the object to open the Simulation Data Inspector and view the behavior of the optimized system. You
can also explore other solutions found during the optimization that may or may not meet the
constraints specified in the fxpOptimizationOptions object, options.

Version History
Introduced in R2018a

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | explore

Topics
“Optimize Fixed-Point Data Types for a System”

 fxpopt

4-667

fxptdlg
Open the Fixed-Point Tool

Syntax
fxptdlg(system_name)

Description
fxptdlg(system_name) opens the Fixed-Point Tool for the Simulink model or subsystem specified
by system_name.

You can also access this tool by the following methods:

• From the Apps tab, under Code Generation click Fixed-Point Tool.
• From a subsystem context (right-click) menu, select Fixed-Point Tool.

Examples

Open the Fixed-Point Tool from the Command Line

Open a Simulink model.

open_system('fxpdemo_feedback')

Open the Fixed-Point Tool with the Controller subsystem selected as the system under design.

fxptdlg('fxpdemo_feedback/Controller')

Override Fixed-Point Specifications

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer software.
However, even if you do not have Fixed-Point Designer software, you can configure data type override
settings to simulate a model that specifies fixed-point data types. In this mode, the Simulink software
temporarily overrides fixed-point data types with floating-point data types when simulating the model.

Note that if you use fi on page 4-375 objects or embedded numeric data types in your model or
workspace, you might introduce fixed-point data types into your model. You can set fipref on page 4-
375 to prevent the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:

Enter the following at the command line.

set_param(gcs, 'DataTypeOverride', 'Double',...
 'DataTypeOverrideAppliesTo','AllNumericTypes',...
 'MinMaxOverflowLogging','ForceOff')

4 Functions

4-668

If you use fi objects or embedded numeric data types in your model, set the fipref
DataTypeOverride property to TrueDoubles or TrueSingles (to be consistent with the model-
wide data type override setting) and the DataTypeOverrideAppliesTo property to All numeric
types.

For example, at the MATLAB command line, enter:

 p = fipref('DataTypeOverride', 'TrueDoubles', ...
 'DataTypeOverrideAppliesTo', 'AllNumericTypes');

Input Arguments
system_name — Model or subsystem to analyze or convert
top-level model of current system

Model or subsystem to analyze or convert in the Fixed-Point Tool.
Data Types: string

Version History
Introduced before R2006a

See Also
Fixed-Point Tool

 fxptdlg

4-669

ge, >=
Package: embedded

Determine whether real-world value of one array is greater than or equal to another

Syntax
A >= B
ge(A,B)

Description
A >= B returns a logical array with elements set to logical 1 (true) where the real-world values of A
is greater than or equal to B, when A or B is a fi object. Otherwise, the element is logical 0 (false).
The test compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to a fixed-point type that preserves the relative order of the value with respect to the
value in the fixed-point fi object.

ge(A,B) is an alternate way to execute A >= B, but is rarely used.

Examples

Compare Two fi Objects

Use the ge function to determine whether the real-world value of one fi object is greater than or
equal to another.

a = fi(pi);
b = fi(pi, 1, 32);
b >= a

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The ge function returns 0
because after quantization, the value of a is slightly greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the
relative order of the value with respect to the value in the fixed-point fi object. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

4 Functions

4-670

a = fi(pi);
b = pi;
ge(a,b)

ans =

 logical

 1

Input Arguments
A,B — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi ge, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Improved accuracy in comparing fi objects and floating-point numbers using relational
operators
Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This could lead to incorrect results. For
example,

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

 ge, >=

4-671

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

Note that the updated algorithm may produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest
wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-672

See Also
eq | gt | le | lt | ne

 ge, >=

4-673

get
Property values of object

Syntax
value = get(o,'propertyname')
structure = get(o)

Description
value = get(o,'propertyname') returns the property value of the property 'propertyname'
for the object o. If you replace 'propertyname' by a cell array of a vector of strings containing
property names, get returns a cell array of a vector of corresponding values.

structure = get(o) returns a structure containing the properties and states of object o.

o can be a fi, fimath, fipref, numerictype, or quantizer object.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The syntax structure = get(o) is not supported.

See Also
set

4 Functions

4-674

getlsb
Package: embedded

Least significant bit

Syntax
c = getlsb(a)

Description
c = getlsb(a) returns the value of the least significant bit in a.

Examples

Find Least-Significant Bit in fi Object

Use getlsb to find the least-significnat bit in the fi object a.

a = fi(-26, 1, 6, 0);
c = getlsb(a)

c =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

You can verify that the least sigificant bit in the fi object a is 0 by looking at the binary
representation of a.

disp(bin(a))

100110

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array. getlsb only supports
fi object with fixed-point data types.
Data Types: fi

 getlsb

4-675

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset | bitxor |
bitxorreduce | getmsb

4 Functions

4-676

getmsb
Package: embedded

Most significant bit

Syntax
c = getmsb(a)

Description
c = getmsb(a) returns the value of the most-significant bit in a.

Examples

Find Most-Significant Bit in fi Object

Use getmsb to find the most-significant bit in the fi object a.

a = fi(-26, 1, 6, 0);
c = getmsb(a)

c =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

You can verify that the most significant bit in the fi object a is 1 by looking at the binary
representation of a.

disp(bin(a))

100110

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array. getmsb only supports
fi object with fixed-point data types.
Data Types: fi

 getmsb

4-677

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset | bitxor |
bitxorreduce | getlsb

4 Functions

4-678

globalfimath
Configure global fimath and return handle object

Syntax
G = globalfimath
G = globalfimath('PropertyName1',PropertyValue1,...)
G = globalfimath(f)

Description
G = globalfimath returns a handle object to the global fimath. The global fimath has identical
properties to a fimath object but applies globally.

G = globalfimath('PropertyName1',PropertyValue1,...) sets the global fimath using the
named properties and their corresponding values. Properties that you do not specify in this syntax
are automatically set to that of the current global fimath.

G = globalfimath(f) sets the properties of the global fimath to match those of the input fimath
object f, and returns a handle object to it.

Unless, in a previous release, you used the saveglobalfimathpref function to save global fimath
settings to your MATLAB preferences, the global fimath properties you set with the globalfimath
function apply only to your current MATLAB session. It is best practice to remove global fimath from
the MATLAB preferences so that you start each MATLAB session using the default fimath settings.
To remove the global fimath, use the removeglobalfimathpref function.

Examples

Modifying globalfimath

Use the globalfimath function to set, change, and reset the global fimath.

Create a fimath object and use it as the global fimath.

G = globalfimath('RoundMode','Floor','OverflowMode','Wrap')

G =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

Create another fimath object using the new default.

F1 = fimath

F1 =
 RoundingMethod: Floor
 OverflowAction: Wrap

 globalfimath

4-679

 ProductMode: FullPrecision
 SumMode: FullPrecision

Create a fi object, A, associated with the global fimath.

A = fi(pi)

A =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Now set the "SumMode" property of the global fimath to "KeepMSB" and retain all the other property
values of the current global fimath.

G = globalfimath('SumMode','KeepMSB')

G =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: KeepMSB
 SumWordLength: 32
 CastBeforeSum: true

Change the global fimath by directly interacting with the handle object G.

G.ProductMode = 'SpecifyPrecision'

G =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: SpecifyPrecision
 ProductWordLength: 32
 ProductFractionLength: 30
 SumMode: KeepMSB
 SumWordLength: 32
 CastBeforeSum: true

Reset the global fimath to the factory default by calling the reset method on G. This is equivalent to
using the resetglobalfimath function.

reset(G);
G

G =
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Tips
If you always use the same fimath settings and you are not sharing code with other people, using
the globalfimath function is a quick, convenient method to configure these settings. However, if

4 Functions

4-680

you share the code with other people or if you use the fiaccel function to accelerate the algorithm
or you generate C code for your algorithm, consider the following alternatives.

Goal Issue Using globalfimath Solution
Share code If you share code with someone

who is using different global
fimath settings, they might see
different results.

Separate the fimath properties
from your algorithm by using
types tables. For more
information, see “Separate Data
Type Definitions from
Algorithm”.

Accelerate your algorithm using
fiaccel or generate C code
from your MATLAB algorithm
using codegen

You cannot use globalfimath
within that algorithm. If you
generate code with one
globalfimath setting and run
it with a different
globalfimath setting, results
might vary. For more
information, see Specifying
Default fimath Values for MEX
Functions.

Use types tables in the
algorithm from which you want
to generate code. This insulates
you from the global settings and
makes the code portable. For
more information, see “Separate
Data Type Definitions from
Algorithm”.

Version History
Introduced in R2010a

See Also
fimath | codegen | fiaccel | removeglobalfimathpref | resetglobalfimath

 globalfimath

4-681

gt
Package: embedded

Determine whether real-world value of one array is greater than another

Syntax
A > B
gt(A,B)

Description
A > B returns a logical array with elements set to logical 1 (true) where the real-world values of A is
greater than B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test
compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to a fixed-point type that preserves the relative order of the value with respect to the
value in the fixed-point fi object.

gt(A,B) is an alternate way to execute A > B, but is rarely used.

Examples

Compare Two fi Objects

Use the gt function to determine whether the real-world value of one fi object is greater than
another.

a = fi(pi);
b = fi(pi, 1, 32);
a > b

ans = logical
 1

Input a has a 16-bit word length, while input b has a 32-bit word length. The gt function returns 1
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the
relative order of the value with respect to the value in the fixed-point fi object. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

4 Functions

4-682

a = fi(pi);
b = pi;
gt(a,b)

ans =

 logical

 1

Input Arguments
A,B — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi gt, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Improved accuracy in comparing fi objects and floating-point numbers using relational
operators
Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This could lead to incorrect results. For
example,

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

 gt

4-683

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

Note that the updated algorithm may produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest
wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-684

See Also
eq | ge | le | lt | ne

 gt

4-685

half
Construct half-precision numeric object

Description
Use the half constructor to assign a half-precision data type to a number or variable. A half-
precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size. For more
information, see “Floating-Point Numbers” and “What is Half Precision?”.

For a list of functions that support code generation with half-precision inputs, see “Half Precision
Code Generation Support”.

Creation

Syntax
a = half(v)

Description

a = half(v) converts the values in v to half-precision.

Input Arguments

v — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Object Functions
These functions are supported for simulation with half-precision inputs in MATLAB. MATLAB System
object™ supports half-precision data type and MATLAB System block supports half-precision data
type with real values. For a list of functions that support code generation with half-precision inputs,
see “Half Precision Code Generation Support”.

Math and Arithmetic
abs Absolute value and complex magnitude
acos Inverse cosine in radians
acosh Inverse hyperbolic cosine
asin Inverse sine in radians
asinh Inverse hyperbolic sine

4 Functions

4-686

atan Inverse tangent in radians
atan2 Four-quadrant inverse tangent
atanh Inverse hyperbolic tangent
ceil Round toward positive infinity
conj Complex conjugate
conv Convolution and polynomial multiplication
conv2 2-D convolution
cos Cosine of argument in radians
cosh Hyperbolic cosine
cospi Compute cos(X*pi) accurately
cumsum Cumulative sum
dot Dot product
exp Exponential
expm1 Compute exp(x)-1 accurately for small values of x
fft Fast Fourier transform
fft2 2-D fast Fourier transform
fftn N-D fast Fourier transform
fftshift Shift zero-frequency component to center of spectrum
fix Round toward zero
floor Round toward negative infinity
fma Multiply and add using fused multiply add approach
hypot Square root of sum of squares (hypotenuse)
ifft Inverse fast Fourier transform
ifft2 2-D inverse fast Fourier transform
ifftn Multidimensional inverse fast Fourier transform
ifftshift Inverse zero-frequency shift
imag Imaginary part of complex number
ldivide Left array division
log Natural logarithm
log10 Common logarithm (base 10)
log1p Compute log(1+x) accurately for small values of x
log2 Base 2 logarithm and floating-point number dissection
mean Average or mean value of array
minus Subtraction
mldivide Solve systems of linear equations Ax = B for x
mod Remainder after division (modulo operation)
mrdivide Solve systems of linear equations xA = B for x
mtimes Matrix multiplication
plus Add numbers, append strings
pow10 Base 10 power and scale half-precision numbers
pow2 Base 2 exponentiation and scaling of floating-point numbers
power Element-wise power
prod Product of array elements
rdivide Right array division
real Real part of complex number
rem Remainder after division
round Round to nearest decimal or integer
rsqrt Reciprocal square root
sign Sign function (signum function)
sin Sine of argument in radians
sinh Hyperbolic sine
sinpi Compute sin(X*pi) accurately

 half

4-687

sqrt Square root
sum Sum of array elements
tan Tangent of argument in radians
tanh Hyperbolic tangent
times Multiplication
uminus Unary minus
uplus Unary plus

Data Types
allfinite Determine if all array elements are finite
anynan Determine if any array element is NaN
cast Convert variable to different data type
cell Cell array
double Double-precision arrays
eps Floating-point relative accuracy
flintmax Largest consecutive integer in floating-point format
Inf Create array of all Inf values
int16 16-bit signed integer arrays
int32 32-bit signed integer arrays
int64 64-bit signed integer arrays
int8 8-bit signed integer arrays
isa Determine if input has specified data type
isfloat Determine whether input is floating-point data type
isinteger Determine whether input is integer array
islogical Determine if input is logical array
isnan Determine which array elements are NaN
isnumeric Determine whether input is numeric array
isobject Determine if input is MATLAB object
isreal Determine whether array uses complex storage
logical Convert numeric values to logicals
NaN Create array of all NaN values
realmax Largest positive floating-point number
realmin Smallest normalized floating-point number
single Single-precision arrays
storedInteger Stored integer value of fi object
typecast Convert data type without changing underlying data
uint16 16-bit unsigned integer arrays
uint32 32-bit unsigned integer arrays
uint64 64-bit unsigned integer arrays
uint8 8-bit unsigned integer arrays

Relational and Logical Operators
all Determine if all array elements are nonzero or true
and Find logical AND
Short-Circuit AND Logical AND with short-circuiting
any Determine if any array elements are nonzero
eq Determine equality
ge Determine greater than or equal to
gt Determine greater than
isequal Determine array equality
isequaln Determine array equality, treating NaN values as equal

4 Functions

4-688

le Determine less than or equal to
lt Determine less than
ne Determine inequality
not Find logical NOT
or Find logical OR
Short-Circuit OR Logical OR with short-circuiting

Array and Matrix Operations
cat Concatenate arrays
chol Cholesky factorization
circshift Shift array circularly
colon Vector creation, array subscripting, and for-loop iteration
complex Create complex array
ctranspose Complex conjugate transpose
empty Create empty array of specified class
eye Identity matrix
flip Flip order of elements
fliplr Flip array left to right
flipud Flip array up to down
horzcat Horizontal concatenation for heterogeneous arrays
iscolumn Determine if input is column vector
isempty Determine whether array is empty
isfinite Determine which array elements are finite
isinf Determine which array elements are infinite
ismatrix Determine whether input is matrix
isrow Determine if input is row vector
isscalar Determine whether input is scalar
issorted Determine if array is sorted
isvector Determine whether input is vector
length Length of largest array dimension
lu LU matrix factorization
max Maximum elements of an array
min Minimum elements of an array
ndims Number of array dimensions
numel Number of array elements
ones Create array of all ones
permute Permute array dimensions
repelem Repeat copies of array elements
repmat Repeat copies of array
reshape Reshape array
size Array size
sort Sort array elements
squeeze Remove dimensions of length 1
transpose Transpose vector or matrix
vertcat Vertical concatenation for heterogeneous arrays
zeros Create array of all zeros

Graphics
area Area of 2-D alpha shape
bar Bar graph
barh Horizontal bar graph

 half

4-689

fplot Plot expression or function
line Create primitive line
plot 2-D line plot
plot3 3-D point or line plot
plotmatrix Scatter plot matrix
rgbplot Plot colormap
scatter Scatter plot
scatter3 3-D scatter plot
xlim Set or query x-axis limits
ylim Set or query y-axis limits
zlim Set or query z-axis limits

Deep Learning
activations Compute deep learning network layer activations
classify Classify data using trained deep learning neural network
predict Reconstruct the inputs using trained autoencoder
predictAndUpdateState Predict responses using a trained recurrent neural network and update the

network state

To display a list of supported functions, at the MATLAB Command Window, enter:

methods(half(1))

Examples

Convert Value to Half Precision

To cast a double-precision number to half precision, use the half function.

a = half(pi)

a =

 half

 3.1406

You can also use the half function to cast an existing variable to half-precision.

v = single(magic(3))

v = 3x3 single matrix

 8 1 6
 3 5 7
 4 9 2

a = half(v)

a =

 3x3 half matrix

4 Functions

4-690

 8 1 6
 3 5 7
 4 9 2

Limitations
• Arithmetic operations which combine half-precision and logical types are not supported.
• For additional usage notes and limitations, see “Half Precision Code Generation Support”.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• For a list of functions that support code generation with half-precision inputs and any associated
limitations, see “Half Precision Code Generation Support”.

• If your target hardware does not have native support for half-precision, then half is used as a
storage type, with arithmetic operations performed in single-precision.

• Some functions use half only as a storage type and the arithmetic is performed in single-
precision, regardless of the target hardware.

• For deep learning code generation, half inputs are cast to single precision and computations are
performed in single precision.

• In MATLAB, the isobject function returns true with a half-precision input. In generated code,
this function returns false.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

• For a list of functions that support code generation with half-precision inputs and any associated
limitations, see “Half Precision Code Generation Support”.

• CUDA® compute capability of 5.3 or higher is required for generating and executing code with
half-precision data types.

• CUDA toolkit version of 10.0 or later is required for generating and executing code with half-
precision data types.

• You must set the memory allocation (malloc) mode to 'Discrete' for generating CUDA code.
• Half-precision complex data types are not supported for GPU code generation.
• If your target hardware does not have native support for half-precision, then half is used as a

storage type, with arithmetic operations performed in single-precision.
• Some functions use half only as a storage type and the arithmetic is performed in single-

precision, regardless of the target hardware.
• For deep learning code generation, half inputs are cast to single precision and computations are

performed in single precision. To perform computations in half, set the library target to
'tensorrt' and set the data type to 'FP16' in coder.DeepLearningConfig.

 half

4-691

• In MATLAB, the isobject function returns true with a half-precision input. In generated code,
this function returns false.

See Also
single | double

Topics
“Half Precision Code Generation Support”
“Floating-Point Numbers”
“What is Half Precision?”
“Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” (MATLAB Coder)
Edge Detection with Sobel Method in Half-Precision (GPU Coder)

4 Functions

4-692

hex
Package: embedded

Hexadecimal representation of stored integer of fi object

Syntax
b = hex(a)

Description
b = hex(a) returns the stored integer of fi object a in hexadecimal format as a character vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Tip hex returns the hexadecimal representation of the stored integer of a fi object. To obtain the
hexadecimal representation of the real-world value of a fi object, use dec2hex.

Examples

View Stored Integer of fi Object in Hexadecimal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a =
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the hexadecimal representation of the stored integers of fi object a.

b = hex(a)

b =
'80 7f'

 hex

4-693

Write Hex Data to a File

This example shows how to write hexadecimal data from the MATLAB workspace into a text file.

Define your data and create a writable text file called hexdata.txt.

x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');

Use the fprintf function to write your data to the hexdata.txt file.

for k = 1:length(a)
 fprintf(h, '%s\n', hex(a(k)));
end

fclose(h);

To see the contents of the file you created, use the type function.

type hexdata.txt

0000
1000
2000
3000
4000
5000
6000
7000
8000
9000
a000
b000
c000
d000
e000
f000

Read Hex Data From a File

This example shows how to read hexadecimal data from a text file back into the MATLAB workspace.

Define your data, create a writable text file called hexdata.txt, and write your data to the
hexdata.txt file.

x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');

for k = 1:length(a)
 fprintf(h, '%s\n', hex(a(k)));
end

4 Functions

4-694

fclose(h);

Open hexdata.txt for reading and read its contents into a workspace variable

h = fopen('hexdata.txt', 'r');

nextline = '';
str = '';

while ischar(nextline)
 nextline = fgetl(h);
 if ischar(nextline)
 str = [str; nextline];
 end
end

fclose(h);

Create a fi object with the correct scaling and assign it the hex values stored in the str variable.

b = fi([], 0, 16, 16);
b.hex = str

b =
 0
 0.0625
 0.1250
 0.1875
 0.2500
 0.3125
 0.3750
 0.4375
 0.5000
 0.5625
 0.6250
 0.6875
 0.7500
 0.8125
 0.8750
 0.9375

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 16

Input Arguments
a — Input array
fi object

Input array, specified as a fi object.
Data Types: fi

 hex

4-695

Version History
Introduced before R2006a

See Also
bin | dec | storedInteger | oct | dec2hex | dec2base | dec2bin

4 Functions

4-696

hex2num
Convert hexadecimal string to number using quantizer object

Syntax
x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description
x = hex2num(q,h) converts hexadecimal character vector h to numeric matrix x. The attributes of
the numbers in x are specified by quantizer object q. When h is a cell array, hex2num returns x as
a cell array of the same dimension containing numbers. For fixed-point hexadecimal representations,
hex2num uses two's complement representation. For floating-point, the representation is IEEE
Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-point
conversion zero-fills on the left. Floating-point conversion zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal representations h1, h2,... to
numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that num2hex returns the
hexadecimal representations in a column.

Examples
To create all the 4-bit fixed-point two's complement numbers in fractional form, use the following
code.

q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)

x =

 0.8750 0.3750 -0.1250 -0.6250
 0.7500 0.2500 -0.2500 -0.7500
 0.6250 0.1250 -0.3750 -0.8750
 0.5000 0 -0.5000 -1.0000

Version History
Introduced before R2006a

See Also
bin2num | num2bin | num2hex | num2int

 hex2num

4-697

horzcat
Concatenate multiple fi objects horizontally

Syntax
C = horzcat(A,B)
C = horzcat(A1,A2,…An)

Description
C = horzcat(A,B) concatenates B horizontally to the end of A when A and B have compatible sizes
(the lengths of the dimensions match except in the second dimension).

C = horzcat(A1,A2,…An) concatenates A1,A2,…,An horizontally.

horzcat is equivalent to using square brackets for horizontally concatenating arrays. For example,
[A,B] or [A B] is equal to horzcat(A,B) when A and B are compatible arrays.

Note The fimath and numerictype properties of a concatenated matrix of fi objects, C, are taken
from the leftmost fi object in the list A1,A2,…,An.

Input Arguments
A — First input
scalar | vector | matrix | multidimensional array

First input, specified as a scalar, vector, matrix, or multidimensional array.

B — Second input
scalar | vector | matrix | multidimensional array

Second input, specified as a scalar, vector, matrix, or multidimensional array.

The elements of B are concatenated to the end of the first input along the second dimension. The
sizes of the input arguments must be compatible. For example, if the first input is a matrix of size 3-
by-2, then B must have 3 rows.

A1,A2,…An — List of inputs
scalar | vector | matrix | multidimensional array

List of inputs, specified as a comma-separated list of elements to concatenate in the order they are
specified.

Any number of matrices can be concatenated within one pair of brackets. Multidimensional arrays
are horizontally concatenated along the second dimension.

The inputs must have compatible sizes. For example, if A1 is a column vector of length m, then the
remaining inputs must each have m rows to concatenate horizontally.

4 Functions

4-698

Tips
• Horizontal and vertical concatenation can be combined together, as in [1 2;3 4].
• The matrices in a concatenation expression can themselves be formed via a concatenation, as in

[a b;[c d]].
• [A B;C] is allowed if the number of rows of A equals the number of rows of B and if the number

of columns of A plus the number of columns of B equals the number of columns of C.
• When concatenating an empty array to a nonempty array, horzcat omits the empty array in the

output. For example,

horzcat(fi([1 2]),[])

ans =

 1 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
vertcat

 horzcat

4-699

innerprodintbits
Number of integer bits needed for fixed-point inner product

Syntax
innerprodintbits(a,b)

Description
innerprodintbits(a,b) computes the minimum number of integer bits necessary in the inner
product of a'*b to guarantee that no overflows occur and to preserve best precision.

• a and b are fi vectors.
• The values of a are known.
• Only the numeric type of b is relevant. The values of b are ignored.

Examples
The primary use of this function is to determine the number of integer bits necessary in the output Y
of an FIR filter that computes the inner product between constant coefficient row vector B and state
column vector Z. For example,
 for k=1:length(X);
 Z = [X(k);Z(1:end-1)];
 Y(k) = B * Z;
 end

Algorithms
In general, an inner product grows log2(n) bits for vectors of length n. However, in the case of this
function the vector a is known and its values do not change. This knowledge is used to compute the
smallest number of integer bits that are necessary in the output to guarantee that no overflow will
occur.

The largest gain occurs when the vector b has the same sign as the constant vector a. Therefore, the
largest gain due to the vector a is a*sign(a'), which is equal to sum(abs(a)).

The overall number of integer bits necessary to guarantee that no overflow occurs in the inner
product is computed by:
n = ceil(log2(sum(abs(a)))) + number of integer bits in b + 1 sign bit

The extra sign bit is only added if both a and b are signed and b attains its minimum. This prevents
overflow in the event of (-1)*(-1).

Version History
Introduced before R2006a

4 Functions

4-700

int
Get stored integer value of a fi object

Syntax
i = int(a)

Description
i = int(a) returns the integer value of a fi object, stored in one of the built-in integer data types.

Examples

Get the Stored Integer Value of a fi Object

Create a fi object with default settings. Use the int function to get its stored integer value. The
output is an int16 because the input used the default word length of 16-bits.

a = fi(pi);
b = int(a)

b = int16
 25736

Create a fi object that uses a 20-bit word length and get the stored integer value of the fi object.

a = fi(pi,1,20);
b = int(a)

b = int32
 411775

The output is an int32 to accommodate the larger input word length.

Input Arguments
a — Fixed-point numeric object
scalar | vector | matrix | multidimensional array

Fixed-point numeric object from which you want to get the stored integer value. The word length of
the input determines the data type of the output.
Data Types: fi
Complex Number Support: Yes

Output Arguments
i — Stored integer value
scalar | vector | matrix | multidimensional array

 int

4-701

Stored integer value of the input fi object, returned as one of the built-in integer data types. The
word length of the input determines the data type of the output. The output has the same dimensions
as the input.

Version History
Introduced in R2006a

See Also
Functions
bin | hex | storedInteger | oct | sdec

4 Functions

4-702

int8
Convert fi object to signed 8-bit integer

Syntax
c = int8(a)

Description
c = int8(a) returns the built-in int8 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int8.

Examples
This example shows the int8 values of a fi object.

a = fi([-pi 0.1 pi],1,8);
c = int8(a)

c =

 -3 0 3

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
storedInteger | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 int8

4-703

int16
Convert fi object to signed 16-bit integer

Syntax
c = int16(a)

Description
c = int16(a) returns the built-in int16 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int16.

Examples
This example shows the int16 values of a fi object.

a = fi([-pi 0.1 pi],1,16);
c = int16(a)

c =

 -3 0 3

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
storedInteger | int8 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 Functions

4-704

int32
Convert fi object to signed 32-bit integer

Syntax
c = int32(a)

Description
c = int32(a) returns the built-in int32 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int32.

Examples
This example shows the int32 values of a fi object.

a = fi([-pi 0.1 pi],1,32);
c = int32(a)

c =

 -3 0 3

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
storedInteger | int8 | int16 | int64 | uint8 | uint16 | uint32 | uint64

 int32

4-705

int64
Convert fi object to signed 64-bit integer

Syntax
c = int64(a)

Description
c = int64(a) returns the built-in int64 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int64.

Examples
This example shows the int64 values of a fi object.

a = fi([-pi 0.1 pi],1,64);
c = int64(a)

c =

 -3 0 3

Version History
Introduced in R2008b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
storedInteger | int8 | int16 | int32 | uint8 | uint16 | uint32 | uint64

4 Functions

4-706

intmax
Largest positive stored integer value representable by numerictype of fi object

Syntax
x = intmax(a)

Description
x = intmax(a) returns the largest positive stored integer value representable by the numerictype
of a.

Examples
a = fi(pi, true, 16, 12);
x = intmax(a)

x =

 32767

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

Version History
Introduced before R2006a

See Also
eps | intmin | lowerbound | lsb | range | realmax | realmin | stripscaling | upperbound

 intmax

4-707

intmin
Smallest stored integer value representable by numerictype of fi object

Syntax
x = intmin(a)

Description
x = intmin(a) returns the smallest stored integer value representable by the numerictype of a.

Examples

a = fi(pi, true, 16, 12);
x = intmin(a)

x =

 -32768

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

Version History
Introduced before R2006a

See Also
eps | intmax | lowerbound | lsb | range | realmax | realmin | stripscaling | upperbound

4 Functions

4-708

isboolean
Determine whether input is Boolean

Syntax
tf = isboolean(a)
tf = isboolean(T)

Description
tf = isboolean(a) returns 1 (true) when the DataType property of fi object a is Boolean.
Otherwise, it returns 0 (false).

tf = isboolean(T) returns 1 (true) when the DataType property of numerictype object T is
Boolean. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Boolean

Create a fi object and determine if its data type is Boolean.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isboolean(a)

tf = logical
 0

a = fi(pi,'DataType','Boolean')

a =
 1

 DataTypeMode: Boolean

tf = isboolean(a)

tf = logical
 1

 isboolean

4-709

Determine Whether numerictype Object is a Boolean

Create a numerictype object and determine if its data type is Boolean.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isboolean(T)

tf = logical
 0

T = numerictype('Boolean')

T =

 DataTypeMode: Boolean

tf = isboolean(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

Version History
Introduced in R2008a

See Also
isdouble | isfixed | isfloat | isscaleddouble | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

4 Functions

4-710

isdouble
Determine whether input is double-precision data type

Syntax
tf = isdouble(a)
tf = isdouble(T)

Description
tf = isdouble(a) returns 1 (true) when the DataType property of fi object a is double.
Otherwise, it returns 0 (false).

tf = isdouble(T) returns 1 (true) when the DataType property of numerictype object T is
double. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a double

Create a fi object and determine if its data type is double.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isdouble(a)

tf = logical
 0

a = fi(pi,'DataType','double')

a =
 3.1416

 DataTypeMode: Double

tf = isdouble(a)

tf = logical
 1

 isdouble

4-711

Determine Whether numerictype Object is a double

Create a numerictype object and determine if its data type is double.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isdouble(T)

tf = logical
 0

T = numerictype('Double')

T =

 DataTypeMode: Double

tf = isdouble(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

Version History
Introduced in R2008a

See Also
isboolean | isfixed | isfloat | isscaleddouble | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

4 Functions

4-712

isequal
Determine whether real-world values of two fi objects are equal, or determine whether properties of
two fimath, numerictype, or quantizer objects are equal

Syntax
y = isequal(a,b,…)
y = isequal(F,G,…)
y = isequal(T,U,…)
y = isequal(q,r,…)

Description
y = isequal(a,b,…) returns logical 1 (true) if all the fi object inputs have the same real-world
value. Otherwise, it returns logical 0 (false).

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

y = isequal(F,G,…) returns logical 1 (true) if all the fimath object inputs have the same
properties. Otherwise, it returns logical 0 (false).

y = isequal(T,U,…) returns logical 1 (true) if all the numerictype object inputs have the same
properties. Otherwise, it returns logical 0 (false).

y = isequal(q,r,…) returns logical 1 (true) if all the quantizer object inputs have the same
properties. Otherwise, it returns logical 0 (false).

Examples

Compare Two fi Objects

Use the isequal function to determine if two fi objects have the same real-world value.

format long
a = fi(pi)

a =
 3.141601562500000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

b = fi(pi,1,32)

b =
 3.141592653468251

 isequal

4-713

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 29

y = isequal(a,b)

y = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The isequal function
returns 0 because the two fi objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
y = isequal(a,b)

y = logical
 1

The isequal function casts b to the same word length as a, and returns 1. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

Compare Two fimath Objects

Use the isequal function to determine if two fimath objects have the same properties.

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent');
G = fimath('RoundingMethod','Convergent','ProductMode','FullPrecision');
y = isequal(F,G)

y = logical
 1

Compare Two numerictype Objects

Use the isequal function to determine if two numerictype objects have the same properties.

T = numerictype;
U = numerictype(true, 16, 15);
y = isequal(T,U)

4 Functions

4-714

y = logical
 1

Compare Two quantizer Objects

Use the isequal function to determine if two quantizer objects have the same properties.

q = quantizer('fixed', [5 4]);
r = quantizer('fixed', 'floor', 'saturate', [5 4]);
y = isequal(q,r)

y = logical
 1

Input Arguments
a,b,… — fi objects to be compared
scalar | vector | matrix | multidimensional array

fi objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
Complex Number Support: Yes

F,G,… — fimath objects to be compared
fimath object

fimath objects to be compared.

T,U,… — numerictype objects to be compared
scalar | vector | matrix | multidimensional array

numerictype objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.

q,r,… — quantizer objects to be compared
quantizer object

quantizer objects to be compared.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 isequal

4-715

See Also
eq | fi | fimath | ispropequal | numerictype | quantizer

4 Functions

4-716

isequivalent
Determine if two numerictype objects have equivalent properties

Syntax
y = isequivalent (T1, T2)

Description
y = isequivalent (T1, T2) determines whether the numerictype object inputs have
equivalent properties and returns a logical 1 (true) or 0 (false). Two numerictype objects are
equivalent if they describe the same data type.

Examples

Compare two numerictype objects

Use isequivalent to determine if two numerictype objects have the same data type.

T1 = numerictype(1, 16, 2^-12, 0)

T1 =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 2^-12
 Bias: 0

T2 = numerictype(1, 16, 12)

T2 =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

isequivalent(T1,T2)

ans = logical
 1

Although the Data Type Mode is different for T1 and T2, the function returns 1 (true) because the
two objects have the same data type.

 isequivalent

4-717

Input Arguments
T1, T2 — Inputs to be compared
numerictype objects

Inputs to be compared, specified as numerictype objects.

Version History
Introduced in R2014a

See Also
isequal | ispropequal | eq

4 Functions

4-718

isequaln
Package: embedded

Determine equality of fixed-point arrays, treating NaN values as equal

Syntax
tf = isequaln(A,B)
tf = isequaln(A1,A2,…,An)

Description
tf = isequaln(A,B) returns logical 1 (true) if A and B are equivalent; otherwise, it returns
logical 0 (false). Arrays are considered equivalent if they are the same size and are numerically
equal. NaN (Not a Number) values are considered to be equal to other such values.

Numeric data types and structure field order need not match to be considered equivalent.

isequaln recursively compares the contents of cell arrays and structures. If all elements of a cell
array or structure are numerically equal, isequaln returns logical 1 (true).

tf = isequaln(A1,A2,…,An) returns logical 1 (true) if all the inputs are equivalent.

Examples

Compare Two Numeric Matrices

Create two numeric matrices and compare them for equality.

A = fi(zeros(3,3)+1e-4,1,16,15);
B = fi(zeros(3,3),1,16,15);
tf = isequaln(A,B)

tf = logical
 0

The function returns logical 0 (false) because the matrices differ by a small amount and are not
exactly equal.

If the two matrices differ by an amount that is smaller than the precision representable by the fixed-
point data type, the function returns logical 1 (true).

A = fi(zeros(3,3)+1e-5,1,16,15);
B = fi(zeros(3,3),1,16,15);
tf = isequaln(A,B)

tf = logical
 1

 isequaln

4-719

Two matrices can be considered numerically equivalent when the inputs are of different data types.

A = fi(zeros(3,3),1,16,15);
B = single(zeros(3,3));
tf = isequaln(A,B)

tf = logical
 1

Input Arguments
A,B — Inputs to be compared (as separate arguments)
arrays

Inputs to be compared, specified as arrays.
Data Types: fi
Complex Number Support: Yes

A1,A2,…,An — Series of inputs to be compared (as separate inputs)
arrays

Series of inputs to be compared, specified as arrays.
Data Types: fi
Complex Number Support: Yes

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
isequal | eq

4 Functions

4-720

isfi
Determine whether variable is fi object

Syntax
tf = isfi(a)

Description
tf = isfi(a) returns 1 (true) if a is a fi object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fi Object

Create a variable and determine whether it is a fi object.

a = fi(pi);
tf = isfi(a)

tf = logical
 1

b = single([1 2 3 4]);
tf = isfi(b)

tf = logical
 0

Input Arguments
a — Input array
array

Input array.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 isfi

4-721

• Avoid using the isfi function in code that you intend to convert using the automated workflow.
The value returned by isfi in the fixed-point code might differ from the value returned in the
original MATLAB algorithm. The behavior of the fixed-point code might differ from the behavior of
the original algorithm.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | isfimath | isfipref | isnumerictype | isquantizer

4 Functions

4-722

isfimath
Determine whether variable is fimath object

Syntax
tf = isfimath(F)

Description
tf = isfimath(F) returns 1 (true) if F is a fimath object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fimath Object

Create a variable and determine whether it is a fimath object

F = fimath;
tf = isfimath(F)

tf = logical
 1

T = numerictype;
tf = isfimath(T)

tf = logical
 0

A = fi([1 2 3 4]);
tf = isfimath(A)

tf = logical
 0

Input Arguments
F — Input array
array

Input array.

Version History
Introduced before R2006a

 isfimath

4-723

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | isfi | isfipref | isnumerictype | isquantizer

4 Functions

4-724

isfimathlocal
Determine whether fi object has local fimath

Syntax
tf = isfimathlocal(a)

Description
tf = isfimathlocal(a) returns 1 (true) if the fi object a has a local fimath object. Otherwise,
it returns 0 (false).

Examples

Determine Whether fi Object has Local fimath

Create a fi object and determine whether it has local fimath.

F = fimath;
a = fi(pi);
b = fi(pi,F);

tf_a = isfimathlocal(a)

tf_a = logical
 0

tf_b = isfimathlocal(b)

tf_b = logical
 1

Input Arguments
a — Input array
array

Input array.
Data Types: fi

Version History
Introduced in R2009b

 isfimathlocal

4-725

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | isfi | isfipref | isnumerictype | isquantizer | isfimathlocal | removefimath |
sfi | ufi

4 Functions

4-726

isfipref
Determine whether input is fipref object

Syntax
tf = isfipref(P)

Description
tf = isfipref(P) returns 1 (true) if P is a fipref object. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is a fipref Object

Create a variable and determine whether it is a fipref object.

P = fipref;
tf = isfipref(P)

tf = logical
 1

F = fimath;
tf = isfipref(F)

tf = logical
 0

Input Arguments
P — Input array
array

Input array.

Version History
Introduced in R2008a

See Also
fipref | isfi | isfimath | isnumerictype | isquantizer

 isfipref

4-727

isfixed
Determine whether input is fixed-point data type

Syntax
tf = isfixed(a)
tf = isfixed(T)
tf = isfixed(q)

Description
tf = isfixed(a) returns 1 (true) when the DataType property of fi object a is Fixed.
Otherwise, it returns 0 (false).

tf = isfixed(T) returns 1 when the DataType property of numerictype object T is Fixed.
Otherwise, it returns 0 (false).

tf = isfixed(q) returns 1 when q is a fixed-point quantizer object. Otherwise, it returns 0
(false).

Examples

Determine Whether Input is a Fixed-Point Data Type

Create a fi object and determine whether it is a fixed-point data type.

a = fi([pi pi/2])

a =
 3.1416 1.5708

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isfixed(a)

tf = logical
 1

Create a numerictype object and determine whether it is a fixed-point data type.

T = numerictype('Double')

T =

 DataTypeMode: Double

tf = isfixed(T)

4 Functions

4-728

tf = logical
 0

Create a quantizer object and determine whether it is a fixed-point data type.

q = quantizer('mode','single')

q =

 DataMode = single
 Format = [32 8]

tf = isfixed(q)

tf = logical
 0

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

q — Input quantizer object
scalar

Input quantizer object, specified as a scalar.

Version History
Introduced in R2008a

See Also
isboolean | isdouble | isfloat | isscaleddouble | isscaledtype | isscalingbinarypoint
| isscalingslopebias | isscalingunspecified | issingle

 isfixed

4-729

isfloat
Determine whether input is floating-point data type

Syntax
y = isfloat(a)
y = isfloat(T)
y = isfloat(q)

Description
y = isfloat(a) returns 1 when the DataType property of fi object a is single, or double, and
0 otherwise.

y = isfloat(T) returns 1 when the DataType property of numerictype object T is single, or
double, and 0 otherwise.

y = isfloat(q) returns 1 when q is a floating-point quantizer, and 0 otherwise.

Version History
Introduced in R2008a

See Also
isboolean | isdouble | isfixed | isscaleddouble | isscaledtype | isscalingbinarypoint
| isscalingslopebias | isscalingunspecified | issingle

4 Functions

4-730

isnumerictype
Determine whether input is numerictype object

Syntax
tf = isnumerictype(T)

Description
tf = isnumerictype(T) returns 1 (true) if T is a numerictype object. Otherwise, it returns 0
(false).

Examples

Determine Whether Input is a numerictype Object

Create a variable and determine whether it is a numerictype object.

T = numerictype;
tf = isnumerictype(T)

tf = logical
 1

q = quantizer;
tf = isnumerictype(q)

tf = logical
 0

Input Arguments
T — Input array
array

Input array.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 isnumerictype

4-731

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
isfi | isfimath | isfipref | isquantizer | numerictype

4 Functions

4-732

ispropequal
Determine whether properties of two fi objects are equal

Syntax
tf = ispropequal(a,b)

Description
tf = ispropequal(a,b) returns 1 (true) if a and b are both fi objects and have the same
properties. Otherwise, it returns 0 (false).

Examples

Determine Whether Properties of Two fi Objects are Equal

Create two fi objects and determine whether they have the same properties.

F = fimath;

a = fi(pi);
b = fi(pi,F);
c = fi(pi/2,F);
d = fi(pi/2,0);

tf = ispropequal(a,b)

tf = logical
 1

tf = ispropequal(b,c)

tf = logical
 0

tf = ispropequal(c,d)

tf = logical
 0

Input Arguments
a,b — Inputs to be compared (as separate arguments)
arrays

Inputs to be compared, specified as arrays.
Data Types: fi

 ispropequal

4-733

Tips
To compare the real-world values of two fi objects a and b, use a == b or isequal(a,b).

Version History
Introduced before R2006a

See Also
fi | isequal

4 Functions

4-734

isquantizer
Determine whether input is quantizer object

Syntax
tf = isquantizer(q)

Description
tf = isquantizer(q) returns 1 (true) when q is a quantizer object. Otherwise, it returns 0
(false).

Examples

Determine Whether Variable is a quantizer Object

Create a variable and determine whether it is a quantizer object.

q = quantizer('fixed', 'Ceiling', 'Wrap', [16 12])

q =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = wrap
 Format = [16 12]

tf = isquantizer(q)

tf = logical
 1

y = quantize(q,[pi pi/2])

y = 1×2

 3.1416 1.5708

tf = isquantizer(y)

tf = logical
 0

Input Arguments
q — Input array
array

 isquantizer

4-735

Input array.

Version History
Introduced in R2008a

See Also
quantizer | isfi | isfimath | isfipref | isnumerictype

4 Functions

4-736

isscaleddouble
Determine whether input is scaled double data type

Syntax
tf = isscaleddouble(a)
tf = isscaleddouble(T)

Description
tf = isscaleddouble(a) returns 1 (true) when the DataType property of fi object a is
ScaledDouble. Otherwise, it returns 0 (false).

tf = isscaleddouble(T) returns 1 (true) when the DataType property of numerictype object
T is ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Scaled Double

Create a fi object and determine whether its DataType property is set to ScaledDouble.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscaleddouble(a)

tf = logical
 0

T = numerictype('DataType','ScaledDouble');
a = fi(pi,T)

a =
 3.1416

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscaleddouble(a)

 isscaleddouble

4-737

tf = logical
 1

Determine Whether numerictype Object is a Scaled Double

Create a numerictype object and determine whether its DataType property is set to
ScaledDouble.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscaleddouble(T)

tf = logical
 0

T = numerictype('DataType','ScaledDouble')

T =

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscaleddouble(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

4 Functions

4-738

Version History
Introduced in R2008a

See Also
isboolean | isdouble | isfixed | isfloat | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

 isscaleddouble

4-739

isscaledtype
Determine whether input is fixed-point or scaled double data type

Syntax
tf = isscaledtype(a)
tf = isscaledtype(T)

Description
tf = isscaledtype(a) returns 1 (true) when the DataType property of fi object a is Fixed or
ScaledDouble. Otherwise, it returns 0 (false).

tf = isscaledtype(T) returns 1 (true) when the DataType property of numerictype object T
is Fixed or ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Fixed-Point or Scaled Double Data Type

Create a fi object and determine whether its DataType property is set to Fixed or ScaledDouble.

a = fi([pi,pi/2]);
tf = isscaledtype(a)

tf = logical
 1

Create a numerictype object and determine whether its DataType property is set to Fixed or
ScaledDouble.

T1 = numerictype('DataType','ScaledDouble');
tf = isscaledtype(T1)

tf = logical
 1

T2 = numerictype('DataType','Single');
tf = isscaledtype(T2)

tf = logical
 0

4 Functions

4-740

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

Version History
Introduced in R2008a

See Also
isboolean | isdouble | isfixed | isfloat | numerictype | isscaleddouble |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified | issingle

 isscaledtype

4-741

isscalingbinarypoint
Determine whether input has binary point scaling

Syntax
tf = isscalingbinarypoint(a)
tf = isscalingbinarypoint(T)

Description
tf = isscalingbinarypoint(a) returns 1 (true) when the fi object a has binary point scaling
or trivial slope and bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial
when the slope is an integer power of two and the bias is zero.

tf = isscalingbinarypoint(T) returns 1 (true) when the numerictype object T has binary
point scaling or trivial slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Binary Point Scaling

Create a fi object and determine whether it has binary point scaling.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscalingbinarypoint(a)

tf = logical
 1

b = fi(pi,1,16,3,2)

b =
 2

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

tf = isscalingbinarypoint(b)

4 Functions

4-742

tf = logical
 0

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the
bias is zero, isscalingbinarypoint returns 1.

c = fi(pi,1,16,4,0)

c =
 4

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 2^2
 Bias: 0

tf = isscalingbinarypoint(c)

tf = logical
 1

Create a numerictype object and determine whether it has binary point scaling.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscalingbinarypoint(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

 isscalingbinarypoint

4-743

Version History
Introduced in R2010b

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingslopebias | isscalingunspecified | issingle

4 Functions

4-744

isscalingslopebias
Determine whether input has nontrivial slope and bias scaling

Syntax
tf = isscalingslopebias(a)
tf = isscalingslopebias(T)

Description
tf = isscalingslopebias(a) returns 1 (true) when the fi object a has nontrivial slope and
bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

tf = isscalingslopebias(T) returns 1 (true) when the numerictype object T has nontrivial
slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Nontrivial Slope and Bias Scaling

Create a fi object and determine whether it has nontrivial slope and bias scaling.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscalingslopebias(a)

tf = logical
 0

b = fi(pi,1,16,3,1)

b =
 4

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 1

tf = isscalingslopebias(b)

 isscalingslopebias

4-745

tf = logical
 1

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the
bias is zero, isscalingslopebias returns 0.

c = fi(pi,1,16,4,0)

c =
 4

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 2^2
 Bias: 0

tf = isscalingslopebias(c)

tf = logical
 0

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscalingslopebias(T)

tf = logical
 0

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

4 Functions

4-746

Version History
Introduced in R2010b

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingunspecified | issingle

 isscalingslopebias

4-747

isscalingunspecified
Determine whether input has unspecified scaling

Syntax
tf = isscalingunspecified(a)
tf = isscalingunspecified(T)

Description
tf = isscalingunspecified(a) returns 1 (true) if fi object a has a fixed-point or scaled
double data type and its scaling has not been specified.

tf = isscalingunspecified(T) returns 1 (true) if numerictype object T has a fixed-point or
scaled double data type and its scaling has not been specified.

Examples

Determine Whether Input has Unspecified Scaling

Create a numerictype object and determine whether it has unspecified scaling.

T1 = numerictype(0)

T1 =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Unsigned
 WordLength: 16

tf = isscalingunspecified(T1)

tf = logical
 1

T2 = numerictype(0,24,12,'DataType','ScaledDouble')

T2 =

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 12

tf = isscalingunspecified(T2)

tf = logical
 0

4 Functions

4-748

Create a fi object and determine whether it has unspecified scaling.

a = fi(pi,1)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscalingunspecified(a)

tf = logical
 0

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

Version History
Introduced in R2010b

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | issingle

 isscalingunspecified

4-749

issigned
Determine whether fi object is signed

Syntax
tf = issigned(a)

Description
tf = issigned(a) returns 1 (true) if the fi object a is signed. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is Signed

Create a fi object and determine whether it is signed or unsigned.

a1 = fi(pi,1)

a1 =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = issigned(a1)

tf = logical
 1

a2 = fi(pi,0)

a2 =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 14

tf = issigned(a2)

tf = logical
 0

If a numerictype object with Auto Signedness is used to create a fi object, the Signedness
property of the fi object automatically defaults to Signed.

T = numerictype('Signedness','Auto')

4 Functions

4-750

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Auto
 WordLength: 16
 FractionLength: 15

a3 = fi(pi,T)

a3 =
 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = issigned(a3)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
isfi | isfixed | isscaleddouble | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified

 issigned

4-751

issingle
Determine whether input is single-precision data type

Syntax
tf = issingle(a)
tf = issingle(T)

Description
tf = issingle(a) returns 1 (true) when the DataType property of fi object a is single.
Otherwise, it returns 0 (false).

tf = issingle(T) returns 1 (true) when the DataType property of numerictype object T is
single. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Single-Precision Data Type

Create a fi object and determine whether it is single-precision data type.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = issingle(a)

tf = logical
 0

Create a numerictype object and determine whether it is single-precision data type.

T = numerictype('Single')

T =

 DataTypeMode: Single

tf = issingle(T)

tf = logical
 1

4 Functions

4-752

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

Version History
Introduced in R2008a

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified

 issingle

4-753

isslopebiasscaled
Determine whether numerictype object has nontrivial slope and bias scaling

Syntax
tf = isslopebiasscaled(T)

Description
tf = isslopebiasscaled(T) returns 1 (true) when numerictype T has nontrivial slope and
bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

Examples

Determine Whether numerictype Object has Nontrivial Slope and Bias Scaling

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

T1 = numerictype

T1 =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isslopebiasscaled(T1)

tf = logical
 0

T2 = numerictype('DataTypeMode','Fixed-point: slope and bias scaling',...
 'WordLength', 32, 'Slope', 2^-2, 'Bias', 4)

T2 =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 32
 Slope: 0.25
 Bias: 4

tf = isslopebiasscaled(T2)

tf = logical
 1

4 Functions

4-754

T3 = numerictype('DataTypeMode','Fixed-point: slope and bias scaling',...
 'WordLength', 32, 'Slope', 2^2, 'Bias', 0)

T3 =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 32
 Slope: 2^2
 Bias: 0

tf = isslopebiasscaled(T3)

tf = logical
 0

Input Arguments
T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

Version History
Introduced in R2008a

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype | issingle |
numerictype

 isslopebiasscaled

4-755

le, <=
Package: embedded

Determine whether real-world value of one array is less than or equal to another

Syntax
A <= B
le(A,B)

Description
A <= B returns a logical array with elements set to logical 1 (true) where the real-world values of A
is less than or equal to B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The
test compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to a fixed-point type that preserves the relative order of the value with respect to the
value in the fixed-point fi object.

le(A,B) is an alternate way to execute A <= B, but is rarely used.

Examples

Compare Two fi Objects

Use the le function to determine whether the real-world value of one fi object is less than or equal
to another.

a = fi(pi);
b = fi(pi, 1, 32);
a <= b

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The le function returns 0
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the
relative order of the value with respect to the value in the fixed-point fi object. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

4 Functions

4-756

a = fi(pi);
b = pi;
le(a,b)

ans =

 logical

 0

Input Arguments
A,B — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi le, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Improved accuracy in comparing fi objects and floating-point numbers using relational
operators
Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This could lead to incorrect results. For
example,

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

 le, <=

4-757

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

Note that the updated algorithm may produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest
wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-758

See Also
eq | ge | gt | lt | ne

 le, <=

4-759

logreport
Quantization report

Syntax
logreport(a)
logreport(a, b, ...)

Description
logreport(a) displays the minlog, maxlog, lowerbound, upperbound, noverflows, and
nunderflows for the fi object a.

logreport(a, b, ...) displays the report for each fi object a, b,

Examples
The following example produces a logreport for fi objects a and b:

fipref('LoggingMode','On');
a = fi(pi);
b = fi(randn(10),1,8,7);

Warning: 35 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 2 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)

logreport(a,b)

logreport(a,b)
 minlog maxlog lowerbound upperbound noverflows nunderflows
 a 3.141602 3.141602 -4 3.999878 0 0
 b -1 0.9921875 -1 0.9921875 35 2

Version History
Introduced in R2008a

See Also
fipref | quantize | quantizer

4 Functions

4-760

lowerbound
Package: embedded

Lower bound of range of fi object

Syntax
l = lowerbound(a)

Description
l = lowerbound(a) returns the lower bound of the range of fi object a.

If l = lowerbound(a) and u = upperbound(a), then [l,u] = range(a).

Examples

Lower Bound of fi Object

a = fi(pi,1,16,3,2)

a =
 2

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

l = lowerbound(a)

l =
 -98302

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

Input Arguments
a — Input fi object
fi object

Input fi object.
Data Types: fi
Complex Number Support: Yes

 lowerbound

4-761

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | lsb | range | realmax | realmin | upperbound

4 Functions

4-762

lsb
Scaling of least significant bit of fi object, or value of least significant bit of quantizer object

Syntax
b = lsb(a)
p = lsb(q)

Description
b = lsb(a) returns the scaling of the least significant bit of fi object a. The result is equivalent to
the result given by the eps function.

p = lsb(q) returns the quantization level of quantizer object q, or the distance from 1.0 to the
next largest floating-point number if q is a floating-point quantizer object.

Examples
This example uses the lsb function to find the value of the least significant bit of the quantizer
object q.

q = quantizer('fixed',[8 7]);
p = lsb(q)

p =

 0.0078

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation supports scalar fixed-point signals only.
• Code generation supports scalar, vector, and matrix, fi single and double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | lowerbound | quantize | range | realmax | realmin | upperbound

 lsb

4-763

lt, <
Package: embedded

Determine whether real-world value of one array is less than another

Syntax
A < B
lt(A,B)

Description
A < B returns a logical array with elements set to logical 1 (true) where the real-world values of A is
less than B, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test
compares only the real part of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to a fixed-point type that preserves the relative order of the value with respect to the
value in the fixed-point fi object.

lt(A,B) is an alternate way to execute A < B, but is rarely used.

Examples

Compare Two fi Objects

Use the lt function to determine whether the real-world value of one fi object is less than another.

a = fi(pi);
b = fi(pi, 1, 32);
a < b

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The lt function returns 0
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the
relative order of the value with respect to the value in the fixed-point fi object. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

4 Functions

4-764

a = fi(pi);
b = pi;
lt(a,b)

ans =

 logical

 0

Input Arguments
A,B — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi lt, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Improved accuracy in comparing fi objects and floating-point numbers using relational
operators
Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This could lead to incorrect results. For
example,

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

 lt, <

4-765

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

Note that the updated algorithm may produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest
wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-766

See Also
eq | ge | gt | le | ne

 lt, <

4-767

mat2str
Convert matrix to string

Syntax
str = mat2str(A)
str = mat2str(A, n)
str = mat2str(A, 'class')
str = mat2str(A, n, 'class')

Description
str = mat2str(A) converts fi object A to a string representation. The output is suitable for input
to the eval function such that eval(str) produces the original fi object exactly.

str = mat2str(A, n) converts fi object A to a string representation using n bits of precision.

str = mat2str(A, 'class') creates a string representation with the name of the class of A
included. This option ensures that the result of evaluating str will also contain the class information.

str = mat2str(A, n, 'class') uses n bits of precision and includes the class of A.

Examples

Convert fi Object to a String

Convert the fi object a to a string.

a = fi(pi);
str = mat2str(a)

str =
'3.1416015625'

Convert fi Object to a String with Specified Precision

Convert the fi object a to a string using eight bits of precision.

a = fi(pi);
str = mat2str(a, 8)

str =
'3.1416016'

4 Functions

4-768

Input Arguments
A — Input array
scalar | vector | matrix

Input array, specified as a scalar, vector, or matrix. A cannot be a multidimensional array.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

n — Number of bits of precision
positive integer

Number of bits of precision in the output, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
str — String representation of input array
character array

String representation of input array, returned as a character array.

Version History
Introduced in R2015b

See Also
mat2str | tostring

 mat2str

4-769

max
Largest element in array of fi objects

Syntax
M = max(A)
M = max(A,[],dim)
[M,I] = max(___)

C = max(A,B)

Description
M = max(A) returns the largest elements along different dimensions of fi array A.

• If A is a vector, max(A) returns the largest element in A.
• If A is a matrix, max(A) treats the columns of A as vectors, returning a row vector containing the

maximum element from each column.
• If A is a multidimensional array, max operates along the first nonsingleton dimension and returns

an array of maximum values.

M = max(A,[],dim) returns the largest elements along dimension dim.

[M,I] = max(___) finds the indices of the maximum values and returns them in array I, using any
of the input arguments in the previous syntaxes. If the largest value occurs multiple times, the index
of the first occurrence is returned.

C = max(A,B) returns an array with the largest elements taken from A or B.

Examples

Largest Element in a Vector

Create a fixed-point vector and return the maximum value from the vector.

A = fi([1,5,4,9,2],1,16);
M = max(A)

M =
 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

4 Functions

4-770

Largest Element of Each Matrix Row

Create a fixed-point matrix.

A = fi(magic(4),1,16)

A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the largest element of each row by finding the maximum values along the second dimension.

M = max(A,[],2)

M =
 16
 11
 12
 15

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output vector, M, is a column vector that contains the largest element of each row.

Largest Element of Each Matrix Column

Create a fixed-point matrix.

A = fi(magic(4),1,16)

A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the largest element of each column.

M = max(A)

M =
 16 14 15 13

 max

4-771

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output, M, is a row vector that contains the largest elements from each column of A.

Find the index of each of the maximum elements.

[M,I] = max(A)

M =
 16 14 15 13

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

I = 1×4

 1 4 4 1

Vector I contains the indices to the minimum elements in M.

Maximum Elements from Two Arrays

Create two fixed-point arrays of the same size.

A = fi([2.3,4.7,6;0,7,9.23],1,16);
B = fi([9.8,3.21,1.6;pi,2.3,1],1,16);

Find the largest elements from A or B.

C = max(A,B)

C =
 9.7998 4.7002 6.0000
 3.1416 7.0000 9.2300

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

C contains the largest elements from each pair of corresponding elements in A and B.

Largest Element of a Complex Vector

Create a complex fixed-point vector, a.

a = fi([1+2i,3+6i,6+3i,2-4i],1,16)

4 Functions

4-772

a =
 1.0000 + 2.0000i 3.0000 + 6.0000i 6.0000 + 3.0000i 2.0000 - 4.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

The function finds the largest element of a complex vector by taking the element with the largest
magnitude.

abs(a)

ans =
 2.2361 6.7083 6.7083 4.4722

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

In vector a, the largest elements, at position 2 and 3, have a magnitude of 6.7083. The max function
returns the largest element in output x and the index of that element in output y.

[x,y] = max(a)

x =
 3.0000 + 6.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

y = 2

Although the elements at index 2 and 3 have the same magnitude, the index of the first occurrence of
that value is always returned.

Input Arguments
A — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of A
and B must match unless one is a scalar.

The max function ignores NaNs.

Data Types: fi

Complex Number Support: Yes

B — Additional input array
scalar | vector | matrix | multidimensional array

 max

4-773

Additional input fi or numeric array, specified as a scalar, vector, matrix, or multidimensional array.
The dimensions of A and B must match unless one is a scalar.

The max function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you
do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
M — Maximum values
scalar | vector | matrix | multidimensional array

Maximum values, returned as a scalar, vector, matrix, or multidimensional array. M always has the
same data type as the input.

I — Index
scalar | vector | matrix | multidimensional array

Index, returned as a scalar, vector, matrix, or multidimensional array. If the largest value occurs more
than once, then I contains the index to the first occurrence of the value. I is always of data type
double.

C — Maximum elements from A or B
scalar | vector | matrix | multidimensional array

Maximum elements from A or B, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
When A or B is complex, the max function returns the elements with the largest magnitude. If two
magnitudes are equal, then max returns the first value. This behavior differs from how the built-in
max function resolves ties between complex numbers.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-774

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mean | median | min | sort

 max

4-775

maxlog
Log maximums

Syntax
y = maxlog(a)
y = maxlog(q)

Description
y = maxlog(a) returns the largest real-world value of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi
object using the resetlog function.

y = maxlog(q) is the maximum value after quantization during a call to quantize(q,...) for
quantizer object q. This value is the maximum value encountered over successive calls to
quantize since logging was turned on, and is reset with resetlog(q). maxlog(q) is equivalent to
get(q,'maxlog') and q.maxlog.

Examples

Example 1: Using maxlog with fi objects

1 P = fipref('LoggingMode','on');
format long g
a = fi([-1.5 eps 0.5], true, 16, 15);
a(1) = 3.0;
maxlog(a)

Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 overflow(s) occurred in the fi assignment operation.

ans =

 0.999969482421875

The largest value maxlog can return is the maximum representable value of its input. In this
example, a is a signed fi object with word length 16, fraction length 15 and range:

-1 ≤ x ≤ 1 – 2-15 (4-10
)

2 You can obtain the numerical range of any fi object a using the range function:

4 Functions

4-776

format long g
r = range(a)

r =

 -1 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Example 2: Using maxlog with quantizer objects

1 q = quantizer;
warning on
format long g
x = [-20:10];
y = quantize(q,x);
maxlog(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =

 0.999969482421875

The largest value maxlog can return is the maximum representable value of its input.
2 You can obtain the range of x after quantization using the range function:

format long g
r = range(q)

r =

 -1 0.999969482421875

Version History
Introduced before R2006a

See Also
fipref | minlog | noverflows | nunderflows | reset | resetlog

 maxlog

4-777

mean
Average or mean value of fixed-point array

Syntax
M = mean(A)
M = mean(A,dim)

Description
M = mean(A) computes the mean value of the real-valued fixed-point array A along its first
nonsingleton dimension.

M = mean(A,dim) computes the mean value of the real-valued fixed-point array A along dimension
dim. dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0.

The fixed-point output array, M, has the same numerictype properties as the fixed-point input array,
A.

If the input array, A, has a local fimath, then it is used for intermediate calculations. The output, M, is
always associated with the default fimath.

When A is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Mean Along Columns of Fixed-Point Array

Create a matrix and compute the mean of each column. A is a signed fi object with a 32-bit word
length and a best-precision fraction length of 28 bits.

A = fi([0 1 2; 3 4 5],1,32);
M = mean(A)

A =

 0 1 2
 3 4 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

M =

 1.5000 2.5000 3.5000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-778

 WordLength: 32
 FractionLength: 28

Mean Along Rows of Fixed-Point Array

Create a matrix and compute the mean of each row. A is a signed fi object with a 32-bit word length
and a best-precision fraction length of 28 bits.

A = fi([0 1 2; 3 4 5],1,32)
M = mean(A,2)

A =

 0 1 2
 3 4 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

M =

 1
 4

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a scalar, then mean(A) returns A.
• If A is an empty fixed-point array (value = []), the value of the output array is zero.

Data Types: fi

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive, real-valued, integer scalar with a power-of-two
slope and a bias of 0. If no value is specified, then the default is the first array dimension whose size
does not equal 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 mean

4-779

Algorithms
The general equation for computing the mean of an array A, across dimension dim is:

sum(A,dim)/size(A,dim)

Because size(a,dim) is always a positive integer, the algorithm for computing mean casts
size(A,dim) to an unsigned 32-bit fi object with a fraction length of zero (denote this fi object
'SizeA'). The algorithm then computes the mean of A according to the following equation, where Tx
represents the numerictype properties of the fixed-point input array A:

c = Tx.divide(sum(A,dim), SizeA)

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
max | median | min

4 Functions

4-780

median
Median value of fixed-point array

Syntax
c = median(a)
c = median(a,dim)

Description
c = median(a) computes the median value of the fixed-point array a along its first nonsingleton
dimension.

c = median(a,dim) computes the median value of the fixed-point array a along dimension dim.
dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0.

The input to the median function must be a real-valued fixed-point array.

The fixed-point output array c has the same numerictype properties as the fixed-point input array a.
If the input, a, has a local fimath, then it is used for intermediate calculations. The output, c, is
always associated with the default fimath.

When a is an empty fixed-point array (value = []), the value of the output array is zero.

Examples
Compute the median value along the first dimension of a fixed-point array.

x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)
% x is a signed FI object with a 32-bit word length
% and a best-precision fraction length of 27 bits
mx1 = median(x,1)

Compute the median value along the second dimension (columns) of a fixed-point array.

x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)
% x is a signed FI object with a 32-bit word length
% and a best-precision fraction length of 27 bits
mx2 = median(x, 2)

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 median

4-781

See Also
max | mean | min

4 Functions

4-782

min
Smallest element in array of fi objects

Syntax
M = min(A)
M = min(A,[],dim)
[M,I] = min(___)

C = min(A,B)

Description
M = min(A) returns the smallest elements along different dimensions of fi array A.

• If A is a vector, min(A) returns the smallest element in A.
• If A is a matrix, min(A) treats the columns of A as vectors, returning a row vector containing the

minimum element from each column.
• If A is a multidimensional array, min operates along the first nonsingleton dimension and returns

an array of minimum values.

M = min(A,[],dim) returns the smallest elements along dimension dim.

[M,I] = min(___) finds the indices of the minimum values and returns them in array I, using any
of the input arguments in the previous syntaxes. If the smallest value occurs multiple times, the index
of the first occurrence is returned.

C = min(A,B) returns an array with the smallest elements taken from A or B.

Examples

Smallest Element in a Vector

Create a fixed-point vector and return the minimum value from the vector.

A = fi([1,5,4,9,2],1,16);
M = min(A)

M =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

 min

4-783

Minimum Element of Each Matrix Row

Create a matrix of fixed-point values.

A = fi(magic(4),1,16)

A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the smallest element of each row by finding the minimum values along the second dimension.

M = min(A,[],2)

M =
 2
 5
 6
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output, M, is a column vector that contains the smallest element of each row of A.

Minimum Element of Each Matrix Column

Create a fixed-point matrix.

A = fi(magic(4),1,16)

A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the smallest element of each column.

M = min(A)

M =
 4 2 3 1

4 Functions

4-784

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output, M, is a row vector that contains the smallest element of each column of A.

Find the index of each of the minimum elements.

[M,I] = min(A)

M =
 4 2 3 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

I = 1×4

 4 1 1 4

Minimum Elements from Two Arrays

Create two fixed-point arrays of the same size.

A = fi([2.3,4.7,6;0,7,9.23],1,16);
B = fi([9.8,3.21,1.6;pi,2.3,1],1,16);

Find the minimum elements from A or B.

C = min(A,B)

C =
 2.2998 3.2100 1.6001
 0 2.2998 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

C contains the smallest elements from each pair of corresponding elements in A and B.

Minimum Element of a Complex Vector

Create a complex fixed-point vector, A.

A = fi([1+2i,2+i,3+8i,9+i],1,8)

 min

4-785

A =
 1.0000 + 2.0000i 2.0000 + 1.0000i 3.0000 + 8.0000i 9.0000 + 1.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

The min function finds the smallest element of a complex vector by taking the element with the
smallest magnitude.

abs(A)

ans =
 2.2500 2.2500 8.5000 9.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

In vector A, the smallest elements, at position 1 and 2, have a magnitude of 2.25. The min function
returns the smallest element in output M, and the index of that element in output, I.

[M,I] = min(A)

M =
 1.0000 + 2.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

I = 1

Although the elements at index 1 and 2 have the same magnitude, the index of the first occurrence of
that value is always returned.

Input Arguments
A — Input fi array
scalar | vector | matrix | multidimensional array

fi or numeric input array, specified as a scalar, vector, matrix, or multidimensional array. The
dimensions of A and B must match unless one is a scalar.

The min function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

B — Additional input array
scalar | vector | matrix | multidimensional array

4 Functions

4-786

Additional input fi or numeric array, specified as a scalar, vector, matrix, or multidimensional array.
The dimensions of A and B must match unless one is a scalar.

The min function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you
do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
M — Minimum values
scalar | vector | matrix | multidimensional array

Minimum values, returned as a scalar, vector, matrix, or multidimensional array. M always has the
same data type as the input.

I — Index
scalar | vector | matrix | multidimensional array

Index, returned as a scalar, vector, matrix, or multidimensional array. If the smallest value occurs
more than once, then I contains the index to the first occurrence of the value. I is always of data type
double.

C — Minimum elements from A or B
scalar | vector | matrix | multidimensional array

Minimum elements from A or B, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
When A or B is complex, the min function returns the element with the smallest magnitude. If two
magnitudes are equal, then min returns the first value. This behavior differs from how the built-in
min function resolves ties between complex numbers.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 min

4-787

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mean | median | max | sort

4 Functions

4-788

minlog
Log minimums

Syntax
y = minlog(a)
y = minlog(q)

Description
y = minlog(a) returns the smallest real-world value of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi
object using the resetlog function.

y = minlog(q) is the minimum value after quantization during a call to quantize(q,...) for
quantizer object q. This value is the minimum value encountered over successive calls to
quantize since logging was turned on, and is reset with resetlog(q). minlog(q) is equivalent to
get(q,'minlog') and q.minlog.

Examples

Example 1: Using minlog with fi objects

1 P = fipref('LoggingMode','on');
a = fi([-1.5 eps 0.5], true, 16, 15);
a(1) = 3.0;
minlog(a)

Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 overflow(s) occurred in the fi assignment operation.

ans =

 -1

The smallest value minlog can return is the minimum representable value of its input. In this
example, a is a signed fi object with word length 16, fraction length 15 and range:

-1 ≤ x ≤ 1 – 2-15 (4-11
)

2 You can obtain the numerical range of any fi object a using the range function:

format long g
r = range(a)

 minlog

4-789

r =

 -1 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Example 2: Using minlog with quantizer objects

1 q = quantizer;
warning on
x = [-20:10];
y = quantize(q,x);
minlog(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =

 -1

The smallest value minlog can return is the minimum representable value of its input.
2 You can obtain the range of x after quantization using the range function:

format long g
r = range(q)

r =

 -1 0.999969482421875

Version History
Introduced before R2006a

See Also
fipref | maxlog | noverflows | nunderflows | reset | resetlog

4 Functions

4-790

minus, -
Package: embedded

Matrix difference between fi objects

Syntax
C = A-B
C = minus(A,B)

Description
C = A-B subtracts matrix B from matrix A.

minus does not support fi objects of data type boolean.

C = minus(A,B) is an alternate way to execute A-B.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. Inputs A and B must either be the same size or have sizes that are compatible. For more
information, see “Compatible Array Sizes for Basic Operations”.

minus does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. Inputs A and B must either be the same size or have sizes that are compatible. For more
information, see “Compatible Array Sizes for Basic Operations”.

minus does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

 minus, -

4-791

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2021b

Starting in R2021b with the addition of implicit expansion for fi times, plus, and minus, some
combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mtimes | plus | times | uminus

4 Functions

4-792

mod
Modulus after division for fi objects

Syntax
m = mod(x,y)

Description
m = mod(x,y) returns the modulus after division of x by y, where x is the dividend and y is the
divisor. This function is often called the modulo operation, which can be expressed as m = x -
floor(x./y).*y.

For fixed-point or integer input arguments, the output data type is the aggregate type of both input
signedness, word lengths, and fraction lengths. For floating-point input arguments, the output data
type is the same as the inputs.

The mod function ignores and discards any fimath attached to the inputs. The output is always
associated with the default fimath.

Note The combination of fixed-point and floating-point inputs is not supported.

Examples

Modulus of two fi Objects

Calculate the mod of two fi objects.

x = fi(-3,1,7,0);
y = fi(2,1,15,0);
m1 = mod(x,y)
m2 = mod(y,x)

m1 =

 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 15
 FractionLength: 0

m2 =

 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 mod

4-793

 WordLength: 15
 FractionLength: 0

Modulus of Two Floating-Point Inputs

Convert the fi inputs in the previous example to double type and calculate the mod.

Mf1 = mod(double(x),double(y))
Mf2 = mod(double(y),double(x))

Mf1 =

 1

Mf2 =

 -1

Input Arguments
x — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional array. x must be a real-valued
integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the
same size, or have sizes that are compatible.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

y — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array. y must be a real-valued
integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the
same size, or have sizes that are compatible.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
m — Result of modulus operation
scalar | vector | matrix | multidimensional array

Result of modulus operation, returned as a scalar, vector, matrix, or multidimensional array.

If both inputs x and y are floating-point, then the data type of m is the same as the inputs. If either
input x or y is fixed-point, then the data type of m is the aggregate numerictype. This value equals
that of fixed.aggregateType(x,y).

The output m is always associated with the default fimath.

4 Functions

4-794

Algorithms
mod(x,y) for a fi object uses the same definition as the built-in MATLAB mod function.

Version History
Introduced in R2011b

See Also
fixed.aggregateType | mod

 mod

4-795

modByConstant
Modulus after division by a constant denominator

Syntax
Y = modByConstant(X,d)

Description
Y = modByConstant(X,d) performs the modulo operation (remainder after division) of X with
respect to the denominator d.

For simulation, the data type of the output Y is chosen based on the value of the denominator d and
the range of X.

To generate code, the denominator d must be a constant.

Examples

Modulo by Constant Denominator

modByConstant(fi(10203),10)

ans =

 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 5
 FractionLength: 1

modByConstant(uint16(6930),1024)

ans =

 786

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 10
 FractionLength: 0

Input Arguments
X — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional array.

If X is a fixed-point or scaled-double fi, it must use binary point scaling.

4 Functions

4-796

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

d — Divisor
positive scalar

Divisor, specified as a positive, real-valued scalar.

If d is a fixed-point or scaled-double fi, it must use binary point scaling.

To generate code, the denominator d must be a constant.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
Y — Result of modulus operation
scalar | vector | matrix | multidimensional array

Result of modulus operation, returned as a scalar, vector, matrix, or multidimensional array.

For simulation, the data type of the output Y is chosen based on the value of the denominator d and
the range of X.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also

 modByConstant

4-797

mpower, ^
Package: embedded

Fixed-point matrix power (^)

Syntax
Y = A^k
Y = mpower(A,k)

Description
Y = A^k computes A to the k power for fi inputs and returns the result in Y.

The matrix power operation is performed using default fimath settings.

The fixed-point output array Y has the same local fimath as the input A. If A has no local fimath, the
output Y also has no local fimath.

Y = mpower(A,k) is an alternate way to execute A^k.

Examples

Square a Matrix

Compute the power of a 2-dimensional square matrix for exponent values 0, 1, 2, and 3.

x = fi([0 1; 2 4], 1, 32);
px0 = x^0

px0 =
 1 0
 0 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

px1 = x^1

px1 =
 0 1
 2 4

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

px2 = x^2

4 Functions

4-798

px2 =
 2 4
 8 18

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 65
 FractionLength: 56

px3 = x^3

px3 =
 8 18
 36 80

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 98
 FractionLength: 84

Input Arguments
A — Base
scalar | matrix

Base, specified as a scalar or matrix.
Example: x = fi([0 1; 2 4],1,32);
Data Types: fi
Complex Number Support: Yes

k — Exponent
positive real-valued integer

Exponent, specified as a real-valued integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When the exponent k is a variable and the input is a scalar, the ProductMode property of the
governing fimath must be SpecifyPrecision.

• When the exponent k is a variable and the input is not scalar, the SumMode property of the
governing fimath must be SpecifyPrecision.

 mpower, ^

4-799

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or Keep LSB.

• For variable-sized signals, you may see different results between the generated code and
MATLAB.

• In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when the first input, A, is nonscalar. However, when A is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Both inputs must be scalar, and the exponent input, k, must be a constant integer.

See Also
mpower | power | fi | fimath

4 Functions

4-800

mpy
Multiply two objects using fimath object

Syntax
c = mpy(F,a,b)

Description
c = mpy(F,a,b) performs elementwise multiplication on a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and b, or if the fimath
properties associated with a and b are different. The output fi object c has no local fimath.

a and b can both be fi objects with the same dimensions unless one is a scalar. If either a or b is
scalar, then c has the dimensions of the nonscalar object. a and b can also be doubles, singles, or
integers.

Examples
In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision',...
 'ProductWordLength',40,'ProductFractionLength',30);
c = F.mpy(a, b)

c =

 8.5397

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 30

Algorithms
c = mpy(F,a,b) is similar to

a.fimath = F;
b.fimath = F;
c = a .* b

c =

 8.5397

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40

 mpy

4-801

 FractionLength: 30

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: SpecifyPrecision
 ProductWordLength: 40
 ProductFractionLength: 30
 SumMode: FullPrecision

but not identical. When you use mpy, the fimath properties of a and b are not modified, and the
output fi object c has no local fimath. When you use the syntax c = a .* b, where a and b have
their own fimath objects, the output fi object c gets assigned the same fimath object as inputs a
and b. See “fimath Rules for Fixed-Point Arithmetic” in the Fixed-Point Designer User's Guide for
more information.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the syntax F.mpy(a,b). You must use the syntax mpy(F,a,b).
• When you provide complex inputs to the mpy function inside of a MATLAB Function block, you

must declare the input as complex before running the simulation. To do so, go to the Model
Explorer and set the Complexity parameter for all known complex inputs to On.

See Also
add | divide | fi | fimath | mrdivide | numerictype | rdivide | sub | sum

4 Functions

4-802

mrdivide, /
Package: embedded

Right-matrix division

Syntax
X = A/b
X = mrdivide(A, b)

Description
X = A/b performs right-matrix division.

X = mrdivide(A, b) is an alternative way to execute X = A/b.

Examples

Divide fi Matrix by a Constant

In this example, you use the forward slash (/) operator to perform right matrix division on a 3-by-3
magic square of fi objects. Because the numerator input is a fi object, the denominator input b
must be a scalar.

A = fi(magic(3))

A =
 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

b = fi(3,1,12,8)

b =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 8

X = A/b

X =
 2.6250 0.3750 2.0000
 1.0000 1.6250 2.3750
 1.3750 3.0000 0.6250

 mrdivide, /

4-803

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

Perform Matrix Division

You can perform right-matrix division when neither input is a fi object. The matrix dimensions must
be compatible for matrix division.

A = [2, 3, 1; 0, 8, 4; 1, 1, 0]

A = 3×3

 2 3 1
 0 8 4
 1 1 0

B = [7, 6, 6; 1, 0, 5; 9, 0, 4]

B = 3×3

 7 6 6
 1 0 5
 9 0 4

X = mrdivide(A,B)

X = 3×3

 0.5000 -0.2927 -0.1341
 1.3333 0.0325 -1.0407
 0.1667 -0.2033 0.0041

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. If one or both of the inputs
is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

b — Denominator
scalar | vector | matrix | multidimensional array

4 Functions

4-804

Denominator, specified as a real scalar, vector, matrix, or multidimensional array. If one or both of the
inputs is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.

If neither input is a fi object, then the sizes of the input matrices must be compatible for matrix
division.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
X — Quotient
scalar | vector | matrix | multidimensional array

Solution, returned as an array with the same dimensions as the numerator input A. When A is
complex, the real and imaginary parts of A are independently divided by b.

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
add | divide | fi | fimath | numerictype | rdivide | sub | sum

 mrdivide, /

4-805

mtimes
Matrix product of fi objects

Syntax
mtimes(a,b)

Description
mtimes(a,b) is called for the syntax a * b when a or b is an object.

a * b is the matrix product of a and b. A scalar value (a 1-by-1 matrix) can multiply any other value.
Otherwise, the number of columns of a must equal the number of rows of b.

mtimes does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer
documentation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or KeepLSB.

• For variable-sized signals, you may see different results between the generated code and
MATLAB.

• In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-806

See Also
plus | minus | times | uminus

 mtimes

4-807

ne, ~=
Package: embedded

Determine whether real-world values of two arrays are not equal

Syntax
A ~= B
ne(A,B)

Description
A ~= B returns a logical array with elements set to logical 1 (true) where the real-world values of A
and B are not equal, when A or B is a fi object. Otherwise, the element is logical 0 (false). The test
compares both real and imaginary parts of numeric arrays.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to a fixed-point type that preserves the relative order of the value with respect to the
value in the fixed-point fi object.

ne(A,B) is an alternate way to execute A ~= B, but is rarely used.

Examples

Compare Two fi Objects

Use the ne function to determine whether the real-world values of two fi objects are not equal.

a = fi(pi);
b = fi(pi, 1, 32);
a ~= b

ans = logical
 1

Input a has a 16-bit word length, while input b has a 32-bit word length. The ne function returns 1
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the floating-point double is cast to a type that preserves the
relative order of the value with respect to the value in the fixed-point fi object. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

4 Functions

4-808

a = fi(pi);
b = pi;
ne(a,b)

ans =

 logical

 1

Input Arguments
A,B — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi ne, some combinations of
arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Improved accuracy in comparing fi objects and floating-point numbers using relational
operators
Behavior changed in R2022a

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This could lead to incorrect results. For
example,

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

 ne, ~=

4-809

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

Note that the updated algorithm may produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest
wordlength growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-810

See Also
eq | ge | gt | le | lt

 ne, ~=

4-811

nearest
Round toward nearest integer with ties rounding toward positive infinity

Syntax
y = nearest(a)

Description
y = nearest(a) rounds fi object a to the nearest integer or, in case of a tie, to the nearest integer
in the direction of positive infinity, and returns the result in fi object y.

Examples

Use nearest on a Signed fi Object

The following example demonstrates how the nearest function affects the numerictype properties
of a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = nearest(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the nearest function affects the numerictype properties
of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

4 Functions

4-812

y = nearest(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

• The convergent function rounds ties to the nearest even integer.
• The nearest function rounds ties to the nearest integer toward positive infinity.
• The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]

y =
 -3.5000 -4.0000 -3.0000 -4.0000
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.5000 -2.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 0 1.0000 1.0000
 1.5000 2.0000 2.0000 2.0000
 2.5000 2.0000 3.0000 3.0000
 3.5000 3.9999 3.9999 3.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

nearest does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

 nearest

4-813

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.
• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that

of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | floor | round

4 Functions

4-814

nearestDiv
Round the result of division toward the nearest integer

Syntax
y = nearestDiv(x,d)
y = nearestDiv(x,d,m)

Description
y = nearestDiv(x,d) returns the result of x/d rounded to the nearest integer value.

y = nearestDiv(x,d,m) returns the result of x/d rounded to the nearest multiple of m.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Examples

Divide and Round to Nearest

Perform a division operation and round to the nearest integer value.

nearestDiv(int16(201),10)

ans =
 20

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

Perform a division operation and round to the nearest multiple of 7.

nearestDiv(int16(201),10,7)

ans =
 21

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 13
 FractionLength: 0

Divide and Generate Code

Define a function that uses nearestDiv.

 nearestDiv

4-815

function y = nearestDiv_example(x,d)
y = nearestDiv(x,d);
end

Define inputs and execute the function in MATLAB®.

x = fi(pi);
d = fi(2);
y = nearestDiv_example(x,d)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

To generate code for this function, the denominator d must be defined as a constant.

codegen nearestDiv_example -args {x, coder.Constant(d)}

Code generation successful.

Alternatively, you can define the denominator, d, as constant in the body of the code.

function y = nearestDiv10(x)
y = nearestDiv(x,10);
end

x = fi(5*pi);
y = nearestDiv10(x)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

codegen nearestDiv10 -args {x}

Code generation successful.

Input Arguments
x — Dividend
scalar

Dividend, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

d — Divisor
scalar

4 Functions

4-816

Divisor, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

m — Value to round to nearest multiple of
1 (default) | scalar

Value to round to nearest multiple of, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
y — Result of division and round to floor
scalar

Result of division and round to floor, returned as a scalar.

The datatype of y is calculated such that the wordlength and fraction length are of a sufficient size to
contain both the largest and smallest possible solutions given the data type of x, and the values of d
and m.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for fixed-point data types.

To generate code, the denominator d must be declared as constant.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
ceilDiv | fixDiv | floorDiv

 nearestDiv

4-817

nextpow2
Package: embedded

Exponent of next higher power of 2 of fi object

Syntax
P = nextpow2(N)

Description
P = nextpow2(N) returns the first P such that 2.^P >= abs(N). By convention, nextpow2(0)
returns zero.

Examples

Next Power of 2 of fi Object

Define a fi object and calculate the exponent for the next higher power of 2.

N = fi(1000,1,18,2);
P = nextpow2(N)

P =

 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

Next Power of 2 of fi Values

Define a vector of fi values and calculate the exponents for the next power of 2 higher than those
values.

N = fi([1 -2 3 -4 5 9 519],1,16,3,2);
P = nextpow2(N)

P =

 1 0 1 2 3 3 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned

4 Functions

4-818

 WordLength: 5
 FractionLength: 0

Input Arguments
N — Input values
scalar | vector | N-dimensional array

Input values, specified as a real-valued scalar, vector, or N-dimensional array.
Data Types: fi

Output Arguments
P — Exponent of next higher power of 2
scalar | vector | N-dimensional array

Exponent of next higher power of 2, returned as a scalar, vector, or N-dimensional array.

The output is returned as an unsigned fi object with binary-point scaling, a fraction length of zero,
and the smallest word length which can represent the value of the largest returned exponent.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for code generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
nextpow2 | fi

 nextpow2

4-819

nnz
Package: embedded

Number of nonzero elements in fi object

Syntax
N = nnz(X)

Description
N = nnz(X) returns the number of nonzero elements in X.

When X is a built-in MATLAB type, floating-point fi object, or scaled double fi object, N is returned
as a double. When X is a fixed-point fi object, N is returned as a uint32 if X has fewer than 232

elements. Otherwise, N is returned as a uint64.

Examples

Number of Nonzero Elements in fi Object

Create a fi object and determine the number of nonzero elements it contains.

p = fi([],1,24,12);
X = eye(2,3,'like',p)

X =

 1 0 0
 0 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

N = nnz(X)

N =

 uint32

 2

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

4 Functions

4-820

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | nnz

 nnz

4-821

noperations
Package: embedded

Number of quantization operations by quantizer object

Syntax
a = noperations(q)

Description
a = noperations(q) returns the number of quantization operations during a call to
quantize(q,...) for quantizer object q. This value accumulates over successive calls to
quantize. You reset the value of noperations to zero by issuing the command reset(q) or
resetlog(q).

Examples

Count Number of Quantization Operations by Quantizer Object

Create a default quantizer object, use it to quantize a vector of values, then return the number of
quantization operations performed by the quantizer object.

q = quantizer;
y = quantize(q,-20:10);
noperations(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =

 31

Input Arguments
q — Input quantizer object
quantizer object

Input quantizer object.
Example: q = quantizer

Algorithms
Each time any data element is quantized, noperations is incremented by one. The real and complex
parts are counted separately. For example, (complex*complex) counts four quantization operations
for products and two for sum, because(a+bi)*(c+di) = (a*c - b*d) + (a*d + b*c). In
contrast, (real*real) counts one quantization operation.

4 Functions

4-822

In addition, the real and complex parts of the inputs are quantized individually. As a result, for a
complex input of length 204 elements, noperations counts 408 quantizations: 204 for the real part
of the input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded from real values to
complex values, with a corresponding increase in the number of quantization operations recorded by
noperations. In concrete terms, (real*real) requires fewer quantizations than
(real*complex) and (complex*complex). Changing all the values to complex because one is
complex, such as the coefficient, makes the (real*real) into (real*complex), raising
noperations count.

Version History
Introduced before R2006a

See Also
quantizer | quantize | reset | resetlog | maxlog | minlog

 noperations

4-823

normalizedReciprocal
Compute normalized reciprocal

Syntax
[y,e] = normalizedReciprocal(u)

Description
[y,e] = normalizedReciprocal(u) returns y and e such that (2.^e).*y = 1./u and 0.5 <
abs(y) <= 1.

• If u = 0 and u is a fixed-point or scaled-double data type, then y = 2 – eps(y) and e =
2^(nextpow2(w)) – w + f, where w is the word length of u and f is the fraction length of u.

• If u = 0 and u is a floating-point data type, then y = Inf and t = 1.

Examples

Compute Normalized Reciprocal of a Fixed-Point Vector

This example shows how to compute the element-wise normalized reciprocal of a vector of fixed-point
values.

u = fi([-pi,0.01,pi])

u =
 -3.1416 0.0100 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

[y,e] = normalizedReciprocal(u)

y =
 -0.6367 0.7806 0.6367

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

e = 1x3 int32 row vector

 -1 7 -1

4 Functions

4-824

Input Arguments
u — Input to take normalized reciprocal of
scalar | vector | matrix | N-dimensional array

Input to take the normalized reciprocal of, specified as a real-valued scalar, vector, matrix, or N-
dimensional array.
Data Types: single | double | fi

Output Arguments
y — Normalized reciprocal
scalar | vector | matrix | N-dimensional array

Normalized reciprocal that satisfies 0.5 < abs(y) <= 1 and (2.^e).*y = 1./u, returned as a
scalar, vector, matrix, or N-dimensional array.

• If the input u is a signed fixed-point or scaled-double data type with word length w, then y is a
signed fixed-point or scaled-double with word length w and fraction length w – 2.

• If the input u is an unsigned fixed-point or scaled-double data type with word length w, then y is
an unsigned fixed-point or scaled-double with word length w and fraction length w – 1.

• If the input u is a double, then y is a double.
• If the input u is a single, the y is a single.

e — Exponent
scalar | vector | matrix | N-dimensional array

Exponent that satisfies 0.5 < abs(y) <= 1 and (2.^e).*y = 1./u, returned as an integer
scalar, vector, matrix, or N-dimensional array.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
Functions
fi

Blocks
Normalized Reciprocal HDL Optimized

 normalizedReciprocal

4-825

Topics
“How to Use HDL Optimized Normalized Reciprocal”

4 Functions

4-826

noverflows
Number of overflows

Syntax
y = noverflows(a)
y = noverflows(q)

Description
y = noverflows(a) returns the number of overflows of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object
using the resetlog function.

y = noverflows(q) returns the accumulated number of overflows resulting from quantization
operations performed by a quantizer object q.

Version History
Introduced before R2006a

See Also
maxlog | minlog | nunderflows | resetlog

 noverflows

4-827

num2bin
Convert number to binary representation using quantizer object

Syntax
y = num2bin(q,x)

Description
y = num2bin(q,x) converts the numeric array x into a binary character vector returned in y using
the data type properties specified by the quantizer object q.

If x is a cell array containing numeric matrices, then x will be a cell array of the same dimension
containing binary strings. If x is a structure, then each numeric field of x is converted to binary.

[y1,y2,…] = num2bin(q,x1,x2,…) converts the numeric matrices x1, x2, … to binary strings y1, y2,
….

Examples

Convert Numeric Matrix to Binary Character Vector

Convert a matrix of numeric values to a binary character vector using the attributes specified by a
quantizer object.

x = magic(3)/9

x = 3×3

 0.8889 0.1111 0.6667
 0.3333 0.5556 0.7778
 0.4444 1.0000 0.2222

q = quantizer([5,3])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [5 3]

y = num2bin(q,x)

y = 9x5 char array
 '00111'
 '00010'
 '00011'
 '00000'

4 Functions

4-828

 '00100'
 '01000'
 '00101'
 '00110'
 '00001'

Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a
quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The
other properties of the quantizer object take the default values of specifying a signed, fixed-point
data type, rounding towards negative infinity, and saturate on overflow.

q = quantizer([4 3])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [4 3]

Create an array of numeric values.

[a,b] = range(q);
x = (b:-eps(q):a)

x = 1×16

 0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0 -0.1250 -0.2500 -0.3750 -0.5000 -0.6250 -0.7500 -0.8750 -1.0000

Convert the numeric vector x to binary representation using the properties specified by the
quantizer object q. Note that num2bin always returns the binary representations in a column.

b = num2bin(q,x)

b = 16x4 char array
 '0111'
 '0110'
 '0101'
 '0100'
 '0011'
 '0010'
 '0001'
 '0000'
 '1111'
 '1110'
 '1101'
 '1100'

 num2bin

4-829

 '1011'
 '1010'
 '1001'
 '1000'

Use bin2num to perform the inverse operation.

y = bin2num(q,b)

y = 16×1

 0.8750
 0.7500
 0.6250
 0.5000
 0.3750
 0.2500
 0.1250
 0
 -0.1250
 -0.2500
 ⋮

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

q = quantizer([3 2]);
b = ['011 111'
 '010 110'
 '001 101'
 '000 100'];

Use bin2num to view the numeric equivalents of these values.

x = bin2num(q,b)

x = 4×2

 0.7500 -0.2500
 0.5000 -0.5000
 0.2500 -0.7500
 0 -1.0000

Input Arguments
q — Data type properties to use for conversion
quantizer object

Data type properties to use for conversion, specified as a quantizer object.
Example: q = quantizer([16 15]);

x — Numeric input array
scalar | vector | matrix | multidimensional array | cell array | structure

4 Functions

4-830

Numeric input array, specified as a scalar, vector, matrix, multidimensional array, cell array, or
structure.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
struct | cell

Tips
• num2bin and bin2num are inverses of one another. Note that num2bin always returns the binary

representations in a column.

Algorithms
• The fixed-point binary representation is two's complement.
• The floating-point binary representation is in IEEE Standard 754 style.

Version History
Introduced before R2006a

See Also
bin2num | quantizer | hex2num | num2hex | num2int

 num2bin

4-831

num2hex
Convert number to hexadecimal equivalent using quantizer object

Syntax
y = num2hex(q,x)

Description
y = num2hex(q,x) converts numeric matrix x into a hexadecimal string returned in y. The
attributes of the number are specified by the quantizer object q.

[y1,y2,…] = num2hex(q,x1,x2,…) converts numeric matrices x1, x2, … to hexadecimal strings y1,
y2, ….

Examples

Convert Numeric Matrix to Hexadecimal

Use num2hex to convert a matrix of numeric values to hexadecimal representation.

Convert Floating-Point Values

This is a floating-point example using a quantizer object q that has a 6-bit word length and a 3-bit
exponent length.

x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)

y = 9x2 char array
 '18'
 '12'
 '14'
 '0c'
 '15'
 '18'
 '16'
 '17'
 '10'

Convert Fixed-Point Values

All of the 4-bit fixed-point two's complement numbers in fractional form are given by:

q = quantizer([4 3]);
x = [0.875 0.375 -0.125 -0.625
 0.750 0.250 -0.250 -0.750
 0.625 0.125 -0.375 -0.875
 0.500 0 -0.500 -1.000];
y = num2hex(q,x)

4 Functions

4-832

y = 16x1 char array
 '7'
 '6'
 '5'
 '4'
 '3'
 '2'
 '1'
 '0'
 'f'
 'e'
 'd'
 'c'
 'b'
 'a'
 '9'
 '8'

Input Arguments
q — Attributes of the number
quantizer object

Attributes of the number, specified as a quantizer object.

x — Numeric values to convert
scalar | vector | matrix | multidimensional array | cell array

Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array
of doubles.
Data Types: double | cell
Complex Number Support: Yes

Output Arguments
y — Hexadecimal strings
column vector | cell array

Hexadecimal strings, returned as a column vector. If x is a cell array containing numeric matrices,
then y is returned as a cell array of the same dimension containing hexadecimal strings.

Tips
• num2hex and hex2num are inverses of each other, except that hex2num returns the hexadecimal

values in a column.

Algorithms
• For fixed-point quantizer objects, the representation is two's complement.
• For floating-point quantizer objects, the representation is IEEE Standard 754 style.

For example, for q = quantizer('double'):

 num2hex

4-833

q = quantizer('double');
num2hex(q,nan)

ans =

 'fff8000000000000'

The leading fraction bit is 1, and all the other fraction bits are 0. Sign bit is 1, and exponent bits
are all 1.

num2hex(q,inf)

ans =

 '7ff0000000000000'

Sign bit is 0, exponent bits are all 1, and all fraction bits are 0.

num2hex(q,-inf)

ans =

 'fff0000000000000'

Sign bit is 1, exponent bits are all 1, and all fraction bits are 0.

Version History
Introduced before R2006a

See Also
bin2num | hex2num | num2bin | num2int | quantizer

4 Functions

4-834

num2int
Convert number to signed integer using quantizer object

Syntax
y = num2int(q,x)

Description
y = num2int(q,x) converts numeric values in x to output y containing integers using the data type
properties specified by the fixed-point quantizer object q. If x is a cell array containing numeric
matrices, then y will be a cell array of the same dimension.

[y1,y2,…] = num2int(q,x1,x2,…) uses q to convert numeric values x1, x2,… to integers y1, y2,….

Examples

Convert Matrix of Numeric Values to Signed Integer

All the two's complement 4-bit numbers in fractional form are given by:

x = [0.875 0.375 -0.125 -0.625
 0.750 0.250 -0.250 -0.750
 0.625 0.125 -0.375 -0.875
 0.500 0.000 -0.500 -1.000];

Define a quantizer object to use for conversion.

q = quantizer([4 3]);

Use num2int to convert to signed integer.

y = num2int(q,x)

y =

 7 3 -1 -5
 6 2 -2 -6
 5 1 -3 -7
 4 0 -4 -8

Input Arguments
q — Data type format to use for conversion
fixed-point quantizer object

Data type format to use for conversion, specified as a fixed-point quantizer object.
Example: q = quantizer([5 4]);

 num2int

4-835

x — Numeric values to convert
scalar | vector | matrix | multidimensional array | cell array

Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

Algorithms
• When q is a fixed-point quantizer object, f is equal to fractionlength(q), and x is numeric:

y = x × 2f

• num2int is meaningful only for fixed-point quantizer objects. When q is a floating-point
quantizer object, x is returned unchanged (y = x).

• y is returned as a double, but the numeric values will be integers, also known as floating-point
integers or flints.

Version History
Introduced before R2006a

See Also
bin2num | hex2num | num2bin | num2hex | quantizer

4 Functions

4-836

num2str
Convert numbers to character array

Syntax
s = num2str(A)
s = num2str(A,precision)
s = num2str(A,formatSpec)

Description
s = num2str(A) converts fi object A into a character array representation. The output is suitable
for input to the eval function such that eval(s) produces the original fi object exactly.

s = num2str(A,precision) converts fi object A to a character array representation using the
number of digits of precision specified by precision.

s = num2str(A,formatSpec) applies a format specified by formatSpec to all elements of A.

Examples

Convert a fi Object to a Character Vector

Create a fi object, A, and convert it to a character vector.

A = fi(pi)

A =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

S = num2str(A)

S =

 '3.1416'

Convert a fi Object to a Character with Specified Precision

Create a fi object and convert it to a character vector with 8 digits of precision.

A = fi(pi)

A =

 num2str

4-837

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

S = num2str(A,8)

S =

 '3.1416016'

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array.
Data Types: fi | double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical
Complex Number Support: Yes

precision — Number of digits of precision
positive integer

Maximum number of significant digits in the output string, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

formatSpec — Format of output fields
formatting operators

Format of the output fields, specified using formatting operators. formatSpec also can include
ordinary text and special characters.

For more information on formatting operators, see the num2str reference page in the MATLAB
documentation.

Output Arguments
s — Text representation of input array
character array

Text representation of the input array, returned as a character array.

Version History
Introduced in R2016a

See Also
num2str | mat2str | tostring

4 Functions

4-838

numel
Number of data elements in fi array

Syntax
n = numel(A)

Description
n = numel(A) returns the number of elements, n, in fi array A.

Using numel in your MATLAB code returns the same result for built-in types and fi objects. Use
numel to write data-type independent MATLAB code for array handling.

Examples

Number of Elements in 2-D fi Array

Create a 2-by-3- array of fi objects.

X = fi(ones(2,3),1,24,12)

X =
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

numel counts 6 elements in the matrix.

n = numel(X)

n = 6

Number of Elements in Multidimensional fi Array

Create a 2-by-3-by-4 array of fi objects.

X = fi(ones(2,3,4),1,24,12)

X =
(:,:,1) =
 1 1 1
 1 1 1
(:,:,2) =
 1 1 1

 numel

4-839

 1 1 1
(:,:,3) =
 1 1 1
 1 1 1
(:,:,4) =
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

numel counts 24 elements in the matrix.

n = numel(X)

n = 24

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

Complex Number Support: Yes

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
numel

4 Functions

4-840

numerictype
Construct an embedded.numerictype object describing fixed-point or floating-point data type

Syntax
T = numerictype
T = numerictype(s)
T = numerictype(s,w)
T = numerictype(s,w,f)
T = numerictype(s,w,slope,bias)
T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
T = numerictype(___ ,Name,Value)
T = numerictype(T1,Name,Value)
T = numerictype('Double')
T = numerictype('Single')
T = numerictype('Half')
T = numerictype('Boolean')

Description
T = numerictype creates a default numerictype object.

T = numerictype(s) creates a fixed-point numerictype object with unspecified scaling, a signed
property value of s, and a 16-bit word length.

T = numerictype(s,w) creates a fixed-point numerictype object with unspecified scaling, a
signed property value of s, and word length of w.

T = numerictype(s,w,f) creates a fixed-point numerictype object with binary point scaling, a
signed property value of s, word length of w, and fraction length of f.

T = numerictype(s,w,slope,bias) creates a fixed-point numerictype object with slope and
bias scaling, a signed property value of s, word length of w, slope, and bias.

T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias) creates a fixed-point
numerictype object with slope and bias scaling, a signed property value of s, word length of w,
slopeadjustmentfactor, and bias.

T = numerictype(___ ,Name,Value) allows you to set properties using name-value pairs. All
properties that you do not specify a value for are assigned their default values.

T = numerictype(T1,Name,Value) allows you to make a copy, T1, of an existing numerictype
object, T, while modifying any or all of the property values.

T = numerictype('Double') creates a numerictype object of data type double.

T = numerictype('Single') creates a numerictype object of data type single.

T = numerictype('Half') creates a numerictype object of data type half.

T = numerictype('Boolean') creates a numerictype object of data type Boolean.

 numerictype

4-841

Examples

Create a Default numerictype Object

This example shows how to create a numerictype object with default property settings.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Create a numerictype Object with Default Word Length and Scaling

This example shows how to create a numerictype object with the default word length and scaling
by omitting the arguments for word length, w, and fraction length, f.

T = numerictype(1)

T =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Signed
 WordLength: 16

The object is signed, with a word length of 16 bits and unspecified scaling.

You can use the signedness argument, s, to create an unsigned numerictype object.

T = numerictype(0)

T =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Unsigned
 WordLength: 16

The object is has the default word length of 16 bits and unspecified scaling.

Create a numerictype Object with Unspecified Scaling

This example shows how to create a numerictype object with unspecified scaling by omitting the
fraction length argument, f.

T = numerictype(1,32)

4 Functions

4-842

T =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Signed
 WordLength: 32

The object is signed, with a 32-bit word length.

Create a numerictype Object with Specified Word and Fraction Length

This example shows how to create a signed numerictype object with binary-point scaling, a 32-bit
word length, and 30-bit fraction length.

T = numerictype(1,32,30)

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Create a numerictype Object with Slope and Bias Scaling

This example shows how to create a numerictype object with slope and bias scaling. The real-world
value of a slope and bias scaled number is represented by:

realworldvalue = slope × integer + bias

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16
bits, a slope of 2^-2, and a bias of 4.

T = numerictype(1,16,2^-2,4)

T =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.25
 Bias: 4

Alternatively, the slope can be represented by:

slope = slopeadjustmentfactor × 2fixedexponent

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16
bits, a slope adjustment factor of 1, a fixed exponent of -2, and a bias of 4.

T = numerictype(1,16,1,-2,4)

 numerictype

4-843

T =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.25
 Bias: 4

Create a numerictype Object with Specified Property Values

This example shows how to use name-value pairs to set numerictype properties at object creation.

T = numerictype('Signed',true,'DataTypeMode','Fixed-point: slope and bias scaling', ...
 'WordLength',32,'Slope',2^-2,'Bias',4)

T =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 32
 Slope: 0.25
 Bias: 4

Create a numerictype Object with Unspecified Sign

This example shows how to create a numerictype object with an unspecified sign by using name-
value pairs to set the Signedness property to Auto.

T = numerictype('Signedness','Auto')

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Auto
 WordLength: 16
 FractionLength: 15

Create a numerictype Object with Specified Data Type

This example shows how to create a numerictype object with a specific data type by using
arguments and name-value pairs.

T = numerictype(0,24,12,'DataType','ScaledDouble')

T =

4 Functions

4-844

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 12

The returned numerictype object, T, is unsigned, and has a word length of 24 bits, a fraction length
of 12 bits, and a data type set to scaled double.

Create a Double, Single, Half, or Boolean numerictype Object

This example shows how to create a numerictype object with data type set to double, single, half,
or Boolean at object creation.

Create a numerictype object with the data type mode set to double.

T = numerictype('Double')

T =

 DataTypeMode: Double

Create a numerictype object with the data type mode set to single.

T = numerictype('Single')

T =

 DataTypeMode: Single

Create a numerictype object with the data type mode set to half.

T = numerictype('Half')

T =

 DataTypeMode: Half

Create a numerictype object with the data type mode set to Boolean.

T = numerictype('Boolean')

T =

 DataTypeMode: Boolean

Input Arguments
s — Whether object is signed
true or 1 (default) | false or 0

Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).

 numerictype

4-845

Example: T = numerictype(true)
Data Types: logical

w — Word length
16 (default) | positive integer

Word length, in bits, of the stored integer value, specified as a positive integer.
Example: T = numerictype(true,16)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

f — Fraction length
15 (default) | integer

Fraction length, in bits, of the stored integer value, specified as an integer.

Fraction length can be greater than word length. For more information, see “Binary Point
Interpretation” (Fixed-Point Designer).
Example: T = numerictype(true,16,15)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

slope — Slope
3.0518e-05 (default) | finite floating-point number greater than zero

Slope, specified as a finite floating-point number greater than zero.

The slope and the bias determine the scaling of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

Example: T = numerictype(true,16,2^-2,4)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

bias — Bias associated with object
0 (default) | floating-point number

Bias associated with the object, specified as a floating-point number.

The slope and the bias determine the scaling of a fixed-point number.
Example: T = numerictype(true,16,2^-2,4)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

4 Functions

4-846

slopeadjustmentfactor — Slope adjustment factor
1 (default) | positive scalar

Slope adjustment factor, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
slopeadjustmentfactor outside this range, the numerictype object automatically applies a
scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the
revised slope adjustment factor is greater than or equal to 1 and less than 2, and maintains the value
of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

fixedexponent — Fixed-point exponent
-15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property
changes the other.

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: F = numerictype('DataTypeMode','Fixed-point: binary point
scaling','DataTypeOverride','Inherit')

Note When you create a numerictype object by using name-value pairs, Fixed-Point Designer
creates a default numerictype object, and then, for each property name you specify in the
constructor, assigns the corresponding value. This behavior differs from the behavior that occurs
when you use a syntax such as T = numerictype(s,w). See “Example: Construct a numerictype
Object with Property Name and Property Value Pairs”.

 numerictype

4-847

Bias — Bias
0 (default) | floating-point number

Bias, specified as a floating-point number.

The slope and bias determine the scaling of a fixed-point number.
Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','Bias',4)

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

DataType — Data type category
'Fixed' (default) | 'Boolean' | 'Double' | 'ScaledDouble' | 'Single' | 'Half'

Data type category, specified as one of these values:

• 'Fixed' – Fixed-point or integer data type
• 'Boolean' – Built-in MATLAB Boolean data type
• 'Double' – Built-in MATLAB double data type
• 'ScaledDouble' – Scaled double data type
• 'Single' – Built-in MATLAB single data type
• 'Half' – MATLAB half-precision data type

Example: T = numerictype('Double')
Data Types: char

DataTypeMode — Data type and scaling mode
'Fixed-point: binary point scaling' (default) | 'Fixed-point: slope and bias
scaling' | 'Fixed-point: unspecified scaling' | 'Scaled double: binary point
scaling' | 'Scaled double: slope and bias scaling' | 'Scaled double: unspecified
scaling' | 'Double' | 'Single' | 'Half' | 'Boolean'

Data type and scaling mode associated with the object, specified as one of these values:

• 'Fixed-point: binary point scaling' – Fixed-point data type and scaling defined by the
word length and fraction length

• 'Fixed-point: slope and bias scaling' – Fixed-point data type and scaling defined by
the slope and bias

• 'Fixed-point: unspecified scaling' – Fixed-point data type with unspecified scaling
• 'Scaled double: binary point scaling' – Double data type with fixed-point word length

and fraction length information retained
• 'Scaled double: slope and bias scaling' – Double data type with fixed-point slope and

bias information retained
• 'Scaled double: unspecified scaling' – Double data type with unspecified fixed-point

scaling
• 'Double' – Built-in double
• 'Single' – Built-in single
• 'Half' – MATLAB half-precision data type

4 Functions

4-848

• 'Boolean' – Built-in boolean

Example: T = numerictype('DataTypeMode','Fixed-point: binary point scaling')
Data Types: char

DataTypeOverride — Data type override settings
'Inherit' (default) | 'Off'

Data type override settings, specified as one of these values:

• 'Inherit' – Turn on DataTypeOverride
• 'Off' – Turn off DataTypeOverride

Note The DataTypeOverride property is not visible when its value is set to the default,
'Inherit'.

Example: T = numerictype('DataTypeOverride','Off')
Data Types: char

FixedExponent — Fixed-point exponent
-15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property
changes the other.

Example: T = numerictype('FixedExponent',-12)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

FractionLength — Fraction length of the stored integer value
best precision (default) | integer

Fraction length, in bits, of the stored integer value, specified as an integer.

The default value is the best precision fraction length based on the value of the object and the word
length.
Example: T = numerictype('FractionLength',12)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Scaling — Fixed-point scaling mode
'BinaryPoint' (default) | 'SlopeBias' | 'Unspecified'

Fixed-point scaling mode of the object, specified as one of these values:

• 'BinaryPoint' – Scaling for the numerictype object is defined by the fraction length.

 numerictype

4-849

• 'SlopeBias' – Scaling for the numerictype object is defined by the slope and bias.
• 'Unspecified' – Temporary setting that is only allowed at numerictype object creation, and

allows for the automatic assignment of a best-precision binary point scaling.

Example: T = numerictype('Scaling','BinaryPoint')
Data Types: char

Signed — Whether the object is signed
true or 1 (default) | false or 0

Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).

Note Although the Signed property is still supported, the Signedness property always appears in
the numerictype object display. If you choose to change or set the signedness of your numerictype
object using the Signed property, MATLAB updates the corresponding value of the Signedness
property.

Example: T = numerictype('Signed',true)
Data Types: logical

Signedness — Whether the object is signed
'Signed' (default) | 'Unsigned' | 'Auto'

Whether the object is signed, specified as one of these values:

• 'Signed' – Signed
• 'Unsigned' – Unsigned
• 'Auto' – Unspecified sign

Note Although you can create numerictype objects with an unspecified sign (Signedness:
Auto), all fixed-point numerictype objects must have a Signedness of Signed or Unsigned. If you
use a numerictype object with Signedness: Auto to construct a numerictype object, the
Signedness property of the numerictype object automatically defaults to Signed.

Example: T = numerictype('Signedness','Signed')
Data Types: char

Slope — Slope
3.0518e-05 (default) | finite, positive floating-point number

Slope, specified as a finite, positive floating-point number.

The slope and bias determine the scaling of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

4 Functions

4-850

Changing one of these properties affects the others.

Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','Slope',2^-2)

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

SlopeAdjustmentFactor — Slope adjustment factor
1 (default) | positive scalar

Slope adjustment factor, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
slopeadjustmentfactor outside this range, the numerictype object automatically applies a
scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the
revised slope adjustment factor is greater than or equal to 1 and less than 2, and maintains the value
of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','SlopeAdjustmentFactor',1.5)

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

WordLength — Word length of the stored integer value
16 (default) | positive integer

Word length, in bits, of the stored integer value, specified as a positive integer.
Example: T = numerictype('WordLength',16)
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Version History
Introduced before R2006a

Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result
in a warning. In R2021a, support for inexact property names was removed. Use exact property names
instead.

 numerictype

4-851

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a
numerictype object that is populated with the signal's data type and scaling information.

• Returns the data type when the input is a non fixed-point signal.
• Use to create numerictype objects in generated code.
• All numerictype object properties related to the data type must be constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | fipref | quantizer

Topics
“numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects”
“numerictype Object Properties”

4 Functions

4-852

NumericTypeScope
Determine fixed-point data type

Syntax
H = NumericTypeScope
show(H)
step(H, data)
release(H)
reset(H)

Description
The NumericTypeScope is an object that provides information about the dynamic range of your
data. The scope provides a visual representation of the dynamic range of your data in the form of a
log2 histogram. In this histogram, the bit weights appear along the X-axis, and the percentage of
occurrences along the Y-axis. Each bin of the histogram corresponds to a bit in the binary word. For
example, 20 corresponds to the first integer bit in the binary word, 2-1 corresponds to the first
fractional bit in the binary word.

The scope suggests a data type in the form of a numerictype object that satisfies the specified
criteria. See the section on Bit Allocation in “Dialog Panels” on page 4-858.

H = NumericTypeScope returns a NumericTypeScope object that you can use to view the dynamic
range of data in MATLAB. To view the NumericTypeScope window after creating H, use the show
method.

show(H) opens the NumericTypeScope object H and brings it into view. Closing the scope window
does not delete the object from your workspace. If the scope object still exists in your workspace, you
can open it and bring it back into view using the show method.

step(H, data) processes your data and allows you to visualize the dynamic range. The object H
retains previously collected information about the variable between each call to step.

release(H) releases system resources (such as memory, file handles or hardware connections) and
allows all properties and input characteristics to be changed.

reset(H) clears all stored information from the NumericTypeScope object H. Resetting the object
clears the information displayed in the scope window.

Identifying Values Outside Range and Below Precision
The NumericTypeScope can also help you identify any values that are outside range or below
precision based on the current data type. To prepare the NumericTypeScope to identify them,
provide an input variable that is a fi object and verify that one of the following conditions is true:

• The DataTypeMode of the fi object is set to Scaled doubles: binary point scaling.
• The DataTypeOverride property of the Fixed-Point Designer fipref object is set to

ScaledDoubles.

 NumericTypeScope

4-853

When the information is available, the scope indicates values that are outside range, below precision,
and in range of the data type by color-coding the histogram bars as follows:

• Blue — Histogram bin contains values that are in range of the current data type.
• Red — Histogram bin contains values that are outside range in the current data type.
• Yellow — Histogram bin contains values that are below precision in the current data type.

For an example of the scope color coding, see the figures in “Vertical Units” on page 4-860.

See also Legend in “Dialog Panels” on page 4-858.

See the “Examples” on page 4-0 section to learn more about using the NumericTypeScope to
select data types.

Dialog Boxes and Toolbar
• “The NumericTypeScope Window” on page 4-854
• “Configuration Dialog Box” on page 4-856
• “Dialog Panels” on page 4-858
• “Vertical Units” on page 4-860
• “Bring All NumericType Scope Windows Forward” on page 4-861
• “Toolbar (Mac Only)” on page 4-862

The NumericTypeScope Window

The NumericTypeScope opens with the default toolbars displayed at the top of the window and the
dialog panels to the right.

4 Functions

4-854

 NumericTypeScope

4-855

Configuration Dialog Box

The NumericTypeScope configuration allows you to control the behavior and appearance of the
scope window.

To open the Configuration dialog box, select File > Configuration, or, with the scope as your active
window, press the N key.

The Configuration Dialog box contains a series of panes each containing a table of configuration
options. See the reference section for each pane for instructions on setting the options on each one.
This dialog box has one pane, the Core pane, with only one option, for General UI settings for the
scope user interface.

To save configuration settings for future use, select File > Configuration > Save as. The
configuration settings you save become the default configuration settings for the
NumericTypeScope object.

Caution Before saving your own set of configuration settings in the matlab/toolbox/fixedpoint/
fixedpoint folder, save a backup copy of the default configuration settings in another location. If you
do not save a backup copy of the default configuration settings, you cannot restore these settings at a
later time.

To save your configuration settings for future use, save them in the matlab/toolbox/fixedpoint/
fixedpoint folder with the file name NumericTypeScopeComponent.cfg. You can re-save your
configuration settings at anytime, but remember to do so in the specified folder using the specified
file name.

Core Pane

The Core pane in the Configuration dialog box controls the general settings of the scope.

4 Functions

4-856

Click General UI and then click Options to open the Core:General UI Options dialog box.

• Display the full source path in the title bar—Select this check box to display the file name and
variable name in the scope title bar. If the scope is not from a file, or if you clear this check box,
the scope displays only the variable name in the title bar.

• Open message log—Control when the Message Log window opens. The Message log window
helps you debug issues with the scope. Choose to open the Message Log window for any of these
conditions:

• for any new messages
• for warn/fail messages
• only for fail messages
• manually

The option defaults to for warn/fail messages.

You can open the Message Log at any time by selecting Help > Message Log or by pressing Ctrl
+M. The Message Log dialog box provides a system level record of loaded configuration settings
and registered extensions. The Message Log displays summaries and details of each message, and
you can filter the display of messages by Type and Category.

• Type—Select the type of messages to display in the Message Log. You can select All, Info,
Warn, or Fail. Type defaults to All.

• Category—Select the category of messages to display in the Message Log. You can select All,
Configuration, or Extension. The scope uses Configuration messages to indicate when
new configuration files are loaded, and Extension messages to indicate when components are
registered. Category defaults to All.

 NumericTypeScope

4-857

Dialog Panels

• “Bit Allocation” on page 4-858
• “Legend” on page 4-858
• “Resulting Type” on page 4-859
• “Input Data” on page 4-859

Bit Allocation

The scope Bit Allocation dialog panel, as shown in the following figure, offers you several options for
specifying data type criteria.

You can use this panel to specify a known word length and the desired maximum occurrences outside
range. You can also use the panel to specify the desired number of occurrences outside range and the
smallest value to be represented by the suggested data type. For streaming data, the suggested
numerictype object adjusts over time in order to continue to satisfy the specified criteria.

The scope also allows you to interact with the histogram plot. When you select Graphical control on
the Bit Allocation dialog panel, you enable cursors on either side of the binary point. You can interact
with these cursors and observe the effect of the suggested numerictype on the input data. For
example, you can see the number of values that are outside range, below precision, or both. You can
also view representable minimum and maximum values of the data type.

Legend

The scope Legend panel informs you which colors the scope uses to indicate values. These colors
represent values that are outside range, in range, or below precision when displayed in the scope.

4 Functions

4-858

Resulting Type

The Resulting Type panel describes the fixed-point data type as defined by scope settings. By
manipulating the visual display (via the Bit Allocation panel or with the cursors) you can change the
value of the data type.

The Data Details section displays the percentage of values that fall outside range or below precision
with the numerictype object located at the top of this panel. SQNR (Signal Quantization Noise
Ratio) varies depending on the signal. If the parameter has no value, then there is not enough data to
calculate the SQNR. When scope information or the numerictype changes, the SQNR resets.

Type Details section provides details about the fixed-point data type.

Input Data

The Input Data panel provides statistical information about the values currently displayed in the
NumericScopeType object.

 NumericTypeScope

4-859

Vertical Units

Use the Vertical Units selection to display values that are outside range or below precision as a
percentage or as an actual count. For example, the following image shows the values that are outside
range or below precision as a percentage of the total values.

This next example shows the values that are outside range or below precision as an actual count.

4 Functions

4-860

Bring All NumericType Scope Windows Forward

The NumericScopeType GUI offers a View > Bring All NumericType Scopes Forward menu
option to help you manage your NumericTypeScope windows. Selecting this option or pressing Ctrl
+F brings all NumericTypeScope windows into view. If a NumericTypeScope window is not
currently open, this menu option opens the window and brings it into view.

 NumericTypeScope

4-861

Toolbar (Mac Only)

Activate the Toolbar by selecting View > Toolbar. When this tool is active, you can dock or undock
the scope from the GUI.

The toolbar feature is for the Mac only. Selecting Toolbar on Windows® and UNIX® versions displays
only an empty toolbar. The docking icon always appears in the GUI in the upper-right corner for these
versions.

Methods
release

Use this method to release system resources (such as memory, file handles or hardware connections)
and allow all properties and input characteristics to be changed.

Example:

>>release(H)

reset

Use this method to clear the information stored in the object H. Doing so allows you to reuse H to
process data from a different variable.

Example:

>>reset(H)

show

Use this method to open the scope window and bring it into view.

Example:

>>show(H)

step

Use this method to process your data and visualize the dynamic range in the scope window.

Example:

>>step(H, data)

Examples

4 Functions

4-862

View the Dynamic Range of a fi Object

Set the fi object DataTypeOverride to Scaled Doubles, and then view its dynamic range.

fp = fipref;
initialDTOSetting = fp.DataTypeOverride;
fp.DataTypeOverride = 'ScaledDoubles';
a = fi(magic(10),1,8,2);
b = fi([a; 2.^(-5:4)],1,8,3);
h = NumericTypeScope;
step(h,b);
fp.DataTypeOverride = initialDTOSetting;

The log2 histogram display shows that the values appear both outside range and below precision in
the variable. In this case, b has a data type of numerictype(1,8,3). The numerictype(1,8,3) data type
provides 5 integer bits (including the signed bit), and 3 fractional bits. Thus, this data type can

 NumericTypeScope

4-863

represent only values between -2^4 and 2^4- 2^-3 (from -16 to 15.8750). Given the range and
precision of this data type, values greater than 2^4 fall outside the range and values less than 2^-3
fall below the precision of the data type. When you examine the NumericTypeScope display, you can
see that values requiring bits 5, 6, and 7 are outside range and values requiring fractional bits 4 and
5 are below precision. Given this information, you can prevent values that are outside range and
below precision by changing the data type of the variable b to numerictype(0,13,5).

Determine Numeric Type For a fi Object

View the dynamic range, and determine an appropriate numeric type for a fi object with a
DataTypeMode of Scaled double: binary point scaling.

Create a numerictype object with a DataTypeMode of Scaled double: binary point scaling. You can
then use that numerictype object to construct your fi objects. Because you set the DataTypeMode to
Scaled double: binary point scaling, the NumericTypeScope can now identify overflows in your data.

T = numerictype;
T.DataTypeMode = 'Scaled double: binary point scaling';
T.WordLength = 8;
T.FractionLength = 6;
a = fi(sin(0:100)*3.5, T);
b = fi(cos(0:100)*1.75,T);
acc = fi(0,T);
h = NumericTypeScope;
for i = 1:length(a)
 acc(:) = a(i)*0.7+b(i);
 step(h,acc)
end

4 Functions

4-864

This dynamic range analysis shows that you can represent the entire range of data in the accumulator
with 5 bits; two to the left of the binary point (integer bits) and three to the right of it (fractional bits).
You can verify that this data type is able to represent all the values by changing the WordLength and
FractionLength properties of the numerictype object T. Then, use T to redefine the accumulator.

To view the dynamic range analysis based on this new data type, reset the NumericTypeScope object
h, and rerun the loop.

T.WordLength = 5;
T.FractionLength = 2;
acc = fi(0,T);
release(h)
reset(h)
for i = 1:length(a)
 acc(:) = a(i)*0.7 + b(i);

 NumericTypeScope

4-865

 step(h,acc)
end

Version History
Introduced in R2010a

Updated Numeric Type Scope Interface
Behavior change in future release

The Numeric Type Scope has a new interface when you launch the scope from the
Instrumentation Report Viewer. For an example, see showInstrumentationResults.

The NumericTypeScope, show, step, release, and reset functions will be updated in a future
release to launch the updated interface.

4 Functions

4-866

See Also
hist | log2

 NumericTypeScope

4-867

nunderflows
Number of underflows

Syntax
y = nunderflows(a)
y = nunderflows(q)

Description
y = nunderflows(a) returns the number of underflows of fi object a since logging was turned on
or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object
using the resetlog function.

y = nunderflows(q) returns the accumulated number of underflows resulting from quantization
operations performed by a quantizer object q.

Version History
Introduced before R2006a

See Also
maxlog | minlog | noverflows | resetlog

4 Functions

4-868

oct
Package: embedded

Octal representation of stored integer of fi object

Syntax
b = oct(a)

Description
b = oct(a) returns the stored integer of fi object a in octal format as a character vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Tip oct returns the octal representation of the stored integer of a fi object. To obtain the base-n
representation of the real-world value of a fi object, use dec2base.

Examples

View Stored Integer of fi Object in Octal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a =
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the octal representation of the stored integers of fi object a.

b = oct(a)

b =
'200 177'

 oct

4-869

Input Arguments
a — Input array
fi object

Input array, specified as a fi object.
Data Types: fi

Version History
Introduced before R2006a

See Also
bin | dec | hex | storedInteger | dec2hex | dec2base | dec2bin

4 Functions

4-870

ones
Create array of all ones with fixed-point properties

Syntax
X = ones('like',p)
X = ones(n,'like',p)
X = ones(sz1,...,szN,'like',p)
X = ones(sz,'like',p)

Description
X = ones('like',p) returns a scalar 1 with the same numerictype, complexity (real or
complex), and fimath as p.

X = ones(n,'like',p) returns an n-by-n array of ones like p.

X = ones(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of ones like p.

X = ones(sz,'like',p) returns an array of ones like p. The size vector, sz, defines size(X).

Examples

2-D Array of Ones With Fixed-Point Attributes

Create a 2-by-3 array of ones with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 2-by-3- array of ones that has the same numerictype properties as p.

X = ones(2,3,'like',p)

X =
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Size Defined by Existing Array

Define a 3-by-2 array A.

 ones

4-871

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz = 1×2

 3 2

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create an array of ones that is the same size as A and has the same numerictype properties as p.

X = ones(sz,'like',p)

X =
 1 1
 1 1
 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Square Array of Ones With Fixed-Point Attributes

Create a 4-by-4 array of ones with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 4-by-4 array of ones that has the same numerictype properties as p.

X = ones(4, 'like', p)

X =
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Create Array of Ones with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and OverflowAction set to
Wrap.

4 Functions

4-872

format long
p = fi([],1,16,15,'OverflowAction','Wrap');

Create a 2-by-2 array of ones with the same numerictype properties as p.

X = ones(2,'like',p)

X =
 0.999969482421875 0.999969482421875
 0.999969482421875 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

1 cannot be represented by the data type of p, so the value saturates. The output fi object X has the
same numerictype and fimath properties as p.

Complex Fixed-Point One

Create a scalar fixed-point 1 that is not real valued, but instead is complex like an existing array.

Define a complex fi object.

p = fi([1+2i 3i],1,24,12);

Create a scalar 1 that is complex like p.

X = ones('like',p)

X =
 1.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

 ones

4-873

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)
 % Cast the coefficients to the coefficient type
 b = cast(b,'like',T.coeffs);
 a = cast(a,'like',T.coeffs);
 % Create the output using zeros with the data type
 y = zeros(size(x),'like',T.data);
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

 % Define coefficients for a filter with specification
 % [b,a] = butter(2,0.25)
 b = [0.097631072937818 0.195262145875635 0.097631072937818];
 a = [1.000000000000000 -0.942809041582063 0.333333333333333];

 % Define floating-point types
 T_float.coeffs = double([]);
 T_float.data = double([]);

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);

 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);

 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);

 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);

 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);

 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);

 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

 % Compare the results

4 Functions

4-874

 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
end

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-n matrix of
ones.

• If n is zero, X is an empty matrix.
• If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-by-szN array.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector indicates the size
of the corresponding dimension.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

 ones

4-875

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

If the value 1 overflows the numeric type of p, the output saturates regardless of the specified
OverflowAction property of the attached fimath. All subsequent operations performed on the
output obey the rules of the attached fimath.

Complex Number Support: Yes

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

Version History
Introduced in R2013a

See Also
zeros | cast | ones

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

4 Functions

4-876

plus, +
Package: embedded

Matrix sum of fi objects

Syntax
C = A+B
C = plus(A,B)

Description
C = A+B adds the matrix A to matrix A.

plus does not support fi objects of data type boolean.

C = plus(A,B) is an alternate way to execute A+B.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

Examples

Use Implicit Expansion to Add Vectors, Matrices, and Multidimensional Arrays

This example shows how to use implicit expansion to add vectors and matrices with compatible
dimensions.

Add Row and Column Vectors

Create a 3-by-1 column vector and 1-by-5 row vector and add them.

x = fi([1;2;3]);
y = fi([1,2,3,4,5]);
z = x + y

z =
 2 3 4 5 6
 3 4 5 6 7
 4 5 6 7 8

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 13

The result is a 3-by-5 matrix, where each (i,j) element in the matrix is given by z(i,j) = x(i) +
y(j).

 plus, +

4-877

Add Matrix and Column Vector

Create an M-by-N matrix and a M-by-1 column vector and add them.

x = fi([1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15]);
y = fi([1;2;3]);
z = x + y

z =
 2 3 4 5 6
 8 9 10 11 12
 14 15 16 17 18

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 19
 FractionLength: 13

The result is an M-by-N matrix, where each (i,j) element in the matrix is given by z(i,j) =
x(i,j) + y(i).

Add Matrix and Row Vector

Create a M-by-N matrix and a 1-by-N row vector and add them.

x = fi([1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15]);
y = fi([1 2 3 4 5]);
z = x + y

z =
 2 4 6 8 10
 7 9 11 13 15
 12 14 16 18 20

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 12

The result is an M-by-N matrix, where each (i,j) element in the matrix is given by z(i,j) = x(i,j) + y(j).

Add Matrix to Multidimensional Array

Create a M-by-N matrix and a M-by-N-by-P array and add them.

x = fi(ones(3,5));
y = fi(ones(3,5,3));
z = x + y

z =
(:,:,1) =
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
(:,:,2) =

4 Functions

4-878

 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
(:,:,3) =
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 17
 FractionLength: 14

The result is an M-by-N-by-P array, where each (i,j,k) element in the array is given by z(i,j,k) = x(i,j) +
y(i,j,k).

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. Inputs A and B must either be the same size or have sizes that are compatible. For more
information, see “Compatible Array Sizes for Basic Operations”.

plus does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. Inputs A and B must either be the same size or have sizes that are compatible. For more
information, see “Compatible Array Sizes for Basic Operations”.

plus does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2021b

Starting in R2021b with the addition of implicit expansion for fi times, plus, and minus, some
combinations of arguments for basic operations that previously returned errors now produce results.

 plus, +

4-879

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi inputs must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Inputs cannot be of data type logical.

See Also
minus | mtimes | times | uminus

4 Functions

4-880

pow10
Base 10 power and scale half-precision numbers

Syntax
Y = pow10(X)

Description
Y = pow10(X) returns an array, Y, whose elements are 10 raised to the power X.

Note This function supports only half-precision inputs.

Examples

Base 10 Power

Create a half-precision vector, X.

X = half([1;2;3;4])

X =

 4x1 half column vector

 1
 2
 3
 4

Compute an array, Y, whose elements are 10 raised to the power X.

Y = pow10(X)

Y =

 4x1 half column vector

 10
 100
 1000
 10000

Input Arguments
X — Power
scalar | vector | matrix | multidimensional array

Power, specified as a half-precision numeric scalar, vector, matrix, or multidimensional array

 pow10

4-881

Data Types: Half

Output Arguments
Y — Output array
scalar | vector | matrix | multidimensional array

Array whose elements are 10 raised to the power X, returned as a half-precision scalar, vector, matrix,
or multidimensional array.

Version History
Introduced in R2018b

See Also
half

4 Functions

4-882

pow2
Efficient fixed-point multiplication by 2K

Syntax
b = pow2(a,K)

Description
b = pow2(a,K) returns the value of a shifted by K bits where K is an integer and a and b are fi
objects. The output b always has the same word length and fraction length as the input a.

Note In fixed-point arithmetic, shifting by K bits is equivalent to, and more efficient than, computing
b = a*2K.

If K is a non-integer, the pow2 function will round it to floor before performing the calculation.

The scaling of a must be equivalent to binary point-only scaling; in other words, it must have a power
of 2 slope and a bias of 0.

a can be real or complex. If a is complex, pow2 operates on both the real and complex portions of a.

The pow2 function obeys the OverflowAction and RoundingMethod properties associated with a.
If obeying the RoundingMethod property associated with a is not important, try using the bitshift
function.

The pow2 function does not support fi objects of data type Boolean.

The function also does not support the syntax b = pow2(a) when a is a fi object.

Examples
Example 4.1. Example 1

In the following example, a is a real-valued fi object, and K is a positive integer.

The pow2 function shifts the bits of a 3 places to the left, effectively multiplying a by 23.

a = fi(pi,1,16,8)
b = pow2(a,3)
binary_a = bin(a)
binary_b = bin(b)

a =

 3.140625

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16

 pow2

4-883

 FractionLength: 8

b =

 25.125

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

binary_a =

 '0000001100100100'

binary_b =

 '0001100100100000'

Example 4.2. Example 2

In the following example, a is a real-valued fi object, and K is a negative integer.

The pow2 function shifts the bits of a 4 places to the right, effectively multiplying a by 2–4.

a = fi(pi,1,16,8)
b = pow2(a,-4)
binary_a = bin(a)
binary_b = bin(b)

a =

 3.140625

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

b =

 0.1953125

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

binary_a =

 '0000001100100100'

binary_b =

 '0000000000110010'

4 Functions

4-884

Example 4.3. Example 3

The following example shows the use of pow2 with a complex fi object:

format long g
P = fipref('NumericTypeDisplay', 'short');
a = fi(57 - 2i, 1, 16, 8)

a =

 57 - 2i
 numerictype(1,16,8)

pow2(a,2)

ans =

 127.99609375 - 8i
 numerictype(1,16,8)

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bitshift | bitsll | bitsra | bitsrl

 pow2

4-885

power, .^
Package: embedded

Fixed-point element-wise power

Syntax
C = A.^B
C = power(A, B)

Description
C = A.^B raises each element of A to the corresponding power in B.

C = power(A, B) is an alternative way to compute A.^B.

Examples

Raise Each Element of a Matrix to a Scalar Power

Create a fixed-point matrix and raise it to a scalar power.

A = fi([1, 3; 4, 2])

A =
 1 3
 4 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

C = A.^3

C =
 1 27
 64 8

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 48
 FractionLength: 36

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

4 Functions

4-886

Base, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must either be
the same size or have sizes that are compatible (for example, A is an M-by-N matrix and B is a scalar
or 1-by-N row vector).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

B — Exponent
scalar

Exponent, specified as a non-negative, real, integer-valued scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
C — Power
scalar | vector | matrix | multidimensional array

Power, returned as an array with the same dimensions as the input A. When A has a local fimath
object, the output C also has the same local fimath object. The array power operation is always
performed using the default fimath settings.

Version History
Introduced in R2010a

Improved numerical accuracy and generated code efficiency for fi inputs to power, .^

Fixed-Point Designer now has improved numerical accuracy for fixed-point inputs to the power
function in simulation and generated code. Additionally, generated code is more efficient.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When the exponent B is a variable, the ProductMode property of the governing fimath must be
SpecifyPrecision.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Both inputs must be scalar, and the exponent input, B, must be a constant integer.

See Also
power | mpower

 power, .^

4-887

qr
Orthogonal-triangular decomposition

Description
The Fixed-Point Designer qr function differs from the MATLAB qr function as follows:

• The input A in qr(A) must be a real, signed fi object.
• The qr function ignores and discards any fimath attached to the input. The output is always

associated with the default fimath.
• Pivoting is not supported for fixed-point inputs. You cannot use the following syntaxes:

• [~,~,E] = qr(...)
• qr(A,'vector')
• qr(A,B,'vector')

• Economy size decomposition is not supported for fixed-point inputs. You cannot use the following
syntax: [Q,R] = qr(A,0).

• The least-squares-solution form is not supported for fixed-point inputs. You cannot use the
following syntax: qr(A,B).

Refer to the MATLAB qr reference page for more information.

Version History
Introduced in R2014a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Topics
“Determine Fixed-Point Types for QR Decomposition”

4 Functions

4-888

quantize
Package: embedded

Quantize fixed-point numbers

Note quantize is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. For more
information, see “Compatibility Considerations”.

Syntax
y = quantize(x)
y = quantize(x,nt)
y = quantize(x,nt,rm)
y = quantize(x,nt,rm,oa)

yBP = quantize(x,s)
yBP = quantize(x,s,wl)
yBP = quantize(x,s,wl,fl)
yBP = quantize(x,s,wl,fl,rm)
yBP = quantize(x,s,wl,fl,rm,oa)

Description
Quantize Using a numerictype Object

y = quantize(x) quantizes the input x values using the default settings.

The numerictype, rounding method, and overflow action apply only during the quantization. The
output y does not have an attached fimath.

y = quantize(x,nt) quantizes x to the specified numerictype, nt.

y = quantize(x,nt,rm) quantizes x to the specified numerictype, nt using the specified
rounding method, rm.

y = quantize(x,nt,rm,oa) quantizes x to the specified numerictype, nt using the specified
rounding method, rm, and overflow action, oa.

Quantize by Specifying Numeric Type Properties

yBP = quantize(x,s) quantizes x to a binary-point scaled fixed-point number with signedness s.

yBP = quantize(x,s,wl) quantizes x to a binary-point scaled fixed-point number with signedness
s and word length wl.

yBP = quantize(x,s,wl,fl) quantizes x to a binary-point scaled fixed-point number with
signedness s, word length wl, and fraction length fl.

yBP = quantize(x,s,wl,fl,rm) quantizes x to a binary-point scaled fixed-point number with
signedness s, word length wl, and fraction length fl using rounding method rm.

 quantize

4-889

yBP = quantize(x,s,wl,fl,rm,oa) quantizes x to a binary-point scaled fixed-point number with
signedness s, word length wl, and fraction length fl using rounding method rm and overflow action
oa.

Examples

Quantize Binary-Point Scaled to Binary-Point Scaled Data

Define the input fi value to quantize.

x_BP = fi(pi)

x_BP =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Use a numerictype Object

Create numerictype object which specifies a signed fixed-point data type with 8-bit word length and
4-bit fraction length.

ntBP = numerictype(1,8,4);

Use the defined numerictype object ntBP to quantize the input x_BP to a binary-point scaled fixed-
point data type.

yBP1 = quantize(x_BP,ntBP)

yBP1 =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Specify Numeric Type Properties at the Input

yBP2 = quantize(x_BP,1,8,4)

yBP2 =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Quantize Binary-Point Scaled to Slope-Bias Data

Create a numerictype object that specifies a slope-bias scaled fixed-point data type.

4 Functions

4-890

ntSB = numerictype('Scaling','SlopeBias',...
 'SlopeAdjustmentFactor',1.8,...
 'Bias',1,...
 'FixedExponent',-12);

Define the input fi value to quantize.

x_BP = fi(pi)

x_BP =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Use the defined numerictype ntSB to quantize the input x_BP to a slope-bias scaled fixed-point
data type.

ySB1 = quantize(x_BP, ntSB)

ySB1 =
 3.1415

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

Quantize Slope-Bias Scaled to Binary-Point Scaled Data

Define the input fi values to quantize.

x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))

x_SB =
 0.8147 0.0975 0.1576
 0.8750 0.2785 0.8750
 0.1270 0.5469 0.8750
 0.8750 0.8750 0.4854
 0.6324 0.8750 0.8003

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3.0517578125e-5
 Bias: -0.125

Use a numerictype Object

Create a numerictype object ntBP that specifies a signed, binary-point scaled fixed-point data type
with 8-bit word length and 4-bit fraction length.

ntBP = numerictype(1,8,4);

 quantize

4-891

Use the defined numerictype ntBP to quantize the input x_SB to a binary-point scaled fixed-point
data type. Additionally, round to nearest and saturate on overflow.

yBP1 = quantize(x_SB,ntBP,'Nearest','Saturate')

yBP1 =
 0.8125 0.1250 0.1875
 0.8750 0.2500 0.8750
 0.1250 0.5625 0.8750
 0.8750 0.8750 0.5000
 0.6250 0.8750 0.8125

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Specify Numeric Type Properties at the Input

yBP2 = quantize(x_SB,1,8,4,'Nearest','Saturate')

yBP2 =
 0.8125 0.1250 0.1875
 0.8750 0.2500 0.8750
 0.1250 0.5625 0.8750
 0.8750 0.8750 0.5000
 0.6250 0.8750 0.8125

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Quantize Slope-Bias Scaled to Slope-Bias Scaled Data

Define the input fi values to quantize.

x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))

x_SB =
 0.8147 0.0975 0.1576
 0.8750 0.2785 0.8750
 0.1270 0.5469 0.8750
 0.8750 0.8750 0.4854
 0.6324 0.8750 0.8003

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3.0517578125e-5
 Bias: -0.125

Create a numerictype object which specifies a slope-bias scaled fixed-point data type.

ntSB = numerictype('Scaling','SlopeBias', ...
 'SlopeAdjustmentFactor',1.8,'Bias',...
 1,'FixedExponent',-12);

4 Functions

4-892

Use the defined numerictype ntSB to quantize the input x_SB to a slope-bias scaled fixed-point
data type. Additionall, round to ceiling.

ySB2 = quantize(x_SB,ntSB,'Ceiling')

ySB2 =
 0.8150 0.0978 0.1580
 0.8752 0.2789 0.8752
 0.1272 0.5469 0.8752
 0.8752 0.8752 0.4854
 0.6326 0.8752 0.8005

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

Quantize Built-in Integer to Binary-Point Scaled Data

Define the input values to quantize.

xInt = int8(-16:4:16)

xInt = 1x9 int8 row vector

 -16 -12 -8 -4 0 4 8 12 16

Use a numerictype Object

Create a numerictype object that specifies a signed binary-point scaled fixed-point data type with 8-
bit word length and 4-bit fraction length.

ntBP = numerictype(1,8,4);

Use the defined numerictype ntBP to quantize the input xInt to a binary-point scaled fixed-point
data type.

yBP1 = quantize(xInt,ntBP,'Zero')

yBP1 =
 0 4 -8 -4 0 4 -8 -4 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Show the range of the quantized output.

range(yBP1)

ans =
 -8.0000 7.9375

 quantize

4-893

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

The first two and last three values are wrapped because they are outside the representable range of
the output type.

Specify Numeric Type Properties at the Input

yBP2 = quantize(xInt,1,8,4,'Zero')

yBP2 =
 0 4 -8 -4 0 4 -8 -4 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Quantize Built-in Integer to Slope-Bias Data

Define the input values to quantize.

xInt = int8(-16:4:16)

xInt = 1x9 int8 row vector

 -16 -12 -8 -4 0 4 8 12 16

Create a numerictype object that specifies a slope-bias scaled fixed-point data type.

ntSB = numerictype('Scaling','SlopeBias', ...
 'SlopeAdjustmentFactor',1.8,'Bias',...
 1,'FixedExponent',-12);

Use the defined numerictype ntSB to quantize the input xInt to a slope-bias scaled fixed-point
data type.

ySB = quantize(xInt,ntSB,'Round','Saturate')

ySB =
 Columns 1 through 7
 -13.4000 -11.9814 -7.9877 -3.9939 -0.0002 3.9936 7.9873
 Columns 8 through 9
 11.9811 15.3996

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

Show the range of the quantized output.

range(ySB)

4 Functions

4-894

ans =
 -13.4000 15.3996

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

The first and last values saturate because they are at the limits of he representable range of the
output type.

Input Arguments
x — Input data to quantize
fi object | built-in integer

Input data to quantize, specified as:

• Built-in signed or unsigned integers
• Binary point scaled fixed-point fi
• Slope-bias scaled fixed-point fi

Although fi doubles and fi singles are allowed as inputs, they pass through the quantize function
without being quantized.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fi
Complex Number Support: Yes

nt — numerictype object
numerictype(true,16,15) (default) | numerictype object

numerictype object that describes a fixed-point data type.

rm — Rounding method to use
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use for quantization, specified as one of the following:

• 'Ceiling' — Round up to the next allowable quantized value.
• 'Convergent' — Round to the nearest allowable quantized value. Numbers that are exactly

halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit after rounding would be set to 0.

• 'Floor' — Round down to the next allowable quantized value.
• 'Nearest' — Round to the nearest allowable quantized value. Numbers that are halfway

between the two nearest allowable quantized values are rounded up.
• 'Round' — Round to the nearest allowable quantized value. Numbers that are halfway between

the two nearest allowable quantized values are rounded up in absolute value.
• 'Zero' — Round negative numbers up and positive numbers down to the next allowable

quantized value.

Data Types: char

 quantize

4-895

oa — Action to take on overflow
'Wrap' (default) | 'Saturate'

Action to take on overflow, specified as one of these values:

• 'Saturate' — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers, as specified by the numeric type properties, these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

• 'Wrap' — Overflows wrap.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers, as specified by the numeric type properties, these values are wrapped
back into that range using modular arithmetic relative to the smallest representable number.

Data Types: char

s — Signedness
1 (default) | 0

Signedness of the quantized fixed-point number, specified as 1 (signed) or 0 (unsigned).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

wl — Word length
16 (default) | positive scalar integer

Word length of the stored integer value of the output data, in bits.

fl — Fraction length
wl-1 (default) | scalar integer

Fraction length of the quantized value, specified as a scalar integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced before R2006a

quantize is not recommended
Not recommended starting in R2013a

quantize is not recommended. Use cast, zeros, ones, eye, or subsasgn instead. There are no
plans to remove quantize.

Starting in R2013a, use cast, zeros, ones, eye, or subsasgn instead. The cast, zeros, ones,
eye, and subsasgn functions can quantize other data types in addition to fi objects and encapsulate
type information for quantization in an object rather than as separate input arguments.

4 Functions

4-896

Not Recommended Recommended
x_BP = fi(pi);
ntBP = numerictype(1,8,4);
yBP = quantize(x_BP,ntBP)

yBP =

 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

x_BP = fi(pi);
ntBP = fi([],1,8,4);
yBP = cast(x_BP,'like',ntBP)

yBP =

 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | numerictype | cast | zeros

 quantize

4-897

quantizenumeric
Package: embedded

Quantize numeric data

Syntax
y = quantizenumeric(x,s,w,f)
y = quantizenumeric(x,s,w,f,r)
y = quantizenumeric(x,s,w,f,r,o)

Description
y = quantizenumeric(x,s,w,f) quantizes the value specified in x using signedness s, word
length w, and fraction length f.

Use quantizenumeric when you want to simulate full-precision arithmetic with doubles and then
add quantization at certain steps in your algorithm without casting to fixed-point types.

y = quantizenumeric(x,s,w,f,r) also specifies rounding mode r.

y = quantizenumeric(x,s,w,f,r,o) also specifies overflow mode o.

Examples

Quantize Value of pi

Quantize the value of pi using a signed numeric type with a word length of 16 bits, a fraction length
of 13 bits, and rounding towards positive infinity.

x = pi;
y = quantizenumeric(x,1,16,13,'ceil')

y = 3.1416

Specify a different rounding method. Observe that rounding towards zero affects the quantized value.

x = pi;
y = quantizenumeric(x,1,16,13,'fix')

y = 3.1415

Quantize Numeric Data

This example shows the effect of overflow action on the quantization of numeric data.

Create some data and quantize it with saturation on overflow specified.

4 Functions

4-898

x = linspace(-5,5,100);
y = quantizenumeric(x,1,6,4,'floor','saturate');
plot(x,x,x,y)

Change the overflow action to wrap on overflow and observe how the quantized data changes.

z = quantizenumeric(x,1,6,4,'floor','wrap');
plot(x,x,x,z);

 quantizenumeric

4-899

Input Arguments
x — Value to quantize
scalar | vector | matrix | multidimensional array

Value to quantize, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double
Complex Number Support: Yes

s — Signedness
0 or 'false' | 1 or 'true'

Signedness of quantized value, specified as either 0 or 'false' (unsigned) or 1 or 'true' (signed).
Data Types: double

w — Word length
positive scalar integer

Word length of quantized value, specified as a positive scalar integer.
Data Types: double

f — Fraction length
scalar integer

4 Functions

4-900

Fraction length of quantized value, specified as a scalar integer.
Data Types: double

r — Rounding method
'nearest' (default) | 'ceil' | 'ceiling' | 'convergent' | 'fix' | 'floor' | 'round' |
'zero'

Rounding method to use for quantization, specified as a character vector:

• 'ceil' — Round towards positive infinity (same as 'ceiling')
• 'ceiling' — Round towards positive infinity (same as 'ceil')
• 'convergent'— Convergent rounding
• 'fix'— Round towards zero (same as 'zero')
• 'floor'— Round towards negative infinity
• 'nearest'— Round towards nearest with ties rounding towards positive infinity
• 'round'— Round towards nearest with ties rounding up in absolute value
• 'zero'— Round towards zero (same as 'fix')

Data Types: char

o — Overflow action
'saturate' (default) | 'wrap'

Overflow action to use for quantization, specified as either 'saturate' or 'wrap'.
Data Types: char

Output Arguments
y — Quantized output value
scalar | vector | matrix | multidimensional array

Quantized output value, returned as a scalar, vector, matrix, or multidimensional array. y always has
the same dimensions as x and is always a double.

Tips
• Use quantizenumeric when you want to simulate full-precision arithmetic with doubles and

then add quantization at certain steps in your algorithm without casting to fixed-point types.
• When designing fixed-point algorithms, use cast, zeros, ones, eye, and subsasgn to separate

the core algorithm from data type definitions.

Version History
Introduced in R2016a

Change in default behavior of quantizenumeric for complex input
Behavior changed in R2021b

 quantizenumeric

4-901

In previous releases, quantizenumeric would remove the imaginary part of a complex input x. For
example,

x = complex(pi, exp(1))
y = quantizenumeric(x,1,16,12,'floor')

x =

 3.1416 + 2.7183i

y =

 3.1414

quantizenumeric now preserves the imaginary part, in the same way as other quantize functions
behave for complex inputs. For example,

x = complex(pi, exp(1))
y = quantizenumeric(x,1,16,12,'floor')

x =

 3.1416 + 2.7183i

y =

 3.1414 + 2.7183i

See Also
quantize | quantizer | cast

4 Functions

4-902

quantize
Package: embedded

Quantize numeric data using quantizer object

Syntax
y = quantize(q,x)
[y1,y2,…] = quantize(q,x1,x2,…)

Description
y = quantize(q,x) uses the quantizer object q to quantize x.

• When x is a numeric array, each element of x is quantized. The output y is returned as a built-in
double.

• When x is a cell array, each numeric element of the cell array is quantized. The fields of output y
are returned as built-in doubles.

• When x is a structure, each numeric field of x is quantized. The fields of output y are returned as
built-in doubles.

quantize does not change nonnumeric elements or fields of x, nor does it issue warnings for
nonnumeric values.

The quantizer object states max, min, noverflows, nunderflows, and noperations are updated
during the call to quantize, and running totals are kept until a call to reset is made.

[y1,y2,…] = quantize(q,x1,x2,…) is equivalent to y1 = quantize(q,x1), y2 =
quantize(q,x2), … and so forth.

Examples

Quantize Data to Custom-Precision Floating-Point Type

Use quantize to quantize data to a custom-precision floating-point type.

x = linspace(-15,15,1000);
q = quantizer('float','floor',[6 3]);
range(q)

ans = 1×2

 -14 14

y = quantize(q,x);

Warning: 68 overflow(s) occurred in the fi quantize operation.

plot(x,y); title(tostring(q))

 quantize

4-903

Quantize to Fixed-Point Type

Use quantize to quantize data to a fixed-point type with a wordlength of 6 bits, a fraction length of 2
bits, round to floor, and wrap on overflow.

x = linspace(-15,15,1000);
q = quantizer('fixed','floor','wrap',[6 2])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = wrap
 Format = [6 2]

range(q)

ans = 1×2

 -8.0000 7.7500

y = quantize(q,x);

Warning: 468 overflow(s) occurred in the fi quantize operation.

plot(x,y); title(tostring(q))

4 Functions

4-904

Use quantize to quantize data to a fixed-point type with a wordlength of 3 bits, a fraction length of 2
bits, convergent rounding, and wrap on overflow.

q = quantizer('fixed','convergent','wrap',[3 2]);
x = (-2:eps(q)/4:2)';
y = quantize(q,x);

Warning: 33 overflow(s) occurred in the fi quantize operation.

plot(x,[x,y],'.-'); title(tostring(q)); axis square

 quantize

4-905

Input Arguments
q — Data type properties to use for quantization
quantizer object

Data type properties to use for quantization, specified as a quantizer object.
Example: q = quantizer('fixed','ceil','saturate',[5 4]);

x — Data to quantize
scalar | vector | matrix | multidimensional array | cell array | structure

Data to quantize, specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.

• When x is a numeric array, each element of x is quantized.
• When x is a cell array, each numeric element of the cell array is quantized.
• When x is a structure, each numeric field of x is quantized.

quantize does not change nonnumeric elements or fields of x, nor does it issue warnings for
nonnumeric values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | struct | cell
Complex Number Support: Yes

4 Functions

4-906

x1,x2,… — Data to quantize (as separate elements)
scalar | vector | matrix | multidimensional array | cell array | structure

Data to quantize (as separate elements), specified as a scalar, vector, matrix, multidimensional array,
cell array, or structure.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | struct | cell
Complex Number Support: Yes

Output Arguments
y — Quantized data
scalar | vector | matrix | multidimensional array | cell array | structure

Quantized data, returned as a scalar, vector, matrix, multidimensional array, cell array, or structure.

• When x is a numeric array, the output y is returned as a built-in double.
• When x is a cell array, the fields of output y are returned as built-in doubles.
• When x is a structure, the fields of output y are returned as built-in doubles.

[y1,y2,…] — Quantized data (as separate elements)
scalar | vector | matrix | multidimensional array | cell array | structure

Quantized data (as separate elements), returned as a scalar, vector, matrix, multidimensional array,
cell array, or structure.

Version History
Introduced in R2012b

Change in rounding behavior for quantize function
Behavior changed in R2021b

In previous releases, quantize would round to infinity for values in the range realmax < input <
realmax + 0.5*eps(realmax) and negative infinity for values in the range -realmax > x > -
realmax - 0.5*eps. Starting in R2021b, values in these ranges quantize as follows, depending on
the rounding method used.

Rounding Method Values in the range realmax
< input < realmax +
0.5*eps(realmax) round to

Values in the range -realmax
> x > -realmax - 0.5*eps
round to

floor realmax (for x < realmax +
eps)

-Inf

ceil Inf -realmax (for x > -realmax
- eps)

round realmax -realmax
convergent realmax -realmax
fix realmax (for x < realmax +

eps)
-realmax (for x > -realmax
- eps)

 quantize

4-907

Rounding Method Values in the range realmax
< input < realmax +
0.5*eps(realmax) round to

Values in the range -realmax
> x > -realmax - 0.5*eps
round to

nearest realmax -realmax

See Also
quantizer | reset | unitquantize

4 Functions

4-908

quantizer
Create quantizer object

Description
The quantizer object describes data type properties to use for quantization. After you create a
quantizer object, use quantize to quantize double-precision data. You can use the quantizer
object to simulate custom floating-point data types with arbitrary word length and exponent length.

Creation

Syntax
q = quantizer
q = quantizer(Name,Value)
q = quantizer(Value1,Value2)
q = quantizer(s)
q = quantizer(pn,pv)

Description

q = quantizer creates a quantizer object with properties set to their default values. To use this
object to quantize values, use quantize.

q = quantizer(Name,Value) sets named properties using name-value arguments. You can specify
multiple name-value arguments. Enclose each property name in single quotes.

q = quantizer(Value1,Value2) sets properties using property values. Property values are
unique; you can set the property names by specifying just the property values in the command. When
two values conflict, quantizer sets the last property value in the list.

q = quantizer(s) sets properties named in each field name with the values contained in the
structure s.

q = quantizer(pn,pv) sets the named properties specified in the cell array of character vectors
pn to the corresponding values in the cell array pv.

You can use a combination of name-value string arguments, structures, and name-value cell array
arguments to set property values when creating a quantizer object.

Properties
DataMode — Data type mode
'fixed' (default) | 'ufixed' | 'float' | 'single' | 'double'

Data type mode used in quantization, specified as one of these values:

 quantizer

4-909

• 'fixed' — Signed fixed-point mode.
• 'ufixed' — Unsigned fixed-point mode.
• 'float' — Custom-precision floating-point mode.
• 'single' — Single-precision mode. This mode overrides all other property settings.
• 'double' — Double-precision mode. This mode overrides all other property settings.

Data Types: char | struct | cell

RoundMode — Rounding method to use
'floor' (default) | 'ceil' | 'convergent' | 'fix' | 'nearest' | 'round'

Rounding method to use, specified as one of these values:

• 'ceil' — Round up to the next allowable quantized value.
• 'convergent' — Round to the nearest allowable quantized value. Numbers that are exactly

halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit after rounding would be set to 0.

• 'fix' — Round negative numbers up and positive numbers down to the next allowable quantized
value.

• 'floor' — Round down to the next allowable quantized value.
• 'nearest' — Round to the nearest allowable quantized value. Numbers that are halfway

between the two nearest allowable quantized values are rounded up.
• 'round' — Round to the nearest allowable quantized value. Numbers that are halfway between

the two nearest allowable quantized values are rounded up in absolute value.

Data Types: char | struct | cell

OverflowMode — Action to take on overflow
'saturate' (default) | 'wrap'

Action to take on overflow, specified as one of these values:

• 'saturate' — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers as specified by the data format properties, these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

• 'wrap' — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers as specified by the data format properties, these values are wrapped back
into that range using modular arithmetic relative to the smallest representable number.

This property only applies to fixed-point data type modes. This property becomes a read-only property
when you set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to ±Inf.

Data Types: char | struct | cell

4 Functions

4-910

Format — Data format of quantizer object
[16 15] (default) | [wordlength fractionlength] | [wordlength exponenetlength] | [64
11] | [32 8]

Data format of quantizer object. The interpretation of this property value depends on the value of
the DataMode property.

DataMode Property Value Interpreting the Format Property Values
fixed or ufixed [wordlength fractionlength]

Specify the Format property value as a two-
element row vector, where the first element is the
number of bits for the quantizer object word
length and the second element is the number of
bits for the quantizer object fraction length.

The word length can range from 2 to the limits of
memory on your PC. The fraction length can
range from 0 to one less than the word length.

float [wordlength exponenetlength]

Specify the Format property value as a two-
element row vector, where the first element is the
number of bits for the quantizer object word
length and the second element is the number of
bits for the quantizer object exponent length.

The word length can range from 2 to the limits of
memory on your PC. The fraction length can
range from 0 to 11.

double [64 11]

The read-only Format property value
automatically specifies the word length and
exponent length.

single [32 8]

The read-only Format property value
automatically specifies the word length and
exponent length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Read-Only quantizer Object States

Read-only quantizer object states are updated when quantize is called. To reset these states, use
reset.

max — Maximum value before quantization
scalar

Maximum value before quantization during a call to quantize(q,…) for quantizer object q. This
value is the maximum value recorded over successive calls to quantize.

 quantizer

4-911

Example: max(q)
Example: q.max

min — Minimum value before quantization
scalar

Minimum value before quantization during a call to quantize(q,…) for quantizer object q. This
value is the minimum value recorded over successive calls to quantize.
Example: min(q)
Example: q.min

noverflows — Number of overflows
scalar

Number of overflows during a call to quantize(q,…) for quantizer object q. This value
accumulates over successive calls to quantize. An overflow is defined as a value that when
quantized is outside the range of q.
Example: noverflows(q)
Example: q.noverflows

nunderflows — Number of underflows
scalar

Number of underflows during a call to quantize(q,…) for quantizer object q. This value
accumulates over successive calls to quantize. An underflow is defined as a number that is nonzero
before it is quantized and zero after it is quantized.
Example: nunderflows(q)
Example: q.nunderflows

noperations — Number of data points quantized
scalar

Number of quantization operations during a call to quantize(q,…) for quantizer object q. This
value accumulates over successive calls to quantize.
Example: noperations(q)
Example: q.noperations

Object Functions
quantize Quantize numeric data using quantizer object
unitquantize Quantize numeric data using quantizer object except numbers within eps of +1
wordlength Word length of quantizer object

Examples

Create quantizer Object

Create a quantizer object with default property values.

4 Functions

4-912

q = quantizer

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

To copy a quantizer object, use assignment.

q = quantizer;
r = q;
isequal(q,r)

ans = logical
 1

Use property name-value arguments to set quantizer object properties.

q = quantizer('Mode','fixed','RoundMode','ceil',...
'OverflowMode','saturate','Format',[5 4])

q =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4]

Set quantizer object properties by listing property values only in the command.

q = quantizer('fixed','ceil','saturate',[5 4])

q =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4]

Use a structure to set quantizer object properties.

struct.DataMode = 'fixed';
struct.RoundMode = 'ceil';
struct.OverflowMode = 'saturate';
struct.Format = [5 4];
q = quantizer(struct)

q =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4]

 quantizer

4-913

Use property name and property value cell arrays to set quantizer object properties.

pn = {'Mode','RoundMode','Overflowmode','Format'};
pv = {'fixed','ceil','saturate',[5 4]};
q = quantizer(pn,pv)

q =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4]

Quantize Data with quantizer Objects

Use quantize to quantize data, see how quantization affects quantizer object states, and reset
quantizer object states to their default values using reset.

Construct an example data set and create a quantizer object to specify the quantization parameters
to use when you quantize the data set.

format long g
rng(0,'twister');
x = rng(100);
q = quantizer([16,14])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 14]

Retrieve the values of max and noverflows.

q.max
q.noverflows

ans =

 -1.79769313486232e+308

ans =

 0

Note that max is equal to -realmax, which indicates that the quantizer q is in a reset state.

Use the quantize function to quantize the data set according to the specifications of the quantizer
object.

y = quantize(q,x);

4 Functions

4-914

Warning: 625 overflow(s) occurred in the fi quantize operation.

Check the values of max and noverflows.

q.max
q.noverflows

ans =

 1.99993896484375

ans =

 625

Note that the maximum logged value was taken after quantization, that is, q.max == max(y).

Reset and check the quantizer states.

reset(q)
q.maxlog
q.noverflows

ans =

 -1.79769313486232e+308

ans =

 0

Quantize Data Using the quantizer Object

This example shows how to quantize data using the properties specified by the quantizer object.

First, create some data to quantize.

x = linspace(-15,15,1000);

Quantize to Custom-Precision Floating-Point

Create a quantizer object specifying a custom-precision floating-point data mode with a word
length of 6 bits and an exponent length of 4 bits.

q = quantizer('DataMode','float','Format',[6 4])

q =

 DataMode = float
 RoundMode = floor
 Format = [6 4]

The RoundMode property uses the default setting of 'Floor'.

 quantizer

4-915

Use the quantize function to quantize the data in x using the properties specified by the
quantizer object.

y = quantize(q,x);

Plot y against x to visualize the effect of the specified quantization properties on this data.

plot(x,x,x,y); title(tostring(q));
legend('Input Data','Quantized Data','Location','northwest');

You can use read-only properties of the quantizer object to access more information.

q.noverflows

ans = 0

q.nunderflows

ans = 0

In this example, there were 0 overflows and 0 underflows that occurred in the quantization operation.

Quantize to Fixed-Point

Create a quantizer object specifying a signed fixed-point data mode with a word length of 6 bits, a
fraction length of 1 bit, and wrap on overflow.

q = quantizer([6 1],'wrap')

4 Functions

4-916

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = wrap
 Format = [6 1]

quantizer uses the default DataMode property, 'fixed', and the default RoundMode property,
'Floor'.

Use the quantize function to quantize the data in x using the properties specified by the
quantizer object.

y = quantize(q,x);

Plot y against x to visualize the effect of the specified quantization properties on this data.

plot(x,x,x,y); title(tostring(q));
legend('Input Data','Quantized Data','Location','northwest');

You can use read-only properties of the quantizer object to access more information.

q.noverflows

ans = 0

q.nunderflows

 quantizer

4-917

ans = 17

In this example, there were 0 overflows and 17 underflows that occurred in the quantization
operation.

Version History
Introduced before R2006a

See Also
quantize | reset | unitquantize | assignmentquantizer

4 Functions

4-918

randquant
Generate uniformly distributed, quantized random number using quantizer object

Syntax
randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

Description
randquant(q,n) uses quantizer object q to generate an n-by-n matrix with random entries whose
values cover the range of q when q is a fixed-point quantizer object. When q is a floating-point
quantizer object, randquant populates the n-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n matrix with random entries
whose values cover the range of q when q is a fixed-point quantizer object. When q is a floating-
point quantizer object, randquant populates the m-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an m-by-n-by-p-by ... matrix with
random entries whose values cover the range of q when q is fixed-point quantizer object. When q is
a floating-point quantizer object, randquant populates the matrix with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n matrix with random entries
whose values cover the range of q when q is a fixed-point quantizer object. When q is a floating-
point quantizer object, randquant populates the m-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p m-by-n matrices containing
random entries whose values cover the range of q when q is a fixed-point quantizer object. When q
is a floating-point quantizer object, randquant populates the m-by-n arrays with values covering
the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence randquant generates during
each call is determined by the state of the generator. Because MATLAB resets the random number
generator state at startup, the sequence of random numbers generated by the function remains the
same unless you change the state.

randquant works like rng in most respects.

 randquant

4-919

Examples
q = quantizer([4 3]);
rng('default')
randquant(q,3)

ans =

 0.5 0.625 -0.5
 0.625 0.125 0
 -0.875 -0.875 0.75

Version History
Introduced before R2006a

See Also
quantizer | rand | range | realmax

4 Functions

4-920

range
Numerical range of fi or quantizer object

Syntax
y = range(a)
[min_a,max_a] = range(a)

r = range(q)
[min_q,max_q] = range(q)

Description
Range of fi Object

y = range(a) returns a fi object with the minimum and maximum possible values of the fi object
a. All possible quantized real-world values of a are in the range returned. If a is a complex number,
then all possible values of real(a) and imag(a) are in the range returned.

[min_a,max_a] = range(a) returns the minimum and maximum values of fi object a in separate
output variables.

Range of quantizer Object

r = range(q) returns the two-element row vector r = [min_q max_q] such that for all real x, y
= quantize(q,x) returns y in the range min_q ≤ y ≤ max_q.

[min_q,max_q] = range(q) returns the minimum and maximum values of the range in separate
output variables.

Examples

Range of fi Object

Create a signed fi object with a value of 0, word length of 4, and fraction length of 2.

a = fi(0,true,4,2);

Find the numerical range of the fi object a and return the result in fi object y.

y = range(a)

y =
 -2.0000 1.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 4
 FractionLength: 2

Find the numerical range of the fi object a and return the result in separate output variables.

 range

4-921

[min_a, max_a] = range(a)

min_a =
 -2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 4
 FractionLength: 2

max_a =
 1.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 4
 FractionLength: 2

Note that max_a = 1.75 = 2 - eps(a).

Range of quantizer Object

Create a quantizer object that describes a floating-point data type having a word length of 6 and an
exponent length of 3. Find the numerical range of the quantizer object q.

q = quantizer('float',[6 3]);
r = range(q)

r = 1×2

 -14 14

Create a quantizer object that describes a signed fixed-point data type having a word length of 4,
and fraction length of 2, saturate on overflow, and round to floor. Find the numerical range of the
quantizer object q and return the result in separate output variables.

q = quantizer('fixed',[4 2],'floor');
[min_q, max_q] = range(q)

min_q = -2

max_q = 1.7500

Note that max_q = 1.75 = 2 - eps(q).

Input Arguments
a — fi object
fi object

Input fi object.
Data Types: fi

4 Functions

4-922

Complex Number Support: Yes

q — quantizer object
quantizer object

Input quantizer object.

Output Arguments
y — Numerical range of fi object
fi object

Numerical range of input fi object a, returned as a fi object. y is a two-element row vector
containing the minimum and maximum possible values of fi object a.

min_a — Minimum value of fi object
fi object

Minimum value of input fi object a, returned as a scalar fi object.

max_a — Maximum value of fi object
fi object

Maximum value of input fi object a, returned as a scalar fi object.

r — Numerical range of quantizer object
two-element row vector

Numerical range of quantizer object q, returned as the two-element row vector r = [min_q
max_q] such that for all real x, y = quantize(q,x) returns y in the range min_q ≤ y ≤ max_q.

min_q — Minimum value of quantizer object range
scalar

Minimum value of quantizer object range, returned as a scalar.

max_q — Maximum value of quantizer object range
scalar

Maximum value of quantizer object range, returned as a scalar.

Algorithms
If q is a floating-point quantizer object, min_q = -realmax(q) and max_q = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'), then

min_q = −realmax(q) − eps(q) = −2w−1/2f

max_q = realmax(q) = (2w−1 − 1)/2f

where w is the word length and f is the fraction length.

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'),

 range

4-923

a = 0

b = realmax(q) = (2w − 1)/2f

See realmax for more information.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb |
max | min | realmax | realmin | upperbound

4 Functions

4-924

rdivide, ./
Package: embedded

Right-array division

Syntax
X = A./B
X = rdivide(A,B)

Description
X = A./B performs right-array division by dividing each element of A by the corresponding element
of B.

X = rdivide(A,B) is an alternative way to execute X = A./B.

Examples

Perform Right-Array Division of Two Matrices

This example shows how perform right-array division on a 3-by-3 magic square of fi objects. Each
element of the 3-by-3 magic square is divided by the corresponding element in the 3-by-3 input array
b.

The rdivide function outputs a 3-by-3 array of signed fi objects, each of which has a word length of
16 bits and fraction length of 11 bits.

a = fi(magic(3))

a =
 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

b = int8([3 3 4; 1 2 4 ; 3 1 2])

b = 3x3 int8 matrix

 3 3 4
 1 2 4
 3 1 2

c = a./b

 rdivide, ./

4-925

c =
 2.6665 0.3335 1.5000
 3.0000 2.5000 1.7500
 1.3335 9.0000 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must either
be the same size or have sizes that are compatible. For more information, see “Compatible Array
Sizes for Basic Operations”.

If A is complex, the real and imaginary parts of A are independently divided by B.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

B — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must
either be the same size or have sizes that are compatible. For more information, see “Compatible
Array Sizes for Basic Operations”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
X — Quotient
scalar | vector | matrix | multidimensional array

Quotient, returned as a scalar, vector, matrix, or multidimensional array.

The following table shows the rules used to assign property values to the output of the rdivide
function.

Output Property Rule
Signedness If either input is Signed, then the output is Signed.

If both inputs are Unsigned, then the output is Unsigned.
WordLength The output word length equals the maximum of the input word

lengths.

4 Functions

4-926

Output Property Rule
FractionLength For c = a./b, the fraction length of output c equals the

fraction length of a minus the fraction length of b.

Algorithms
The following table shows the rules the rdivide function uses to handle inputs with different data
types.

Case Rule
Interoperation of fi objects and
built-in integers

Built-in integers are treated as fixed-point objects.

For example, B = int8(2) is treated as an s8,0 fi object.
Interoperation of fi objects and
constants

MATLAB for code generation treats constant integers as fixed-
point objects with the same word length as the fi object and a
fraction length of 0.

Interoperation of mixed data types Similar to all other fi object functions, when inputs a and b
have different data types, the data type with the higher
precedence determines the output data type. The order of
precedence is as follows:

1 ScaledDouble
2 Fixed-point
3 Built-in double
4 Built-in single

When both inputs are fi objects, the only data types that are
allowed to mix are ScaledDouble and Fixed-point.

Version History
Introduced in R2009a

Implicit expansion change affects arguments for operators
Behavior changed in R2022a

Starting in R2022a with the addition of implicit expansion for fi rdivide (./), some combinations
of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 rdivide, ./

4-927

See Also
add | divide | fi | fimath | mrdivide | numerictype | sub | sum

4 Functions

4-928

realmax
Largest positive fixed-point value or quantized number

Syntax
realmax(a)
realmax(q)

Description
realmax(a) is the largest real-world value that can be represented in the data type of fi object a.
Anything larger overflows.

realmax(q) is the largest quantized number that can be represented where q is a quantizer
object. Anything larger overflows.

Examples
q = quantizer('float',[6 3]);
x = realmax(q)

x =

 14

Algorithms
If q is a floating-point quantizer object, the largest positive number, x, is

x = 2Emax ⋅ (2− eps(q))

If q is a signed fixed-point quantizer object, the largest positive number, x, is

x = 2w− 1− 1
2f

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the largest positive
number, x, is

x = 2w− 1
2f

Version History
Introduced before R2006a

 realmax

4-929

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb |
quantizer | range | realmin | upperbound

4 Functions

4-930

realmin
Smallest positive normalized fixed-point value or quantized number

Syntax
x=realmin(a)
x=realmin(q)

Description
x=realmin(a) is the smallest positive real-world value that can be represented in the data type of
fi object a. Anything smaller than x underflows or is an IEEE “denormal” number.

x=realmin(q) is the smallest positive normal quantized number where q is a quantizer object.
Anything smaller than x underflows or is an IEEE “denormal” number.

Examples
q = quantizer('float',[6 3]);
x = realmin(q)

x =

 0.25

Algorithms

If q is a floating-point quantizer object, x = 2Emin where Emin = exponentmin(q) is the minimum
exponent.

If q is a signed or unsigned fixed-point quantizer object, x = 2− f = ε where f is the fraction length.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 realmin

4-931

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb |
range | realmax | upperbound

4 Functions

4-932

reinterpretcast
Convert fixed-point or integer data types without changing underlying data

Syntax
c = reinterpretcast(a,T)

Description
c = reinterpretcast(a,T) converts the input a to the data type specified by numerictype
object T without changing the underlying data. The result is returned in fi object c.

The reinterpretcast function differs from the MATLAB typecast and cast functions in that it
only operates on fi objects and built-in integers, and it does not allow the word length of the input to
change.

Examples

Convert fi Object to New Data Type

In this example, a is a signed fi object with a word length of 8 its and a fraction length of 7 bits. The
reinterpretcast function converts a into an unsigned fi object c with a word length of 8 bits and
a fraction length of 0 bits. The real-world values of a and c are different, but their binary
representations are the same.

a = fi([-1 pi/4],1,8,7)

a =
 -1.0000 0.7891

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

T = numerictype(0,8,0);
c = reinterpretcast(a,T)

c =
 128 101

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

To verify that the underlying data has not changed, compare the binary representations of a and c.

binary_a = bin(a)

binary_a =
'10000000 01100101'

 reinterpretcast

4-933

binary_c = bin(c)

binary_c =
'10000000 01100101'

Input Arguments
a — Input fixed-point or integer array
scalar | vector | matrix | multidimensional array

Input fixed-point or integer array, specified as a scalar, vector, matrix, or multidimensional array.

The word length of inputs a and T must be the same.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fi
Complex Number Support: Yes

T — New data type
numerictype object

New data type, specified as a numerictype object that fully specified a fixed-point data type.

The word length of inputs a and T must be the same.

Version History
Introduced in R2008b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
cast | fi | numerictype | typecast

4 Functions

4-934

removefimath
Remove fimath object from fi object

Syntax
y = removefimath(x)

Description
y = removefimath(x) returns a fi object y with x’s numerictype and value, and no fimath
object attached. You can use this function as y = removefimath(y), which gives you localized
control over the fimath settings. This function also is useful for preventing errors about
embedded.fimath of both operands needing to be equal.

Examples

Remove fimath Object from fi Object

This example shows how to define a fi object, define a fimath object, attach the fimath object to the
fi object and then, remove the attached fimath object.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

f = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = setfimath(a,f)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

b = removefimath(a)

b =
 3.1416

 removefimath

4-935

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Set and Remove fimath for Code Generation

Use the pattern x = setfimath(x,f) and y = removefimath(y) to insulate variables from
fimath settings outside the function. This pattern does not create copies of the data in generated
code.

function y = fixed_point_32bit_KeepLSB_plus_example(a,b)
 f = fimath('OverflowAction','Wrap',...
 'RoundingMethod','Floor',...
 'SumMode','KeepLSB',...
 'SumWordLength',32);
 a = setfimath(a,f);
 b = setfimath(b,f);
 y = a + b;
 y = removefimath(y);
end

If you have the MATLAB Coder product, you can generate C code. This example generates C code on
a computer with 32-bit, native integer type.

a = fi(0,1,16,15);
b = fi(0,1,16,15);
codegen -config:lib fixed_point_32bit_KeepLSB_plus_example...
 -args {a,b} -launchreport

int fixed_point_32bit_KeepLSB_plus_example(short a, short b)
{
 return a + b;
}

Input Arguments
x — Input data
fi object | built-in integer | double | single

Input data, specified as a fi object or built-in integer, from which to copy the data type and value to
the output. x must be a fi object or an integer data type (int8, int16, int32, int64, uint8,
uint16, uint32, or uint64). If x is not a fi object or integer data type, then y = x.

Output Arguments
y — Output fi object
fi object | built-in integer | double | single

Output fi object, returned as a fi object with no fimath object attached. The data type and value of
the output match the input. If the input, x, is not a fi object y = x.

4 Functions

4-936

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | fimath | setfimath

 removefimath

4-937

rescale
Change scaling of fi object

Syntax
b = rescale(a, fractionlength)

b = rescale(a, slope, bias)

b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)

b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description
The rescale function acts similarly to the fi copy function with the following exceptions:

• The fi copy constructor preserves the real-world value, while rescale preserves the stored
integer value.

• rescale does not allow the Signed and WordLength properties to be changed.

Examples
In the following example, fi object a is rescaled to create fi object b. The real-world values of a and
b are different, while their stored integer values are the same:

p = fipref('FimathDisplay','none',...
 'NumericTypeDisplay','short');
a = fi(10, 1, 8, 3)

a =

 10
 numerictype(1,8,3)

b = rescale(a,1)

b =

 40
 numerictype(1,8,1)

stored_integer_a = storedInteger(a);
stored_integer_b = storedInteger(b);
isequal(stored_integer_a,stored_integer_b)

ans =

 logical

 1

4 Functions

4-938

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi

 rescale

4-939

reset
Reset objects to initial conditions

Syntax
reset(P)
reset(q)

Description
reset(P) resets the fipref object P to its initial conditions.

reset(q) resets the following quantizer object properties to their initial conditions:

• minlog
• maxlog
• noverflows
• nunderflows
• noperations

Version History
Introduced before R2006a

See Also
resetlog

4 Functions

4-940

resetglobalfimath
Set global fimath to MATLAB factory default

Syntax
resetglobalfimath

Description
resetglobalfimath sets the global fimath to the MATLAB factory default in your current MATLAB
session. The MATLAB factory default has the following properties:

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Examples
In this example, you create your own fimath object F and set it as the global fimath. Then, using the
resetglobalfimath command, reset the global fimath to the MATLAB factory default setting.

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
globalfimath(F);
F1 = fimath
a = fi(pi)

F1 =

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Now, set the global fimath back to the factory default setting using resetglobalfimath:

resetglobalfimath;
F2 = fimath
a = fi(pi)

F2 =

 resetglobalfimath

4-941

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

You've now set the global fimath in your current MATLAB session back to the factory default setting.
To use the factory default setting of the global fimath in future MATLAB sessions, you must use the
removeglobalfimathpref command.

Alternatives
reset(G) — If G is a handle to the global fimath, reset(G) is equivalent to using the
resetglobalfimath command.

Version History
Introduced in R2010a

See Also
fimath | globalfimath | removeglobalfimathpref

4 Functions

4-942

removeglobalfimathpref
Remove global fimath preference

Syntax
removeglobalfimathpref

Description
removeglobalfimathpref removes your global fimath from the MATLAB preferences. Once you
remove the global fimath from your preferences, you cannot save it to them again. It is best practice
to remove global fimath from the MATLAB preferences so that you start each MATLAB session using
the default fimath settings.

The removeglobalfimathpref function does not change the global fimath for your current
MATLAB session. To revert back to the factory default setting of the global fimath in your current
MATLAB session, use the resetglobalfimath command.

Examples
Example 4.4. Removing Your Global fimath from the MATLAB Preferences

Typing

removeglobalfimathpref;

at the MATLAB command line removes your global fimath from the MATLAB preferences. Using the
removeglobalfimathpref function allows you to:

• Continue using your global fimath in the current MATLAB session
• Use the MATLAB factory default setting of the global fimath in all future MATLAB sessions

To revert back to the MATLAB factory default setting of the global fimath in both your current and
future MATLAB sessions, use both the resetglobalfimath and the removeglobalfimathpref
commands:

resetglobalfimath;
removeglobalfimath;

Version History
Introduced in R2010a

See Also
fimath | globalfimath | resetglobalfimath

 removeglobalfimathpref

4-943

resetlog
Clear log for fi or quantizer object

Syntax
resetlog(a)
resetlog(q)

Description
resetlog(a) clears the log for fi object a.

resetlog(q) clears the log for quantizer object q.

Turn logging on or off by setting the fipref property LoggingMode.

Version History
Introduced before R2006a

See Also
fipref | maxlog | minlog | noperations | noverflows | nunderflows | reset

4 Functions

4-944

round
Round fi object toward nearest integer or round input data using quantizer object

Syntax
y = round(a)
y = round(q,x)

Description
y = round(a) rounds fi object a to the nearest integer. In the case of a tie, round rounds values to
the nearest integer with greater absolute value. The rounded value is returned in fi object y.

y = round(q,x) uses the RoundingMethod and FractionLength settings of quantizer object q
to round the numeric data x, but does not check for overflows during the operation. Input x must be a
built-in numeric variable. Use the cast function to work with fi objects.

Examples

Use round on a Signed fi Object

The following example demonstrates how the round function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = round(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the round function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 round

4-945

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

y = round(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Use quantizer Object to Round Numeric Data

This example shows how to use the rounding method and fraction length specified by quantizer
object q to round the numeric data in x.

q = quantizer('fixed','convergent','wrap',[3 2])

q =

 DataMode = fixed
 RoundMode = convergent
 OverflowMode = wrap
 Format = [3 2]

x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square

4 Functions

4-946

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

• The convergent function rounds ties to the nearest even integer.
• The nearest function rounds ties to the nearest integer toward positive infinity.
• The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]

y =
 -3.5000 -4.0000 -3.0000 -4.0000
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.5000 -2.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 0 1.0000 1.0000
 1.5000 2.0000 2.0000 2.0000
 2.5000 2.0000 3.0000 3.0000
 3.5000 3.9999 3.9999 3.9999

 round

4-947

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

round does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

q — RoundingMethod and FractionLength settings
quantizer object

RoundingMethod and FractionLength settings, specified as a quantizer object.
Example: q = quantizer('fixed', 'round', [3 2]);

x — Input array
scalar | vector | matrix | multidimensional array

Input array to quantize using the quantizer object q, specified as a scalar, vector, matrix, or
multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.
• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that

of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Version History
Introduced before R2006a

4 Functions

4-948

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | floor | nearest | quantize | quantizer

 round

4-949

rsqrt
Reciprocal square root

Syntax
Y = rsqrt(X)

Description
Y = rsqrt(X) returns the reciprocal square root of each element of the half-precision input array,
X.

Note This function supports only half-precision inputs.

Examples

Reciprocal Square Root of Matrix Elements

Create a matrix of half-precision values.

X = half(magic(3))

X =

 3x3 half matrix

 8 1 6
 3 5 7
 4 9 2

Compute the reciprocal square root of each element of X.

y = rsqrt(X)

y =

 3x3 half matrix

 0.3535 1.0000 0.4082
 0.5771 0.4473 0.3779
 0.5000 0.3333 0.7070

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a half-precision numeric scalar, vector, matrix, or multidimensional array

4 Functions

4-950

Data Types: Half

Version History
Introduced in R2018b

See Also
half

 rsqrt

4-951

savefipref
Save fi preferences for next MATLAB session

Syntax
savefipref

Description
savefipref saves the settings of the current fipref object for the next MATLAB session.

Version History
Introduced before R2006a

See Also
fipref

4 Functions

4-952

sdec
Signed decimal representation of stored integer of fi object

Syntax
sdec(a)

Description
Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

sdec(a) returns the stored integer of fi object a in signed decimal format.

Examples
The code

a = fi([-1 1],1,8,7);
sdec(a)

returns

ans =

 '-128 127'

Version History
Introduced before R2006a

See Also
bin | dec | hex | storedInteger | oct

 sdec

4-953

set
Set or display property values for quantizer objects

Syntax
set(q, PropertyValue1, PropertyValue2,...)

set(q,s)

set(q,pn,pv)

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)

q.PropertyName = Value

s = set(q)

Description
set(q, PropertyValue1, PropertyValue2,...) sets the properties of quantizer object q. If
two property values conflict, the last value in the list is the one that is set.

set(q,s), where s is a structure whose field names are object property names, sets the properties
named in each field name with the values contained in the structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings pn to the
corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2', PropertyValue2,...) sets
multiple property values with a single statement.

Note You can use property name/property value string pairs, structures, and property name/property
value cell array pairs in the same call to set.

q.PropertyName = Value uses dot notation to set property PropertyName to Value.

set(q) displays the possible values for all properties of quantizer object q.

s = set(q) returns a structure containing the possible values for the properties of quantizer
object q.

Note The set function operates on quantizer objects. To learn about setting the properties of
other objects, see properties of fi, fimath, fipref, and numerictype objects.

Version History
Introduced before R2006a

4 Functions

4-954

See Also
get

 set

4-955

setfimath
Attach fimath object to fi object

Syntax
Y = setfimath(X,F)

Description
Y = setfimath(X,F) returns a fi object Y with X’s numerictype and value, and attached fimath
object F.

The Y = setfimath(X,F) syntax does not modify the input X. To modify X, use X =
setfimath(X,F). This usage gives you more localized control over the fimath settings without
making a data copy in the generated code.

If you use setfimath in an expression, such as a*setfimath(b,F), the fimath object is used in
the temporary variable, but b is not modified.

This function and the related removefimath function are useful for preventing errors about the
fimath of both operands needing to be equal.

Examples

Attach fimath Object to fi Object

Create a fi object.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Create a fimath object and use setfimath to attach it to the fi object.

f = fimath('OverflowAction','Wrap','RoundingMethod','Floor');
b = setfimath(a,f)

b =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

4 Functions

4-956

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

Set and Remove fimath for Code Generation

This example shows how to use the pattern X = setfimath(X,F) and Y = removefimath(Y) to
insulate variables from fimath settings outside the function. This pattern does not create copies of
the data in generated code.

type fixed_point_32bit_KeepLSB_plus_example.m

function y = fixed_point_32bit_KeepLSB_plus_example(a,b)
f = fimath('RoundingMethod', 'Floor', ...
 'OverflowAction', 'Wrap', ...
 'SumMode', 'KeepLSB', ...
 'SumWordLength', 32)

a = setfimath(a,f);
b = setfimath(b,f);

y = a + b;
y = removefimath(y);
end

a = fi(0,1,16,15);
b = fi(0,1,16,15);

You can use MATLAB® Coder™ to generate C code. This example generates C code on a computer
with a 32-bit native integer type.

codegen -config:lib fixed_point_32bit_KeepLSB_plus_example...
 -args {a,b} -launchreport
Code generation successful: View report

Trace the code in the code generation report.

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

If X is a fi object or integer data type, then the fimath object is applied. Otherwise, the fimath
object is not applied and Y = X.

 setfimath

4-957

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

F — Fixed-point math settings to attach to the output
fimath object

Fixed-point math settings to attach to the output, specified as an existing fimath object. If F is not a
fimath object, an error occurs.

Output Arguments
Y — Output fi object
fi object

Output fi object, returned as a fi object with the same data type and value as the input X and the
attached fimath object F.

If the input X is not a fi object or integer data type, then Y = X.

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | fimath | fixed.fimathLike | removefimath

4 Functions

4-958

sfi
Construct signed fixed-point numeric object

Syntax
a = sfi
a = sfi(v)
a = sfi(v,w)
a = sfi(v,w,f)
a = sfi(v,w,slope,bias)
a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias)

Description
a = sfi is the default constructor and returns a signed fi object with no value, 16-bit word length,
and 15-bit fraction length.

The fi object created by the sfi constructor function has data properties, fimath properties, and
numerictype properties. These properties are described in detail in “fi Object Properties” on page
3-2, “fimath Object Properties” and “numerictype Object Properties”.

The fi object created by the sfi constructor function has no local fimath object. You can attach a
fimath object to that fi object if you do not want to use the default fimath settings. For more
information, see “fimath Object Construction”.

a = sfi(v) returns a signed fixed-point object with value v, 16-bit word length, and best-precision
fraction length. Best-precision is when the fraction length is set automatically to accommodate the
value v for the given word length.

a = sfi(v,w) returns a signed fixed-point object with value v, word length w, and best-precision
fraction length.

a = sfi(v,w,f) returns a signed fixed-point object with value v, word length w, and fraction length
f.

a = sfi(v,w,slope,bias) returns a signed fixed-point object with value v, word length w, slope,
and bias.

a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns a signed fixed-point
object with value v, word length w, slopeadjustmentfactor, fixedexponent, and bias.

Examples

Create a Signed fi Object with Default Values

The default constructor returns a signed fi object with no value, 16-bit word length, and 15-bit
fraction length.

a = sfi

 sfi

4-959

a =

[]

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Create a Signed fi Object with Default Word Length and Best-Precision Fraction Length

Create a signed fi object with the default word length of 16 bits and best-precision fraction length.

a = sfi(pi)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Create a Signed fi Object with Best-Precision Fraction Length

If you omit the argument f, the fraction length is set automatically to the best precision possible.

a = sfi(pi,8)

a =

 3.1563

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 5

Create a Signed fi Object with Specified Word Length and Fraction Length

Create a signed fi object with a value of pi, a word length of 8 bits, and a fraction length of 3 bits.

a = sfi(pi,8,3)

a =

 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-960

 WordLength: 8
 FractionLength: 3

Default fimath properties are associated with a. When a fi object does not have a local fimath
object, no fimath object properties are displayed in its output. To determine whether a fi object has
a local fimath object, use the isfimathlocal function.

isfimathlocal(a)

ans =
 0

A returned value of 0 means the fi object does not have a local fimath object. When the
isfimathlocal function returns a 1, the fi object has a local fimath object.

The value v can also be an array.

a = sfi((magic(3)/10),16,12)

a =

 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Input Arguments
v — Value
scalar | vector | matrix | multi-dimensional array

Value of the signed fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

w — Word length
16 (default) | scalar integer

Word length, in bits, of the signed fi object, specified as a scalar integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

f — Fraction length
15 (default) | scalar integer

Fraction length, in bits, of the signed fi object, specified as a scalar integer. If you do not specify a
fraction length, the signed fi object automatically uses the fraction length that gives the best
precision while avoiding overflow for the specified value and word length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

slope — Slope
scalar integer

 sfi

4-961

Slope of the scaling, specified as a scalar integer. The following equation represents the real-world
value of a slope bias scaled number.

real−worldvalue = (slope × integer) + bias

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bias — Bias
scalar

Bias of the scaling, specified as a scalar. The following equation represents the real-world value of a
slope bias scaled number.

real−worldvalue = (slope × integer) + bias

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

slopeadjustmentfactor — Slope adjustment factor
scalar integer

The slope adjustment factor of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fixedexponent — Fixed exponent
scalar integer

The fixed exponent of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2009b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All properties related to data type must be constant for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-962

See Also
“fi Object Properties” on page 3-2 | “View Fixed-Point Data” | “Cast fi Objects” | fi | fimath |
fipref | isfimathlocal | numerictype | quantizer | ufi

 sfi

4-963

shiftdata
Shift data to operate on specified dimension

Syntax
[x,perm,nshifts] = shiftdata(x,dim)

Description
[x,perm,nshifts] = shiftdata(x,dim) shifts data x to permute dimension dim to the first
column using the same permutation as the built-in filter function. The vector perm returns the
permutation vector that is used.

If dim is missing or empty, then the first non-singleton dimension is shifted to the first column, and
the number of shifts is returned in nshifts.

shiftdata is meant to be used in tandem with unshiftdata, which shifts the data back to its
original shape. These functions are useful for creating functions that work along a certain dimension,
like filter, goertzel, sgolayfilt, and sosfilt.

Examples

Example 1

1 Create a 3-x-3 magic square:

x = fi(magic(3))

x =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

2 Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

x =

 8 3 4
 1 5 9
 6 7 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16

4 Functions

4-964

 FractionLength: 11

perm =

 2 1

nshifts =

 []

The permutation vector, perm, and the number of shifts, nshifts, are returned along with the
shifted matrix, x.

3 Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Example 2

1 Define x as a row vector:

x = 1:5

x =

 1 2 3 4 5
2 Define dim as empty to shift the first non-singleton dimension of x to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x =

 1
 2
 3
 4
 5

perm =

 []

nshifts =

 shiftdata

4-965

 1

x is returned as a column vector, along with perm, the permutation vector, and nshifts, the
number of shifts.

3 Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 1 2 3 4 5

Version History
Introduced in R2008a

See Also
unshiftdata

4 Functions

4-966

showfixptsimerrors
Show overflows from most recent fixed-point simulation

Compatibility

Note showfixptsimerrors will be removed in a future release. Use fxptdlg instead.

Syntax
showfixptsimerrors

Description
The showfixptsimerrors script displays any overflows from the most recent fixed-point simulation.
This information is also visible in the Fixed-Point Tool.

Version History
Introduced before R2006a

See Also
autofixexp | fxptdlg

 showfixptsimerrors

4-967

showfixptsimranges
Show logged maximum values, minimum values, and overflow data from fixed-point simulation

Compatibility

Note showfixptsimranges will be removed in a future release. Use fxptdlg instead.

Syntax
showfixptsimranges
showfixptsimranges(action)

Description
showfixptsimranges displays the logged maximum values, minimum values, and overflow data
from the most recent fixed-point simulation in the MATLAB Command Window.

showfixptsimranges(action) stores the logged maximum values, minimum values, and overflow
data from the most recent fixed-point simulation in the workspace variable FixPtSimRanges. If
action is 'verbose', the logged data also appears in the MATLAB Command Window. If action is
'quiet', no data appears.

Version History
Introduced before R2006a

See Also
autofixexp | fxptdlg

4 Functions

4-968

showInstrumentationResults
Results logged by instrumented, compiled C code function

Syntax
showInstrumentationResults('mex_fcn')
showInstrumentationResults('mex_fcn','-options')
showInstrumentationResults mex_fcn
showInstrumentationResults mex_fcn -options

Description
showInstrumentationResults('mex_fcn') opens the Instrumentation Report Viewer,
showing results from calling the instrumented MEX function mex_fcn.

Hovering over variables and expressions in the report displays the logged information. The logged
information includes minimum and maximum values, proposed fraction or word lengths, percent of
current range, and whether the value is always a whole number, depending on which options you
specify. If you specify to include them in the buildInstrumentedMex function, histograms are also
included. The same information is displayed in a summary table in the Variables tab.

When you call showInstrumentationResults, a file named instrumentation/mex_fcn/html/
printable.html is created. mex_fcn is the name of the corresponding instrumented MEX function.
Selecting this file opens a web-based version of the Instrumentation Report Viewer. To open this
file from within MATLAB, right-click on the file and select Open Outside MATLAB.

showInstrumentationResults returns an error if the instrumented mex_fcn has not yet been
called.

showInstrumentationResults('mex_fcn','-options') specifies options for the
instrumentation results section of the Instrumentation Report Viewer.

showInstrumentationResults mex_fcn and showInstrumentationResults mex_fcn -
options are alternative syntaxes for opening the Instrumentation Report Viewer.

Examples

View Instrumentation Results

Generate an instrumented MEX function, then run a test bench. Use
showInstrumentationResults to open the Instrumentation Report Viewer.

Note The logged results from showInstrumentationResults are an accumulation of all previous
calls to the instrumented MEX function. To clear the log, see clearInstrumentationResults.

Create a temporary directory, then import an example function.

 showInstrumentationResults

4-969

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')
copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...
 'fidemos','fi_m_radix2fft_withscaling.m'),...
 'testfft.m','f')

Define prototype input arguments.

T = numerictype('DataType','ScaledDouble','Scaling',...
 'Unspecified');

n = 128;
x = complex(fi(zeros(n,1),T));
W = coder.Constant(fi(fidemo.fi_radix2twiddles(n),T));

Generate an instrumented MEX function. Use the -o option to specify the MEX function name.

buildInstrumentedMex testfft -o testfft_instrumented...
 -args {x,W} -histogram

Run a test bench to record instrumentation results. showInstrumentationResults to open a
report. View the simulation minimum and maximum values, proposed fraction length, percent of
current range, and whole number status by pausing over a variable in the report.

for i=1:20
 x(:) = 2*rand(size(x))-1;
 y = testfft_instrumented(x);
end

Use showInstrumentationResults to open a report of the instrumentation results. To view the
simulation minimum and maximum values, proposed fraction length, percent of current range, and
whole number status, pause over a variable in the report.

showInstrumentationResults testfft_instrumented...
 -proposeFL -percentSafetyMargin 10

4 Functions

4-970

View the histogram for a variable by selecting the histogram icon in the Variables tab to open
the Numeric Type Scope.

Close the histogram display and then, clear the results log.

clearInstrumentationResults testfft_instrumented

Clear the MEX function, then delete temporary files.

clear testfft_instrumented;
tempdirObj.cleanUp;

Input Arguments
mex_fcn — Instrumented MEX function
MEX function

Instrumented MEX function created using buildInstrumentedMex.

options — Instrumentation results options
-defaultDT T | -nocode | -optimizeWholeNumbers | -percentSafetyMargin N | -
printable | -proposeFL | -proposeWL

Instrumentation results options, specified as:

 showInstrumentationResults

4-971

-defaultDT T Default data type to propose for double or single
data type inputs, where T is either a
numerictype object or one of the following:
'remainFloat' (default), 'double',
'single', 'int8', 'int16', 'int32',
'int64', 'uint8', 'uint16', 'uint32', or
'uint64'.

If you specify an int or uint, the signedness and
word length are that int or uint value and a
fraction length is proposed.

The default is remainFloat, which does not
propose any data types.

-nocode Do not display MATLAB code in the printable
report. Display only the tables of logged
variables. This option only has effect in
combination with the -printable option.

-optimizeWholeNumbers Optimize the word length of variables whose
simulation min/max logs indicate that they are
always whole numbers.

-percentSafetyMargin N Safety margin for simulation min/max, where N is
a percent value.

-printable Create and open a printable HTML report. The
report opens in the system browser.

-proposeFL Propose fraction lengths for specified word
lengths.

-proposeWL Propose word lengths for specified fraction
lengths.

Version History
Introduced in R2011b

Redesigned code generation reports
Behavior changed in R2018a

The code generation report showInstrumentationResults has a new user interface.

Some benefits of the new interface are:

• Improved navigation. For example, if you double-click a variable in the MATLAB code, you see the
variable in the Variables tab.

• Easier to use pop-up displays data type information in the showInstrumentationResults
report. For example, you can pin the pop-up display to the report.

In R2018a, the reports are located in the same folders as in previous releases, but have a different file
format. In previous releases, a report was saved with an HTML format and consisted of many files. In
R2018a, a report is saved as one file with an .mldatx file extension. You can open a file with
an .mldatx extension in MATLAB.

4 Functions

4-972

If you generate a report in R2018a, you cannot open it in a previous release. In R2018a, you can open
reports that you generated in a previous release, but they look and behave as they did in that release.

See Also
fiaccel | clearInstrumentationResults | buildInstrumentedMex | codegen | mex

 showInstrumentationResults

4-973

Simulink.sdi.compareRuns
Package: Simulink.sdi

Compare data in two simulation runs

Syntax
diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value)

Description
diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in the runs
that correspond to runID1 and runID2 and returns the result in the
Simulink.sdi.DiffRunResult object diffResult. For more information about the comparison
algorithm, see “How the Simulation Data Inspector Compares Data”.

diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name=Value) compares the
simulation runs that correspond to runID1 and runID2 using the options specified by one or more
name-value arguments. For more information about comparison options, see “How the Simulation
Data Inspector Compares Data”.

Examples

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run
IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the runs. Specify a global relative
tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

4 Functions

4-974

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 Simulink.sdi.compareRuns

4-975

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

4 Functions

4-976

Configure Comparisons to Check Metadata

You can use the Simulink.sdi.compareRuns function to compare signal data and metadata,
including data type and start and stop times. A single comparison may check for mismatches in one
or more pieces of metadata. When you check for mismatches in signal metadata, the Summary
property of the Simulink.sdi.DiffRunResult object may differ from a basic comparison because
the Status property for a Simulink.sdi.DiffSignalResult object can indicate the metadata
mismatch. You can configure comparisons using the Simulink.sdi.compareRuns function for
imported data and for data logged from a simulation.

This example configures a comparison of runs created from workspace data three ways to show how
the Summary of the DiffSignalResult object can provide specific information about signal
mismatches.

Create Workspace Data

The Simulink.sdi.compareRuns function compares time series data. Create data for a sine wave
to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave
Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector
and attenuate the signal so the two signals are not identical. Cast the signal data to the single data
type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison
algorithm will align these signals for comparison using the name.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi.compareRuns function compares data contained in Simulink.sdi.Run
objects. Use the Simulink.sdi.createRun function to create runs in the Simulation Data
Inspector for the data. The Simulink.sdi.createRun function returns the run ID for each created
run.

runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',sig2_ts);

You can use the Simulink.sdi.compareRuns function to compare the runs. The comparison
algorithm converts the signal data to the double data type and synchronizes the signal data before
computing the difference signal.

basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see the
result of the comparison.

 Simulink.sdi.compareRuns

4-977

basic_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The difference between the signals is out of tolerance.

Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to
match. You can use the Simulink.sdi.compareRuns function to configure the comparison
algorithm to check for and report data type mismatches.

dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The result of the signal comparison is now DataTypeMismatch because the data for the baseline
signal is double data type, while the data for the signal compared to the baseline is single data
type.

Compare Runs and Check for Start and Stop Time Match

You can use the Simulink.sdi.compareRuns function to configure the comparison algorithm to
check whether the aligned signals have the same start and stop times.

startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0

4 Functions

4-978

 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 1
 Unsupported: 0

The signal comparison result is now StartStopMismatch because the signals created in the
workspace have different stop times.

Compare Runs with Alignment Criteria

When you compare runs using the Simulation Data Inspector, you can specify alignment criteria that
determine how signals are paired with each other for comparison. This example compares data from
simulations of a model of an aircraft longitudinal control system. The simulations used a square wave
input. The first simulation used an input filter time constant of 0.1s and the second simulation used
an input filter time constant of 0.5s.

First, load the simulation data from the session file that contains the data for this example.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains data for four simulations. This example compares data from the first two
runs. Access the run IDs for the first two runs loaded from the session file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Before running the comparison, define how you want the Simulation Data Inspector to align the
signals between the runs. This example aligns signals by their name, then by their block path, and
then by their Simulink identifier.

alignMethods = [Simulink.sdi.AlignType.SignalName
 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];

Compare the simulation data in your two runs, using the alignment criteria you specified. The
comparison uses a small time tolerance to account for the effect of differences in the step size used
by the solver on the transition of the square wave input.

diffResults = Simulink.sdi.compareRuns(runIDTs1,runIDTs2,'align',alignMethods,...
 'timetol',0.005);

You can use the getResultByIndex function to access the comparison results for the aligned
signals in the runs you compared. You can use the Count property of the
Simulink.sdi.DiffRunResult object to set up a for loop to check the Status property for each
Simulink.sdi.DiffSignalResult object.

numComparisons = diffResults.count;

for k = 1:numComparisons
 resultAtIdx = getResultByIndex(diffResults,k);

 Simulink.sdi.compareRuns

4-979

 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;

 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);

 displayStr = 'Signals %s and %s: %s \n';
 fprintf(displayStr,sig1.Name,sig2.Name,resultAtIdx.Status);
end

Signals q, rad/sec and q, rad/sec: OutOfTolerance
Signals alpha, rad and alpha, rad: OutOfTolerance
Signals Stick and Stick: WithinTolerance

Input Arguments
runID1 — Baseline run identifier
integer

Numeric identifier for the baseline run in the comparison, specified as a run ID that corresponds to a
run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are
created. You can get the run ID for a run by using the ID property of the Simulink.sdi.Run object,
the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

runID2 — Identifier for run to compare
integer

Numeric identifier for the run to compare, specified as a run ID that corresponds to a run in the
Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You
can get the run ID for a run by using the ID property of the Simulink.sdi.Run object, the
Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: AbsTol=x,Align=alignOpts

Align — Signal alignment options
Simulink.sdi.AlignType scalar | Simulink.sdi.AlignType vector

Signal alignment options, specified as a Simulink.sdi.AlignType scalar or vector. The
Simulink.sdi.AlignType enumeration includes a value for each option available for pairing each
signal in the baseline run with a signal in the comparison run. You can specify one or more alignment
options for the comparison. To use more than one alignment option, specify an array. When you
specify multiple alignment options, the Simulation Data Inspector aligns signals first by the option in
the first element of the array, then by the option in the second element array, and so on. For more
information, see “Signal Alignment”.

4 Functions

4-980

Value Aligns By
Simulink.sdi.AlignType.BlockPath Path to the source block for the signal
Simulink.sdi.AlignType.SID Automatically assigned Simulink identifier
Simulink.sdi.AlignType.SignalName Signal name
Simulink.sdi.AlignType.DataSource Path of the variable in the MATLAB workspace

Example: [Simulink.sdi.AlignType.SignalName,Simulink.sdi.AlignType.BlockPath]
specifies signal alignment by signal name and then by block path.

AbsTol — Global absolute tolerance for comparison
0 (default) | positive-valued scalar

Global absolute tolerance for comparison, specified as a positive-valued scalar.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see “Tolerance Specification”.
Example: 0.5
Data Types: double

RelTol — Global relative tolerance for comparison
0 (default) | positive-valued scalar

Global relative tolerance for comparison, specified as a positive-valued scalar. The relative tolerance
is expressed as a fractional multiplier. For example, 0.1 specifies a 10 percent tolerance.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about how tolerances are used in comparisons, see “Tolerance Specification”.
Example: 0.1
Data Types: double

TimeTol — Global time tolerance for comparison
0 (default) | positive-valued scalar

Global time tolerance for comparison, specified as a positive-valued scalar, using units of seconds.

Global tolerances apply to all signals in the run comparison. To use a different tolerance value for a
signal in the comparison, specify the tolerance you want to use on the Simulink.sdi.Signal
object in the baseline run and set the OverrideGlobalTol property for that signal to true.

For more information about tolerances in the Simulation Data Inspector, see “Tolerance
Specification”.
Example: 0.2
Data Types: double

 Simulink.sdi.compareRuns

4-981

DataType — Comparison sensitivity to signal data types
"MustMatch"

Comparison sensitivity to signal data types, specified as "MustMatch". Specify
DataType="MustMatch" when you want the comparison to be sensitive to numeric data type
mismatches in compared signals.

When signal data types do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

The Simulink.sdi.compareRuns function compares the data types for aligned signals before
synchronizing and comparing the signal data. When you do not specify this name-value argument, the
comparison checks data types only to detect a comparison between string and numeric data. For a
comparison between string and numeric data, results are not computed, and the status for the result
is DataTypeMismatch. For aligned signals that have different numeric data types, the comparison
computes results.

When you configure the comparison to stop on the first mismatch, a data type mismatch stops the
comparison. A stopped comparison may not compute results for all signals.

Time — Comparison sensitivity to signal time vectors
"MustMatch"

Comparison sensitivity to signal time vectors, specified as "MustMatch". Specify
Time="MustMatch" when you want the comparison to be sensitive to mismatches in the time
vectors of compared signals. When you specify this name-value argument, the algorithm compares
the time vectors of aligned signals before synchronizing and comparing the signal data.

When the time vectors for signals do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value
argument. For comparisons that are not sensitive to differences in the time vectors, the comparison
algorithm synchronizes the signals prior to the comparison. For more information about how
synchronization works, see “How the Simulation Data Inspector Compares Data”.

When you specify that time vectors must match and configure the comparison to stop on the first
mismatch, a time vector mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

StartStop — Comparison sensitivity to signal start and stop times
"MustMatch"

Comparison sensitivity to signal start and stop times, specified as "MustMatch". Specify
StartStop="MustMatch" when you want the comparison to be sensitive to mismatches in signal
start and stop times. When you specify this name-value argument, the algorithm compares the start
and stop times for aligned signals before synchronizing and comparing the signal data.

When the start times and stop times do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

When you specify that start and stop times must match and configure the comparison to stop on the
first mismatch, a start or stop time mismatch stops the comparison. A stopped comparison may not
compute results for all signals.

4 Functions

4-982

StopOnFirstMismatch — Whether comparison stops on first detected mismatch
"Metadata" | "Any"

Whether comparison stops on first detected mismatch without comparing remaining signals, specified
as "Metadata" or "Any". A stopped comparison may not compute results for all signals, and can
return a mismatched result more quickly.

• Metadata — A mismatch in metadata for aligned signals causes the comparison to stop. Metadata
comparisons happen before comparing signal data.

The Simulation Data Inspector always aligns signals and compares signal units. When you
configure the comparison to stop on the first mismatch, an unaligned signal or mismatched units
always causes the comparison to stop. You can specify additional name-value arguments to
configure the comparison to check and stop on the first mismatch for additional metadata, such as
signal data type, start and stop times, and time vectors.

• Any — A mismatch in metadata or signal data for aligned signals causes the comparison to stop.

ExpandChannels — Whether to compute comparison results for each channel in
multidimensional signals
true or 1 (default) | false or 0

Whether to compute comparison results for each channel in multidimensional signals, specified as
logical true (1) or false (0).

• true or 1 — Comparison expands multidimensional signals represented as a single signal with
nonscalar sample values to a set of signals with scalar sample values and computes a comparison
result for each of these signals.

The representation of the multidimensional signal in the Simulation Data Inspector as a single
signal with nonscalar sample values does not change.

• false or 0 — Comparison does not compute results for multidimensional signals represented as a
single signal with nonscalar sample values.

Output Arguments
diffResult — Comparison results
Simulink.sdi.DiffRunResult object

Comparison results, returned as a Simulink.sdi.DiffRunResult object.

Limitations

The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

Version History
Introduced in R2011b

 Simulink.sdi.compareRuns

4-983

See Also
Functions
Simulink.sdi.compareSignals | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.getRunCount | getResultByIndex

Objects
Simulink.sdi.DiffRunResult | Simulink.sdi.DiffSignalResult

Topics
“Inspect and Compare Data Programmatically”
“Compare Simulation Data”
“How the Simulation Data Inspector Compares Data”

4 Functions

4-984

sin
Sine of fixed-point values

Syntax
y = sin(theta)

Description
y = sin(theta) returns the sine of fi input theta using a lookup table algorithm.

Examples

Calculate the Sine of Fixed-Point Input Values

theta = fi([-pi/2,-pi/3,-pi/4,0,pi/4,pi/3,pi/2]);
y = sin(theta)

y =
 -1.0000 -0.8661 -0.7072 0 0.7070 0.8659 0.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Input Arguments
theta — Input angle in radians
real-valued fi object

Input angle in radians, specified as a real-valued fi object. theta can be a signed or unsigned scalar,
vector, matrix, or multidimensional array containing the fixed-point angle values in radians. Valid data
types of theta are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Data Types: fi

Output Arguments
y — Sine of input angle
scalar | vector | matrix | multidimensional array

 sin

4-985

Sine of input angle, returned as a scalar, vector, matrix, or multidimensional array. y is a signed,
fixed-point number in the range [-1,1].

If the DataTypeMode property of theta is Fixed-point: binary point scaling, then y is
returned as a signed fixed-point data type with binary point scaling, a 16-bit word length, and a 15-bit
fraction length (numerictype(1,16,15)). If theta is a fi single, fi double, or fi scaled double
with binary point scaling, then y is returned with the same data type as theta.

More About
Sine

The sine of angle Θ is defined as

sin(θ) = eiθ− e−iθ

2i

Algorithms
The sin function computes the sine of fixed-point input using an 8-bit lookup table as follows:

1 Perform a modulo 2π, so the input is in the range [0,2π) radians.
2 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the full uint16

range.
4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values, using nearest-

neighbor linear interpolation.

fimath Propagation Rules

The sin function ignores and discards any fimath attached to the input, theta. The output, y, is
always associated with the default fimath.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sin | angle | cos | atan2 | cordicsin | cordiccos

Topics
“Calculate Fixed-Point Sine and Cosine”

4 Functions

4-986

sign
Perform sign function (signum function) on array

Syntax
c = sign(a)

Description
c = sign(a) returns an array c the same size as a, where each element of c is:

• 1 if the corresponding element of a is greater than 0.
• 0 if the corresponding element of a is 0.
• -1 if the corresponding element of a is less than 0.

The elements of c are of data type int8.

Examples

Find Sign Function

Find the sign function of a fi object.

sign(fi(2))

ans =

 int8

 1

Find the sign function of a signed fi vector.

v = fi([-11 0 1.5],1);
sign(v)

ans =

 1×3 int8 row vector

 -1 0 1

Find the sign function of an unsigned fi vector.

u = fi([-11 0 1.5],0);
sign(u)

ans =

 1×3 int8 row vector

 sign

4-987

 0 0 1

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a fi scalar, vector, matrix, or multidimensional array.

sign does not support complex fi inputs.
Data Types: fi

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
abs | complex | conj

4 Functions

4-988

single
Single-precision floating-point real-world value of fi object

Syntax
single(a)

Description
Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

single(a) returns the real-world value of a fi object in single-precision floating point.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm
to insulate functions that do not support fixed-point data types. The automated conversion tool
does not support these casts. Instead of using casts, supply a replacement function. For more
information, see “Function Replacements”.

See Also
double

 single

4-989

sort
Sort elements of real-valued fi object in ascending or descending order

Syntax
B = sort(A)
B = sort(A,dim)
B = sort(___ ,direction)
[B,I] = sort(___)

Description
B = sort(A) sorts the elements of the real-valued fi object A in ascending order.

• If A is a vector, then sort(A) sorts the vector elements.
• If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each column.
• If A is a multidimensional array, then sort(A) operates along the first array dimension whose size

does not equal 1, treating the elements as vectors.

B = sort(A,dim) returns the sorted elements of A along dimension dim.

B = sort(___ ,direction) returns sorted elements of A in the order specified by direction.

[B,I] = sort(___) also returns a collection of index vectors for any of the previous syntaxes.

Examples

Sort fi Vector in Ascending Order

Create a fi row vector and sort its elements in ascending order.

A = fi([9 0 -7 5 3 8 -10 4 2]);
B = sort(A)

B =

 -10 -7 0 2 3 4 5 8 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Sort fi Matrix Columns in Descending Order

Create a matrix of fi values and sort its columns in descending order.

4 Functions

4-990

A = fi([10 -12 4 8; 6 -9 8 0; 2 3 11 -2; 1 1 9 3]);
B = sort(A,'descend')

B =

 10 3 11 8
 6 1 9 3
 2 -9 8 0
 1 -12 4 -2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Sort and Index a fi Matrix

Create a matrix of fi values and sort each of its rows in ascending order.

A = fi([3 6 5; 7 -2 4; 1 0 -9]);
[B,I] = sort(A,2)

B =

 3 5 6
 -2 4 7
 -9 0 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

I =

 3×3 int32 matrix

 1 3 2
 2 3 1
 3 2 1

B contains the sorted values and I is a collection of 1-by-3 row index vectors describing the
rearrangement of each row of A.

Input Arguments
A — Input array
real-valued fi object

Input array, specified as a real-valued fi object.

• If A is a scalar, then sort(A) returns A.
• If A is a vector, then sort(A) sorts the vector elements.
• If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each column.

 sort

4-991

• If A is a multidimensional array, then sort(A) operates along the first array dimension whose size
does not equal 1, treating the elements as vectors.

sort does not support complex fixed-point inputs, or pairs of Name,Value arguments. Refer to the
MATLAB sort reference page for more information.
Data Types: fi

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

The dimensions argument must be a built-in data type; it cannot be a fi object.
Example: Consider a matrix A. sort(A,1) sorts the elements in the columns of A.
Example: sort(A,2) sorts the elements in the rows of A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

direction — Sorting direction
'ascend' (default) | 'descend'

Sorting direction, specified as 'ascend' or 'descend'.
Data Types: char

Output Arguments
B — Sorted array
scalar | vector | matrix | multidimensional array

Sorted array, returned as a scalar, vector, matrix, or multidimensional array. B is the same size and
type as A. The order of the elements in B preserves the order of any equal elements in A.

I — Sort index
scalar | vector | matrix | multidimensional array

Sort index, returned as a scalar, vector, matrix, or multidimensional array. I is the same size as A. The
index vectors are oriented along the same dimension that sort operates on.
Example: If A is a vector, then B = A(I).
Example: If A is a 2-by-3 matrix, then [B,I] = sort(A,2) sorts the elements in each row of A. The
output I is a collection of 1-by-3 row index vectors describing the rearrangement of each row of A.

Version History
Introduced in R2008b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-992

Usage notes and limitations:

• The dimensions argument must be a built-in type; it cannot be a fi object.

See Also
sort

Topics
“Reshaping and Rearranging Arrays”

 sort

4-993

sqrt
Square root of fi object

Syntax
c = sqrt(a)
c = sqrt(a,T)
c = sqrt(a,F)
c = sqrt(a,T,F)

Description
This function computes the square root of a fi object using a bisection algorithm.

c = sqrt(a) returns the square root of fi object a. Intermediate quantities are calculated using
the fimath associated with a. The numerictype object of c is determined automatically using an
“Internal Rule” on page 4-995.

c = sqrt(a,T) returns the square root of fi object a with numerictype object T. Intermediate
quantities are calculated using the fimath associated with a. See “Data Type Propagation Rules” on
page 4-995.

c = sqrt(a,F) returns the square root of fi object a. Intermediate quantities are calculated using
the fimath object F. The numerictype object of c is determined automatically using an “Internal
Rule” on page 4-995.

When a is a built-in double or single data type, this syntax is equivalent to c = sqrt(a) and the
fimath object F is ignored.

c = sqrt(a,T,F) returns the square root fi object a with numerictype object T. Intermediate
quantities are also calculated using the fimath object F. See “Data Type Propagation Rules” on page
4-995.

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as a scalar, vector, matrix, or multidimensional array.

sqrt does not support complex, negative-valued, or [Slope Bias] inputs.
Example: a = fi(pi,1,8,3)
Data Types: fi

T — numerictype of output
numerictype object

numerictype of the output c, specified as a numerictype object.
Example: T = numerictype(1,32,30)

4 Functions

4-994

F — fimath used for calculations of intermediate quantities
fimath object

fimath used for calculations of intermediate quantities, specified as a fimath object.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

Algorithms
Internal Rule

For syntaxes where the numerictype object of the output is not specified as an input to the sqrt
function, it is automatically calculated according to the following internal rule:

signc = signa

WLc = ceil(
WLa

2)

FLc = WLc− ceil(
WLa− FLa

2)

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the sqrt function follows the data type
propagation rules listed in the following table. In general, these rules can be summarized as “floating-
point data types are propagated.” This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Object a Data Type of numerictype
object T

Data Type of Output c

Built-in double Any Built-in double
Built-in single Any Built-in single
fi Fixed fi Fixed Data type of numerictype

object T
fi ScaledDouble fi Fixed ScaledDouble with properties

of numerictype object T
fi double fi Fixed fi double
fi single fi Fixed fi single
Any fi data type fi double fi double
Any fi data type fi single fi single

Version History
Introduced in R2006b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 sqrt

4-995

Usage notes and limitations:

• Complex and [Slope Bias] inputs error out.
• Negative inputs yield a 0 result for generated C code.
• Negative inputs error out for MATLAB Executable (MEX) code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | numerictype

4 Functions

4-996

storedInteger
Package: embedded

Stored integer value of fi object

Syntax
x = storedInteger(a)

Description
x = storedInteger(a) returns the stored integer value of fi object a.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

Stored Integer Value of fi Objects

This example shows how to find the stored integer values for two fi objects. Use the class function
to display the stored integer data types.

x = fi([0.2 0.3 0.5 0.3 0.2]);
in_x = storedInteger(x);
c1 = class(in_x)

c1 =
'int16'

numtp = numerictype('WordLength',17);
x_n = fi([0.2 0.3 0.5 0.3 0.2],'numerictype',numtp);
in_xn = storedInteger(x_n);
c2 = class(in_xn)

c2 =
'int32'

Input Arguments
a — Fixed-point numeric object
fi object

 storedInteger

4-997

Fixed-point numeric object from which you want to get the stored integer value, specified as a fi
object.
Data Types: fi
Complex Number Support: Yes

Output Arguments
x — Stored integer value of fi object
integer

Stored integer value of fi object, returned as an integer.

The returned stored integer value is the smallest built-in integer data type in which the stored integer
value f fits. Signed fi values return stored integers of type int8, int16, int32, or int64.
Unsigned fi values return stored integers of type uint8, uint16, uint32, or uint64. The return
type is determined based on the stored integer word length (WL):

• WL ≤ 8 bits, the return type is int8 or uint8.
• 8 bits < WL ≤ 16 bits, the return type is int16 or uint16.
• 16 bits < WL ≤ 32 bits, the return type is int32 or uint32.
• 32 bits < WL ≤ 64 bits, the return type is int64 or uint64.

Tips
When the word length is greater than 64 bits, the storedInteger function errors. For bit-true
integer representation of very large word lengths, use bin, oct, dec, hex, or sdec.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | storedIntegerToDouble

4 Functions

4-998

storedIntegerToDouble
Package: embedded

Convert stored integer value of fi object to built-in double value

Syntax
d = storedIntegerToDouble(a)

Description
d = storedIntegerToDouble(a) converts the stored integer value of fi object, a, to a double-
precision floating-point value, d.

If the input word length is greater than 52 bits, a quantization error may occur. Inf is returned if the
stored integer value of the input fi object is outside the representable range of built-in double
values.

Examples

Convert Stored Integer Value of fi Object to Double-Precision Value

Convert the stored integer of a fi value to a double-precision value. Use the class function to verify
that the stored integer is a double-precision value.

a = fi(pi,1,16,12)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

d = storedIntegerToDouble(a)

d = 12868

dtype = class(d)

dtype =
'double'

Input Arguments
a — Value to convert
fi object

Value to convert, specified as a fi object.

 storedIntegerToDouble

4-999

Data Types: fi
Complex Number Support: Yes

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
storedInteger | fi | class

4 Functions

4-1000

stripscaling
Stored integer of fi object

Syntax
I = stripscaling(a)

Description
I = stripscaling(a) returns the stored integer of a as a fi object with binary-point scaling, zero
fraction length and the same word length and sign as a.

Examples
stripscaling is useful for converting the value of a fi object to its stored integer value.

fipref('NumericTypeDisplay','short', ...
 'FimathDisplay','none');
format long g
a = fi(0.1,true,48,47)

a =

 0.100000000000001
 numerictype(1,48,47)

b = stripscaling(a)

b =

 14073748835533
 numerictype(1,48,0)

bin(a)

ans =

 '000011001100110011001100110011001100110011001101'

bin(b)

ans =

 '000011001100110011001100110011001100110011001101'

Notice that the stored integer values of a and b are identical, while their real-world values are
different.

Version History
Introduced before R2006a

 stripscaling

4-1001

svd
Package: embedded

Fixed-point singular value decomposition

Syntax
S = svd(A)
[U,S,V] = svd(A)
[U,S,V] = svd(A,0)
[U,S,V] = svd(A,'econ')
[___] = svd(___ ,sigmaForm)

Description
S = svd(A) returns the singular values of matrix A in descending order.

[U,S,V] = svd(A) performs a singular value decomposition of matrix A, such that A = U*S*V'. S
is a diagonal matrix of the same dimension as A with nonnegative diagonal elements in decreasing
order. U and V are unitary matrices.

[U,S,V] = svd(A,0) produces an economy-size decomposition of A. If A is an m-by-n matrix, then:

• m > n — Only the first n columns of U are computed, and S is n-by-n.
• m <= n — svd(A,0) is equivalent to svd(A).

[U,S,V] = svd(A,'econ') produces a different economy-size decomposition of A. If A is an m-by-n
matrix, then:

• m >= n — svd(A,'econ') is equivalent to svd(A,0).
• m < n — Only the first m columns of V are computed, and S is m-by-m.

[___] = svd(___ ,sigmaForm) optionally specifies the output format for the singular values. You
can use this option with any of the previous input or output combinations. Specify 'vector' to
return the singular values as a column vector. Specify 'matrix' to return the singular values in a
diagonal matrix.

Examples

Singular Values of Fixed-Point Matrix

Compute the singular values of a full rank fixed-point matrix.

A = fi([1 0 1; -1 -2 0; 0 1 -1])

A =

 1 0 1
 -1 -2 0

4 Functions

4-1002

 0 1 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

Compute the singular values.

s = svd(A)

s =

 2.4606
 1.6995
 0.2391

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

The singular values are returned in a column vector in decreasing order.

Fixed-Point Singular Value Decomposition

Find the singular value decomposition of the rectangular fixed-point matrix A.

Define the rectangular matrix A.

m = 4;
n = 2;
A = fi(10*randn(m,n))

A =

 5.5278 6.6016
 10.3911 -0.6787
 -11.1763 -1.9521
 12.6064 -2.1763

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Find the singular value decomposition of the fixed-point matrix A.

[U,S,V] = svd(A)

U =

 0.2885 0.8724 -0.2790 0.2789
 0.5016 -0.1879 -0.6306 -0.5617
 -0.5478 -0.1725 -0.7243 0.3816
 0.6043 -0.4169 0 0.6790

 svd

4-1003

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 20.5887 0
 0 7.1458
 0 0
 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

V =

 0.9979 -0.0640
 0.0640 0.9979

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Confirm the relation A = U*S*V'.

U*S*V'

ans =

 5.5279 6.6016
 10.3912 -0.6788
 -11.1763 -1.9521
 12.6065 -2.1764

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 99
 FractionLength: 76

Economy-Size Decomposition

Calculate the complete and economy-size decomposition of a rectangular fixed-point matrix.

Define the fixed-point matrix A.

m = 5;
n = 3;
A = fi(10*randn(m,n));

A =

 15.3262 -10.8906 0.8594
 -7.6963 0.3252 -14.9160

4 Functions

4-1004

 3.7139 5.5254 -7.4229
 -2.2559 11.0059 -10.6162
 11.1738 15.4424 23.5049

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Compute the complete decomposition.

[U,S,V] = svd(A)

U =

 0.1418 -0.7180 0.6097 0.2442 0.1816
 -0.4692 0.1854 0.0942 -0.0545 0.8565
 -0.0998 0.1822 0.5982 -0.7456 -0.2074
 -0.2180 0.5203 0.4894 0.6176 -0.2466
 0.8380 0.3824 0.1481 0 0.3600

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 34.5589 0 0
 0 22.3047 0
 0 0 14.0854
 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

V =

 0.4418 -0.3881 0.8088
 0.2400 0.9199 0.3103
 0.8644 -0.0570 -0.4996

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Compute the economy-size decomposition.

[U,S,V] = fixed.svd(A,'econ')

U =

 0.6482 0.5096 0.5333
 0.4510 0.2666 -0.7651
 -0.0660 -0.1794 0.3477

 svd

4-1005

 0.5576 -0.5920 0.0698
 -0.2473 0.5353 0.0671

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 27.5262 0 0
 0 16.7103 0
 0 0 12.5909

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

V =

 0.2309 -0.6075 -0.7600
 -0.5933 -0.7070 0.3849
 0.7711 -0.3620 0.5237

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Use the expected result A = U*S*V' to determine the relative error of the calculation.

relativeError = norm(double(U*S*V'-A))/norm(double(A))

relativeError =

 1.3377e-05

Control Singular Value Output Format

Create a 3-by-3 magic square matrix and calculate the singular value decomposition. By default, the
fixed.svd function returns the singular values in a diagonal matrix when you specify multiple
outputs.

Define the matrix A.

m = 3; n = m;
A = fi(magic(m))

A =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-1006

 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Compute the singular value decomposition.

[U,S,V] = svd(A)

U =

 0.5774 -0.7071 -0.4082
 0.5773 0.0000 0.8165
 0.5773 0.7071 -0.4083

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 15.0000 0 0
 0 6.9282 0
 0 0 3.4640

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

V =

 0.5774 -0.4083 -0.7071
 0.5773 0.8165 -0.0000
 0.5773 -0.4082 0.7071

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Specify the 'vector' option to return the singular values in a column vector.

[U,S,V] = svd(A,'vector')

U =

 0.5774 -0.7071 -0.4082
 0.5773 0.0000 0.8165
 0.5773 0.7071 -0.4083

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

S =

 15.0000

 svd

4-1007

 6.9282
 3.4640

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

V =

 0.5774 -0.4083 -0.7071
 0.5773 0.8165 -0.0000
 0.5773 -0.4082 0.7071

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

If you specify one output argument, such as S = svd(A), then svd switches behavior to return the
singular values in a column vector by default. In that case, you can specify the 'matrix' option to
return the singular values as a diagonal matrix.

Input Arguments
A — Input matrix
matrix

Input matrix, specified as a matrix. A can be a fixed-point or scaled double fi data type.
Data Types: fi
Complex Number Support: Yes

sigmaForm — Output format of singular values
'vector' | 'matrix'

Output format of singular values, specified as one of these values:

• 'vector' — S is a column vector. This behavior is the default when you specify one output, S =
svd(A).

• 'matrix' — S is a diagonal matrix. This behavior is the default when you specify multiple
outputs, [U,S,V] = svd(A).

Example: [U,S,V] = svd(X,'vector') returns S as a column vector instead of a diagonal matrix.
Example: S = svd(X,'matrix') returns S as a diagonal matrix instead of a column vector.
Data Types: char | string

Output Arguments
U — Left singular vectors
columns of matrix

Left singular vectors, returned as the columns of a matrix.

4 Functions

4-1008

The fixed-point data type is adjusted to avoid overflow and increase precision. For more information,
see “Algorithms” on page 4-1009.

S — Singular values
diagonal matrix | column vector

Singular values, returned as a diagonal matrix or column vector. The singular values are nonnegative
and returned in decreasing order.

The fixed-point data type is adjusted to avoid overflow and increase precision. For more information,
see “Algorithms” on page 4-1009.

V — Right singular vectors
matrix

Right singular vectors, returned as the columns of a matrix.

The fixed-point data type is adjusted to avoid overflow and increase precision. For more information,
see “Algorithms” on page 4-1009.

Tips
To have full control over the fixed-point types, use the fixed.svd function.

Algorithms
The svd function adjusts the data type of a fixed-point input to avoid overflow and increase precision.
The fraction length of the singular vectors S is adjusted to a minimum of 16, and the word length is
increased to avoid overflow with a minimum of 32. The word length of the left and right singular
vectors U and V are the same as the word length of S. The fraction length of U and V is two less than
the word length.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

svd generates efficient, purely integer C code.

See Also
fixed.svd | svd

Topics
“Singular Values”

 svd

4-1009

sub
Subtract two fi objects using fimath object

Syntax
c = sub(F,a,b)

Description
c = sub(F,a,b) subtracts fi objects a and b using fimath object F. This is helpful in cases when
you want to override the fimath objects of a and b, or if the fimath properties associated with a
and b are different. The output of fi object c has no local fimath.

Examples

Subtract Two fi Objects Overriding Their fimath

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',16);
c = sub(F,a,b)

c =
 0.4233

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

c is the 32-bit difference of a and b, with fraction length 16.

Input Arguments
F — fimath
fimath object

fimath object to use for subtraction, specified as a fimath object.

a,b — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays.

a and b must both be fi objects and must have the same dimensions unless one is a scalar. If either a
or b is scalar, then c has the dimensions of the nonscalar object.
Data Types: fi

4 Functions

4-1010

Complex Number Support: Yes

Algorithms
C = sub(F,A,B)

or

C = F.sub(A,B)

is equivalent to

A.fimath = F;
B.fimath = F;
C = A - B;

except that the fimath properties of A and B are not modified when you use the functional form.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the syntax F.sub(a,b). You must use the syntax sub(F,a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
add | divide | fi | fimath | mpy | mrdivide | numerictype | rdivide

 sub

4-1011

subsasgn
Package: embedded

Subscripted assignment

Syntax
A = subsasgn(A,S,B)

Description
A = subsasgn(A,S,B) is called for the syntax A(i) = B, A{i} = B, or A.i = B when A is an
object.

MATLAB uses the built-in subsasgn function to interpret indexed assignment statements:

• A(i) = B assigns the values of B into the elements of A specified by the subscript vector i. B
must have the same number of elements as i or be a scalar value.

• A(i,j) = B assigns the values of B into the elements of the rectangular submatrix of A specified
by the subscript vectors i and j. B must have length(i) rows and length(j) columns.

• A colon used as a subscript, as in A(i,:) = B or A(:,i) = B, indicates the entire column or
row.

• For multidimensional arrays, A(i,j,k,…) = B assigns B to the specified elements of A. B must
be length(i)-by-length(j)-by-length(k)-… or be shiftable to that size by adding or removing
singleton dimensions.

Tip You can use fixed-point assignment, for example, A(:) = B, to cast a value with one numeric
type into another numeric type. This subscripted assignment statement assigns the value of B into A
while keeping the numeric type of A. Subscripted assignment works the same way for integer data
types.

Note You must call subsasgn with an output argument. subsasgn does not modify the object used
in the indexing operation (the first argument). You must assign the output to obtain a modified object.

Examples

Cast 16-bit Number into 8-bit Number

For fi objects a and b, there is a difference between

a = b

and

a(:) = b.

4 Functions

4-1012

In the first case, a = b replaces a with b while a assumes the value, numeric type, and fimath
object associated with b. In the second case, a(:) = b assigns the value of b into a while keeping
the numeric type of a. You can use this to cast a value with one numerictype object into another
numerictype object.

For example, cast a 16-bit number into an 8-bit number.

a = fi(0, 1, 8, 7)

a =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

b = fi(pi/4, 1, 16, 15)

b =
 0.7854

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

a(:) = b

a =
 0.7891

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Emulate 40-bit Accumulator of a DSP

Define the variable acc to emulate a 40-bit accumulator of a DSP. The products and sums in this
example are assigned into the accumulator using the syntax acc(1)=.... Assigning values into the
accumulator is like storing a value in a register. To begin, turn on the logging mode and define the
variables. In this example, n is the number of points in the input data x and output data y, and t
represents time. The remaining variables are all defined as fi objects. The input data x is a high-
frequency sinusoid added to a low-frequency sinusoid.

fipref('LoggingMode', 'on');
n = 100;
t = (0:n-1)/n;
x = fi(sin(2*pi*t) + 0.2*cos(2*pi*50*t));
b = fi([.5 .5]);
y = zeros(size(x),'like',x);
acc = fi(0.0, true, 40, 30);

 subsasgn

4-1013

The following loop takes a running average of the input x using the coefficients in b . Notice that acc
is assigned into acc(1)=... versus using acc=..., which would overwrite and change the data
type of acc .

for k = 2:n
 acc(1) = b(1)*x(k);
 acc(1) = acc + b(2)*x(k-1);
 y(k) = acc;
end

By averaging every other sample, the loop shown above passes the low-frequency sinusoid through
and attenuates the high-frequency sinusoid.

plot(t,x,'x-',t,y,'o-')
legend('input data x','output data y')

The log report shows the minimum and maximum logged values and ranges of the variables used.
Because acc is assigned into rather than overwritten, these logs reflect the accumulated minimum
and maximum values.

logreport(x, y, b, acc)

 minlog maxlog lowerbound upperbound noverflows nunderflows
 x -1.200012 1.197998 -2 1.999939 0 0
 y -0.9990234 0.9990234 -2 1.999939 0 0
 b 0.5 0.5 -1 0.9999695 0 0
 acc -0.9990234 0.9989929 -512 512 0 0

4 Functions

4-1014

Display acc to verify that its data type did not change.

acc

acc =
 -0.0941

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 30

Reset the fipref object to restore its default values.

reset(fipref)

Input Arguments
A — Object used in indexing operation
scalar | vector | multidimensional array

Object used in indexing operation, specified as a scalar, vector, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

S — Type of indexing and subscripts
structure array

Type of indexing and subscripts, specified as a structure array. S is a structure array with two fields:

• type is a character vector or string containing (), {}, or ., specifying the subscript type.
• subs is a cell array, character array, or string array containing the actual subscripts.

Example: The syntax A(1:2,:) = B calls a = subsasgn(A,S,B) where S is a 1-by-1 structure
with S.type = '()' and S.subs = {1:2, ':'}. A colon used as a script is passed as ':'.
Data Types: struct

B — Value being assigned
scalar | vector | multidimensional array

Value being assigned, specified as a scalar, vector, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Output Arguments
A — Result of assignment statement
scalar | vector | multidimensional array

Result of assignment statement, which is the modified object passed in as the first argument,
returned as a scalar, vector, or multidimensional array.

 subsasgn

4-1015

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Supported data types for HDL code generation are listed in “Supported MATLAB Data Types,
Operators, and Control Flow Statements” (HDL Coder).

See Also
subsref | cast

Topics
“Cast fi Objects”
“Manual Fixed-Point Conversion Best Practices”

4 Functions

4-1016

subsref
Subscripted reference

Description
This function accepts fi objects as inputs.

Refer to the MATLAB subsref reference page for more information.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Supported data types for HDL code generation are listed in “Supported MATLAB Data Types,
Operators, and Control Flow Statements” (HDL Coder).

 subsref

4-1017

sum
Sum of fi array elements

Syntax
S = sum(A)
S = sum(A,dim)
S = sum(___ ,type)

Description
S = sum(A) returns the sum along different dimensions of the fi array A.

• If A is a vector, sum(A) returns the sum of the elements.
• If A is a matrix, sum(A) treats the columns of A as vectors, returning a row vector of the sums of

each column.
• If A is a multidimensional array, sum(A) treats the values along the first non-singleton dimension

as vectors, returning an array of row vectors.

S = sum(A,dim) sums along the dimension dim of A.

S = sum(___ ,type) returns an array in the class specified by type.

Examples

Sum of Vector Elements

Create a fi vector and specify fimath properties in the constructor.

A = fi([1 2 5 8 5], 'SumMode', 'KeepLSB', 'SumWordLength', 32)

A =
 1 2 5 8 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: KeepLSB
 SumWordLength: 32
 CastBeforeSum: true

Compute the sum of the elements of A.

S = sum(A)

4 Functions

4-1018

S =
 21

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 11

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: KeepLSB
 SumWordLength: 32
 CastBeforeSum: true

The output S is a scalar with the specified SumWordLength of 32. The FractionLength of S is 11
because SumMode was set to KeepLSB.

Sum of Elements in Each Column

Create a fi array, and compute the sum of the elements in each column.

A=fi([1 2 8;3 7 0;1 2 2])

A =
 1 2 8
 3 7 0
 1 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

S=sum(A)

S =
 5 11 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11

MATLAB® returns a row vector with the sums of each column of A. The WordLength of S has
increased by two bits because ceil(log2(size(A,1)))=2. The FractionLength remains the
same because the default setting of SumMode is FullPrecision.

Sum of Elements in Each Row

Compute the sum along the second dimension (dim=2) of 3-by-3 matrix A.

A=fi([1 2 8;3 7 0;1 2 2])

 sum

4-1019

A =
 1 2 8
 3 7 0
 1 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

S=sum(A, 2)

S =
 11
 10
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11

MATLAB® returns a column vector of the sums of the elements in each row. The WordLength of S is
18 because ceil(log2(size(A,2)))=2.

Sum of Elements Preserving Data Type

Compute the sums of the columns of A so that the output array, S, has the same data type.

A = fi([1 2 8;3 7 0;1 2 2])

A =
 1 2 8
 3 7 0
 1 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

class(A)

ans =
'embedded.fi'

S = sum(A, 'native')

S =
 5 11 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11

class(S)

4 Functions

4-1020

ans =
'embedded.fi'

MATLAB® preserves the data type of A and returns a row vector S of type embedded.fi.

Input Arguments
A — Input fi array
fi object | numeric variable

fi input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If no
value is specified, the default is the first array dimension whose size does not equal 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

type — Output class
'double' | 'native'

Output class, specified as 'double' or 'native'. The output class defines the data type that the
operation is performed in and returned in.

• If type is 'double', then sum returns a double-precision array, regardless of the input data type.
• If type is 'native', then sum returns an array with the same class as input array A.

Data Types: char

Output Arguments
S — Sum array
scalar | vector | matrix | multidimensional array

Sum array, returned as a scalar, vector, matrix, or multidimensional array.

Note The fimath object is used in the calculation of the sum. If SumMode is set to FullPrecision,
KeepLSB, or KeepMSB, then the number of integer bits of growth for sum(A) is
ceil(log2(size(A,dim))).

Limitations
• sum does not support fi objects of data type Boolean.

 sum

4-1021

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-sized inputs are only supported when the SumMode property of the governing fimath
object is set to SpecifyPrecision or KeepLSB.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
sum | add | divide | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub

4 Functions

4-1022

times, .*
Package: embedded

Element-by-element multiplication of fi objects

Syntax
C = A.*B
C = times(A,B)

Description
C = A.*B performs element-by-element multiplication of A and B, and returns the result in C.

times does not support fi objects of data type boolean.

C = times(A,B) is an alternate way to execute A.*B.

Examples

Multiply a fi Object by a Scalar

Use the times function to perform element-by-element multiplication of a fi object and a scalar.

a=4;
b=fi([2 4 7; 9 0 2])

b =
 2 4 7
 9 0 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

a is a scalar double, and b is a matrix of fi objects. When doing arithmetic between a fi and a
double, the double is cast to a fi with the same word length and signedness of the fi, and best-
precision fraction length. The result of the operation is a fi.

c=a.*b

c =
 8 16 28
 36 0 8

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 23

 times, .*

4-1023

During the operation, a was cast to a fi object with wordlength 16. The output, c, is a fi object with
word length 32, the sum of the word lengths of the two multiplicands, a and b. This is because the
default setting of ProductMode in fimath is FullPrecision.

Multiply Two fi Objects

Use the times function to perform element-by-element multiplication of two fi objects.

a=fi([5 9 9; 1 2 -3], 1, 16, 3)

a =
 5 9 9
 1 2 -3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

b=fi([2 4 7; 9 0 2], 1, 16, 3)

b =
 2 4 7
 9 0 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

c=a.*b

c =
 10 36 63
 9 0 -6

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 6

The word length and fraction length of c are equal to the sums of the word lengths and fraction
lengths of a and b. This is because the default setting of ProductMode in fimath is
FullPrecision.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. Inputs A and B must either be the same size or have sizes that are compatible. For more
information, see “Compatible Array Sizes for Basic Operations”.

4 Functions

4-1024

times does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. Inputs A and B must either be the same size or have sizes that are compatible. For more
information, see “Compatible Array Sizes for Basic Operations”.

times does not support fi objects of data type boolean.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Implicit expansion change affects arguments for operators
Behavior changed in R2021b

Starting in R2021b with the addition of implicit expansion for fi times, plus, and minus, some
combinations of arguments for basic operations that previously returned errors now produce results.

If your code uses element-wise operators and relies on the errors that MATLAB previously returned
for mismatched sizes, particularly within a try/catch block, then your code might no longer catch
those errors.

For more information on the required input sizes for basic array operations, see “Compatible Array
Sizes for Basic Operations”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

• When you provide complex inputs to the times function inside of a MATLAB Function block, you
must declare the input as complex before running the simulation. To do so, go to the Model
Explorer and set the Complexity parameter for all known complex inputs to On.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 times, .*

4-1025

See Also
plus | minus | mtimes | uminus

4 Functions

4-1026

toeplitz
Create Toeplitz matrix

Syntax
t = toeplitz(a,b)
t = toeplitz(b)

Description
t = toeplitz(a,b) returns a nonsymmetric Toeplitz matrix with a as its first column and b as its
first row. b is cast to the numerictype of a. If one of the arguments of toeplitz is a built-in data
type, it is cast to the data type of the fi object. If the first elements of a and b differ, toeplitz
issues a warning and uses the column element for the diagonal.

t = toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix formed from vector b, where
b is the first row of the matrix.

Examples

Create Symmetric Toeplitz Matrix

r = fi([1 2 3]);
toeplitz(r)

 1 2 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

 Tag:

ans =

 1 2 3
 2 1 2
 3 2 1
 numerictype(1,16,13)

 toeplitz

4-1027

Create Nonsymmetric Toeplitz Matrix

Create a nonsymmetric Toeplitz matrix with a specified column and row vector.

toeplitz(a,b) casts b into the data type of a. In this example, overflow occurs:

fipref('NumericTypeDisplay','short');
format short g
a = fi([1 2 3],true,8,5)
b = fi([1 4 8],true,16,10)
toeplitz(a,b)

a =

 1 2 3
 numerictype(1,8,5)

b =

 1 4 8
 numerictype(1,16,10)

ans =

 1 3.9688 3.9688
 2 1 3.9688
 3 2 1
 numerictype(1,8,5)

toeplitz(b,a) casts a into the data type of b. In this example, overflow does not occur:

toeplitz(b,a)

ans =

 1 2 3
 4 1 2
 8 4 1
 numerictype(1,16,10)

If one of the arguments of toeplitz is a built-in data type, it is cast to the data type of the fi object.

x = double([1 exp(1) pi]);
toeplitz(a,x)

ans =

 1 2.7188 3.1563
 2 1 2.7188
 3 2 1
 numerictype(1,8,5)

Input Arguments
a — Column of Toeplitz matrix
scalar | vector

4 Functions

4-1028

Column of Toeplitz matrix, specified as a scalar or vector. If the first elements of a and b differ,
toeplitz uses the column element for the diagonal.
Data Types: fi
Complex Number Support: Yes

b — Row of Toeplitz matrix
scalar | vector

Row of Toeplitz matrix, specified as a scalar or vector. If the first elements of a and b differ,
toeplitz uses the column element for the diagonal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Output Arguments
t — Toeplitz matrix
fi object

Toeplitz matrix, returned as a fi object.

The output fi object, t, has the same numerictype properties as the leftmost fi object input. If the
leftmost fi object input has a local fimath, the output fi object is assigned the same local fimath.
Otherwise, the output fi object, t, has no local fimath.

Version History
Introduced before R2006a

See Also
Blocks
Toeplitz

Functions
toeplitz

 toeplitz

4-1029

tostring
Package: embedded

Convert fi, fimath, numerictype, or quantizer object to string

Syntax
s = tostring(a)
s = tostring(F)
s = tostring(T)
s = tostring(q)

Description
s = tostring(a) converts fi object a to a character vector s such that eval(s) would create a
fi object with the same properties as a.

s = tostring(F) converts fimath object F to a character vector s such that eval(s) would
create a fimath object with the same properties as F.

s = tostring(T) converts numerictype object T to a character vector s such that eval(s)
would create a numerictype object with the same properties as T.

s = tostring(q) converts quantizer object q to a character vector s such that eval(s) would
create a quantizer object with the same properties as q.

Examples

Convert a fi Object to a String

a = fi(pi,1,16,10);
s = tostring(a)
a1 = eval(s)
isequal(a,a1)

s =

 'fi('numerictype',numerictype(1,16,10),'Value','3.1416015625')'

a1 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

ans =

4 Functions

4-1030

 logical

 1

Convert a fimath Object to a String
F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent');
s = tostring(F)
F1 = eval(s)
isequal(F,F1)

s =

 'fimath('RoundingMethod', 'Convergent',...
 'OverflowAction', 'Saturate',...
 'ProductMode','FullPrecision',...
 'SumMode','FullPrecision')'

F1 =

 RoundingMethod: Convergent
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

ans =

 logical

 1

Convert a numerictype Object to a String
T = numerictype(1,16,15);
s = tostring(T)
T1 = eval(s)
isequal(T,T1)

s =

 'numerictype(1,16,15)'

T1 =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

ans =

 tostring

4-1031

 logical

 1

Convert quantizer Object to a String

q = quantizer('fixed','Ceiling','Saturate',[5 4]);
s = tostring(q)
q1 = eval(s)
isequal(q,q1)

s =

 'quantizer('fixed', 'ceil', 'saturate', [5 4])'

q1 =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = saturate
 Format = [5 4]

ans =

 logical

 1

Input Arguments
a — Input fi object
fi object

Input fi object.
Data Types: fi
Complex Number Support: Yes

F — Input fimath object
fimath object

Input fimath object.

T — Input numerictype object
numerictype object

Input numerictype object.

q — Input quantizer object
quantizer object

Input quantizer object.

4 Functions

4-1032

Version History
Introduced before R2006a

See Also
eval | fi | numerictype | fimath | quantizer

 tostring

4-1033

ufi
Construct unsigned fixed-point numeric object

Syntax
a = ufi
a = ufi(v)
a = ufi(v,w)
a = ufi(v,w,f)
a = ufi(v,w,slope,bias)
a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias)

Description
You can use the ufi constructor function in the following ways:

• a = ufi is the default constructor and returns an unsigned fi object with no value, 16-bit word
length, and 15-bit fraction length.

• a = ufi(v) returns an unsigned fixed-point object with value v, 16-bit word length, and best-
precision fraction length.

• a = ufi(v,w) returns an unsigned fixed-point object with value v, word length w, and best-
precision fraction length.

• a = ufi(v,w,f) returns an unsigned fixed-point object with value v, word length w, and fraction
length f.

• a = ufi(v,w,slope,bias) returns an unsigned fixed-point object with value v, word length w,
slope, and bias.

• a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns an unsigned fixed-
point object with value v, word length w, slopeadjustmentfactor, fixedexponent, and bias.

fi objects created by the ufi constructor function have the following general types of properties:

• “Data Properties” on page 4-1034
• “fimath Properties” on page 4-1035
• “numerictype Properties” on page 4-1036

These properties are described in detail in “fi Object Properties” on page 3-2 in the Properties
Reference.

Note fi objects created by the ufi constructor function have no local fimath.

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

4 Functions

4-1034

• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can

also use int8, int16, int32, int64, uint8, uint16, uint32, and uint64 to get the stored
integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties” on page 3-2.

fimath Properties

When you create a fi object with the ufi constructor function, that fi object does not have a local
fimath object. You can attach a fimath object to that fi object if you do not want to use the default
fimath settings. For more information, see “fimath Object Construction”.

• fimath — fixed-point math object

The following fimath properties are always writable and, by transitivity, are also properties of a fi
object.

• CastBeforeSum — Whether both operands are cast to the sum data type before addition

Note This property is hidden when the SumMode is set to FullPrecision.
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”.

 ufi

4-1035

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of
the fi object.

numerictype — Object containing all the data type information of a fi object, Simulink signal or
model parameter

The following numerictype properties are, by transitivity, also properties of a fi object. The
properties of the numerictype object become read only after you create the fi object. However, you
can create a copy of a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note numerictype objects can have a Signedness of Auto, but all fi objects must be Signed
or Unsigned. If a numerictype object with Auto Signedness is used to create a fi object, the
Signedness property of the fi object automatically defaults to Signed.

• Slope — Slope associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For further details on these properties, see “numerictype Object Properties”.

Examples

Note For information about the display format of fi objects, refer to “View Fixed-Point Data”.

For examples of casting, see “Cast fi Objects”.

Example 1

For example, the following creates an unsigned fi object with a value of pi, a word length of 8 bits,
and a fraction length of 3 bits:

a = ufi(pi,8,3)

a =

 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned

4 Functions

4-1036

 WordLength: 8
 FractionLength: 3

Default fimath properties are associated with a. When a fi object does not have a local fimath
object, no fimath object properties are displayed in its output. To determine whether a fi object has
a local fimath object, use the isfimathlocal function.

isfimathlocal(a)

ans =
 0

A returned value of 0 means the fi object does not have a local fimath object. When the
isfimathlocal function returns a 1, the fi object has a local fimath object.

Example 2

The value v can also be an array:

a = ufi((magic(3)/10),16,12)

a =

 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 12

Example 3

If you omit the argument f, it is set automatically to the best precision possible:

a = ufi(pi,8)

a =

 3.1406

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 6

Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively:

a = ufi(pi)

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned

 ufi

4-1037

 WordLength: 16
 FractionLength: 14

Version History
Introduced in R2009b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All properties related to data type must be constant for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | fipref | isfimathlocal | numerictype | quantizer | sfi

4 Functions

4-1038

uint8
Package: embedded

Convert fi object to unsigned 8-bit integer

Syntax
c = uint8(a)

Description
c = uint8(a) returns the built-in uint8 value of fi object a, based on its real world value. If the
data does not fit into an uint8, then the data is rounded to nearest and saturated with no warning.

Examples

Find uint8 Values of fi Object

a = fi([-pi 0.5 pi],0,8)

a =
 0 0.5000 3.1406

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 6

c = uint8(a)

c = 1x3 uint8 row vector

 0 1 3

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
Complex Number Support: Yes

Version History
Introduced before R2006a

 uint8

4-1039

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
storedInteger | int8 | int16 | int32 | int64 | uint16 | uint32 | uint64

4 Functions

4-1040

uint16
Convert fi object to unsigned 16-bit integer

Syntax
c = uint16(a)

Description
c = uint16(a) returns the built-in uint16 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint16.

Examples
This example shows the uint16 values of a fi object.

a = fi([-pi 0.5 pi],0,16);
c = uint16(a)

c =

 0 1 3

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
storedInteger | int8 | int16 | int32 | int64 | uint8 | uint32 | uint64

 uint16

4-1041

uint32
Stored integer value of fi object as built-in uint32

Syntax
c = uint32(a)

Description
c = uint32(a) returns the built-in uint32 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint32.

Examples
This example shows the uint32 values of a fi object.

a = fi([-pi 0.5 pi],0,32);
c = uint32(a)

c =

 0 1 3

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
storedInteger | int8 | int16 | int32 | int64 | uint8 | uint16 | uint64

4 Functions

4-1042

uint64
Convert fi object to unsigned 64-bit integer

Syntax
c = uint64(a)

Description
c = uint64(a) returns the built-in uint64 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint64.

Examples
This example shows the uint64 values of a fi object.

a = fi([-pi 0.5 pi],0,64);
c = uint64(a)

c =

 0 1 3

Version History
Introduced in R2008b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
storedInteger | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

 uint64

4-1043

uminus
Negate elements of fi object array

Syntax
uminus(a)

Description
uminus(a) is called for the syntax -a when a is an object. -a negates the elements of a.

uminus does not support fi objects of data type Boolean.

Examples
When wrap occurs, -(-1) = -1 :

fipref('NumericTypeDisplay','short', ...
 'fimathDisplay','none');
format short g
a = fi(-1,true,8,7,'OverflowMode','wrap')

a =

 -1
 numerictype(1,8,7)

-a

ans =

 -1
 numerictype(1,8,7)

b = fi([-1-i -1-i],true,8,7,'OverflowMode','wrap')

b =

 -1 - 1i -1 - 1i
 numerictype(1,8,7)

-b

ans =

 -1 - 1i -1 - 1i
 numerictype(1,8,7)

b'

ans =

 -1 - 1i

4 Functions

4-1044

 -1 - 1i
 numerictype(1,8,7)

When saturation occurs, -(-1) = 0.99... :

c = fi(-1,true,8,7,'OverflowMode','saturate')

c =

 -1
 numerictype(1,8,7)

-c

ans =

 0.99219
 numerictype(1,8,7)

d = fi([-1-i -1-i],true,8,7,'OverflowMode','saturate')

d =

 -1 - 1i -1 - 1i
 numerictype(1,8,7)

-d

ans =

 0.99219 + 0.99219i 0.99219 + 0.99219i
 numerictype(1,8,7)

d'

ans =

 -1 + 0.99219i
 -1 + 0.99219i
 numerictype(1,8,7)

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
plus | minus | mtimes | times

 uminus

4-1045

unitquantize
Package: embedded

Quantize numeric data using quantizer object except numbers within eps of +1

Syntax
y = unitquantize(q,x)
[y1,y2,…] = unitquantize(q,x1,x2,…)

Description
y = unitquantize(q,x) uses the quantizer object q to quantize numeric data in x.
unitquantize works in the same way as quantize except that numbers within eps(q) of +1 are
made exactly equal to +1.

[y1,y2,…] = unitquantize(q,x1,x2,…) is equivalent to y1 = unitquantize(q,x1), y2 =
unitquantize(q,x2), … and so forth.

Examples

Quantize to Fixed-Point Type

Use unitquantize with a quantizer object to quantize data.

x = (0.8:.1:1.2)';
q = quantizer('fixed','floor','saturate',[4 3]);
y = unitquantize(q,x);
z = [x y]
e = eps(q)

z =

 0.8000 0.7500
 0.9000 1.0000
 1.0000 1.0000
 1.1000 1.0000
 1.2000 1.0000

e =

 0.1250

unitquantize quantizes the elements of x except for numbers within eps of +1.

Compare Behavior of quantize and unitquantize
x = [1 pi/4];
q = quantizer([8,7])

4 Functions

4-1046

y1 = quantize(q,x)
y2 = unitquantize(q,x)

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [8 7]

Warning: 1 overflow(s) occurred in the fi quantize operation.

y1 =

 0.9922 0.7812

y2 =

 1.0000 0.7812

Input Arguments
q — Data type properties
quantizer object

Data type properties to use for quantization, specified as a quantizer object.
Example: q = quantizer('fixed','ceil','saturate',[5 4]);

x — Data to quantize
scalar | vector | matrix | multidimensional array | cell array | structure

Data to quantize, specified as a scalar, vector, matrix, multidimensional array, cell array, or structure.

• When x is a numeric array, each element of x is quantized.
• When x is a cell array, each numeric element of the cell array is quantized.
• When x is a structure, each numeric field of x is quantized.

unitquantize does not change nonnumeric elements or fields of x, nor does it issue warnings for
nonnumeric values. Numbers within eps(q) of +1 are made exactly equal to +1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | struct | cell
Complex Number Support: Yes

x1,x2,… — Data to quantize (as separate elements)
scalar | vector | matrix | multidimensional array | cell array | structure

Data to quantize (as separate elements), specified as a scalar, vector, matrix, multidimensional array,
cell array, or structure.

 unitquantize

4-1047

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | struct | cell
Complex Number Support: Yes

Version History
Introduced in R2008a

See Also
eps | quantize | quantizer

4 Functions

4-1048

unitquantizer
Create unitquantizer object

Description
The unitquantizer object describes data type properties to use for quantization. After you create a
unitquantizer object, use quantize to quantize double-precision data. A unitquantizer object
is the same as a quantizer object except that its quantize method quantizes numbers within
eps(q) of +1 to exactly +1. You can use the unitquantizer object to simulate custom floating-point
data types with arbitrary word length and exponent length.

Creation
Syntax
q = unitquantizer
q = unitquantizer(Name,Value)
q = unitquantizer(Value1,Value2)
q = unitquantizer(s)
q = unitquantizer(pn,pv)

Description

q = unitquantizer creates a unitquantizer object with properties set to their default values.
To use this object to quantize values, use quantize.

q = unitquantizer(Name,Value) sets named properties using name-value arguments. You can
specify multiple name-value arguments. Enclose each property name in single quotes.

q = unitquantizer(Value1,Value2) sets properties using property values. Property values are
unique, so you can set property names by specifying just the property values in the command. When
two values conflict, unitquantizer sets the last property value in the list.

q = unitquantizer(s) sets properties named in each field name with the values contained in the
structure s.

q = unitquantizer(pn,pv) sets the named properties specified in the cell array of character
vectors pn to the corresponding values in the cell array pv.

You can use a combination of name-value string arguments, structures, and name-value cell array
arguments to set property values when creating a unitquantizer object.

Properties
DataMode — Data type mode
'fixed' (default) | 'ufixed' | 'float' | 'single' | 'double'

Type of arithmetic used in quantization, specified as one of these values:

 unitquantizer

4-1049

• 'fixed' — Signed fixed-point mode.
• 'ufixed' — Unsigned fixed-point mode.
• 'float' — Custom-precision floating-point mode.
• 'single' — Single-precision mode. This mode overrides all other property settings.
• 'double' — Double-precision mode. This mode overrides all other property settings.

Data Types: char | struct | cell

RoundMode — Rounding method
'floor' (default) | 'ceil' | 'convergent' | 'fix' | 'nearest' | 'round'

Rounding method to use, specified as one of these values:

• 'ceil' — Round up to the next allowable quantized value.
• 'convergent' — Round to the nearest allowable quantized value. Numbers that are exactly

halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit after rounding would be set to 0.

• 'fix' — Round negative numbers up and positive numbers down to the next allowable quantized
value.

• 'floor' — Round down to the next allowable quantized value.
• 'nearest' — Round to the nearest allowable quantized value. Numbers that are halfway

between the two nearest allowable quantized values are rounded up.
• 'round' — Round to the nearest allowable quantized value. Numbers that are halfway between

the two nearest allowable quantized values are rounded up in absolute value.

Data Types: char | struct | cell

OverflowMode — Action to take on overflow
'saturate' (default) | 'wrap'

Action to take on overflow, specified as one of these values:

• 'saturate' — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers as specified by the data format properties, these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

• 'wrap' — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers as specified by the data format properties, these values are wrapped back
into that range using modular arithmetic relative to the smallest representable number.

This property only applies to fixed-point data type modes. This property becomes a read-only property
when you set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to ±Inf.

Data Types: char | struct | cell

4 Functions

4-1050

Format — Data format of unitquantizer object
[16 15] (default) | [wordlength fractionlength] | [wordlength exponenetlength] | [64
11] | [32 8]

Data format of unitquantizer object. The interpretation of this property value depends on the
value of the DataMode property.

DataMode Property Value Interpreting the Format Property Values
fixed or ufixed [wordlength fractionlength]

Specify the Format property value as a two-
element row vector where the first element is the
number of bits for the quantizer object word
length and the second element is the number of
bits for the quantizer object fraction length.

The word length can range from 2 to the limits of
memory on your PC. The fraction length can
range from 0 to one less than the word length.

float [wordlength exponenetlength]

Specify the Format property value as a two-
element row vector where the first element is the
number of bits for the unitquantizer object
word length and the second element is the
number of bits for the unitquantizer object
exponent length.

The word length can range from 2 to the limits of
memory on your PC. The fraction length can
range from 0 to 11.

double [64 11]

The read-only Format property value
automatically specifies the word length and
exponent length.

single [32 8]

The read-only Format property value
automatically specifies the word length and
exponent length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Read-Only unitquantizer Object States

Read-only unitquantizer object states are updated when quantize is called. To reset these states,
use reset.

max — Maximum value before quantization
scalar

 unitquantizer

4-1051

Maximum value before quantization during a call to quantize(q,…) for unitquantizer object q,
specified as a scalar. This value is the maximum value recorded over successive calls to quantize.
Example: max(q)
Example: q.max

min — Minimum value before quantization
scalar

Minimum value before quantization during a call to quantize(q,…) for unitquantizer object q,
specified as a scalar. This value is the minimum value recorded over successive calls to quantize.
Example: min(q)
Example: q.min

noverflows — Number of overflows
scalar

Number of overflows during a call to quantize(q,…) for unitquantizer object q, specified as a
scalar. This value accumulates over successive calls to quantize. An overflow is defined as a value
that when quantized is outside the range of q.
Example: noverflows(q)
Example: q.noverflows

nunderflows — Number of underflows
scalar

Number of underflows during a call to quantize(q,…) for unitquantizer object q. This value
accumulates over successive calls to quantize. An underflow is defined as a number that is nonzero
before it is quantized and zero after it is quantized.
Example: nunderflows(q)
Example: q.nunderflows

noperations — Number of data points quantized
scalar

Number of quantization operations during a call to quantize(q,…) for unitquantizer object q.
This value accumulates over successive calls to quantize.
Example: noperations(q)
Example: q.noperations

Object Functions

Examples

Quantize Data with unitquantizer Object

Quantize a vector x using the unitquantizer object q.

4 Functions

4-1052

x = (0.8:.1:1.2)';
q = unitquantizer([4 3]);
y = quantize(q,x);
z = [x y]
e = eps(q)

z =

 0.8000 0.7500
 0.9000 1.0000
 1.0000 1.0000
 1.1000 1.0000
 1.2000 1.0000

e =

 0.1250

quantize quantizes the elements of x except for numbers within eps of +1.

Version History
Introduced in R2008a

See Also
quantize | quantizer | unitquantize | assignmentquantizer | reset

 unitquantizer

4-1053

unshiftdata
Inverse of shiftdata

Syntax
y = unshiftdata(x,perm,nshifts)

Description
y = unshiftdata(x,perm,nshifts) restores the orientation of the data that was shifted with
shiftdata. The permutation vector is given by perm, and nshifts is the number of shifts that was
returned from shiftdata.

unshiftdata is meant to be used in tandem with shiftdata. These functions are useful for
creating functions that work along a certain dimension, like filter, goertzel, sgolayfilt, and
sosfilt.

Examples

Example 1

1 Create a 3-by-3 magic square:

x = fi(magic(3))

x =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

2 Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

x =

 8 3 4
 1 5 9
 6 7 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

perm =

4 Functions

4-1054

 2 1

nshifts =

 []

This command returns the permutation vector, perm, and the number of shifts, nshifts, are
returned along with the shifted matrix, x.

3 Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Example 2

1 Define x as a row vector:

x = 1:5

x =

 1 2 3 4 5
2 Define dim as empty to shift the first non-singleton dimension of x to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x =

 1
 2
 3
 4
 5

perm =

 []

nshifts =

 1

 unshiftdata

4-1055

This command returns x as a column vector, along with perm, the permutation vector, and
nshifts, the number of shifts.

3 Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 1 2 3 4 5

Version History
Introduced in R2008a

See Also
shiftdata

4 Functions

4-1056

upperbound
Upper bound of range of fi object

Syntax
u = upperbound(a)

Description
u = upperbound(a) returns the upper bound of the range of fi object a.

If l = lowerbound(a) and u = upperbound(a), then [l,u] = range(a).

Examples

Upper Bound of fi Object

a = fi(pi,1,16,3,2)

a =
 2

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

u = upperbound(a)

u =
 98303

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

Input Arguments
a — Input fi object
fi object

Input fi object.
Data Types: fi

 upperbound

4-1057

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | fi | intmax | intmin | lowerbound | lsb | range | realmax | realmin

4 Functions

4-1058

vertcat
Package: embedded

Concatenate fi object arrays vertically

Syntax
C = vertcat(A,B)
C = vertcat(A1,A2,…An)

Description
C = vertcat(A,B) concatenates B vertically to the end of A when any of A and B is a fi object.

A and B must have the same number of columns. Multidimensional arrays are vertically concatenated
along the first dimension. The remaining dimensions must match.

C = vertcat(A1,A2,…An) concatenates A1,A2,…An vertically when any of A1,A2,…An is a fi
object.

A and B must have the same number of columns. Multidimensional arrays are vertically concatenated
along the first dimension. The remaining dimensions must match.

vertcat is equivalent to using square brackets for vertically concatenating arrays. For example, [A;
B] is equal to vertcat(A,B) when A and B are compatible arrays.

Horizontal and vertical concatenation can be combined, as in [a b;c d].

[a b; c] is allowed if the number of rows of a equals the number of rows of b, and if the number of
columns of a plus the number of columns of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed via a concatenation, as in [a
b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects C are taken from
the leftmost fi object in the list A1,A2,…An.

Examples

Concatenate Two Matrices

Create two matrices and concatenate them vertically, first by using square bracket notation, and then
by using vertcat.

A = fi([1 2 3; 4 5 6])

A =

 1 2 3

 vertcat

4-1059

 4 5 6

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

B = fi([7 8 9],0,8)

B =

 7 8 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 4

C = [A; B]

C =

 1.0000 2.0000 3.0000
 4.0000 5.0000 6.0000
 7.0000 7.9998 7.9998

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

D = vertcat(A,B)

D =

 1.0000 2.0000 3.0000
 4.0000 5.0000 6.0000
 7.0000 7.9998 7.9998

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Note that the numerictype of concatenated matrix D is taken from the leftmost fi object in the
input list.

Input Arguments
A — First input
scalar | vector | matrix | multidimensional array

First input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

4 Functions

4-1060

B — Second input
scalar | vector | matrix | multidimensional array

Second input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

A1,A2,…An — List of inputs
comma-separated list

List of inputs, specified as a comma-separated list of elements to concatenate in the order they are
specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
horzcat | fi | fimath | numerictype

 vertcat

4-1061

wordlength
Package: embedded

Word length of quantizer object

Syntax
wl = wordlength(q)

Description
wl = wordlength(q) returns the word length in bits of quantizer object q.

Examples

Word Length of quantizer Object

q = quantizer([16 15]);
wordlength(q)

ans = 16

The word length is the first element of format(q).

format(q)

ans = 1×2

 16 15

Input Arguments
q — quantizer object
quantizer object

quantizer object to find word length of.

Version History
Introduced before R2006a

See Also
fi | fractionlength | exponentlength | numerictype | quantizer

4 Functions

4-1062

zeros
Create array of all zeros with fixed-point properties

Syntax
X = zeros('like',p)
X = zeros(n,'like',p)
X = zeros(sz1,...,szN,'like',p)
X = zeros(sz,'like',p)

Description
X = zeros('like',p) returns a scalar 0 with the same numerictype, complexity (real or
complex), and fimath as p.

X = zeros(n,'like',p) returns an n-by-n array of zeros like p.

X = zeros(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of zeros like p.

X = zeros(sz,'like',p) returns an array of zeros like p. The size vector, sz, defines size(X).

Examples

2-D Array of Zeros With Fixed-Point Attributes

Create a 2-by-3 array of zeros with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 2-by-3 array of zeros that has the same numerictype properties as p.

X = zeros(2,3,'like',p)

X =
 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Size Defined by Existing Array

Define a 3-by-2 array A.

 zeros

4-1063

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz = 1×2

 3 2

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create an array of zeros that is the same size as A and has the same numerictype properties as p.

X = zeros(sz,'like',p)

X =
 0 0
 0 0
 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Square Array of Zeros With Fixed-Point Attributes

Create a 4-by-4 array of zeros with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 4-by-4 array of zeros that has the same numerictype properties as p.

X = zeros(4, 'like', p)

X =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Complex Fixed-Point Zero

Create a scalar fixed-point 0 that is not real valued, but instead is complex like an existing array.

4 Functions

4-1064

Define a complex fi object.

p = fi([1+2i 3i],1,24,12);

Create a scalar 1 that is complex like p.

X = zeros('like',p)

X =
 0.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)
 % Cast the coefficients to the coefficient type
 b = cast(b,'like',T.coeffs);
 a = cast(a,'like',T.coeffs);
 % Create the output using zeros with the data type
 y = zeros(size(x),'like',T.data);
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

 % Define coefficients for a filter with specification
 % [b,a] = butter(2,0.25)
 b = [0.097631072937818 0.195262145875635 0.097631072937818];
 a = [1.000000000000000 -0.942809041582063 0.333333333333333];

 % Define floating-point types
 T_float.coeffs = double([]);
 T_float.data = double([]);

 zeros

4-1065

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);

 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);

 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);

 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);

 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);

 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);

 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
end

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-n matrix of
ones.

• If n is zero, X is an empty matrix.
• If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-by-szN array.

4 Functions

4-1066

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector indicates the size
of the corresponding dimension.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

Version History
Introduced in R2013a

See Also
cast | ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”

 zeros

4-1067

“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

4 Functions

4-1068

Classes

5

coder.CellType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB cell arrays

Description
Specifies the set of cell arrays that the generated code accepts. Use only with the fiaccel -args
option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t = coder.typeof(cells) creates a coder.CellType object for a cell array that has the same
cells and cell types as cells. The cells in cells are type objects or example values.

t = coder.typeof(cells,sz,variable_dims) creates a coder.CellType object that has
upper bounds specified by sz and variable dimensions specified by variable_dims. If sz specifies
inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size.
When sz is [], the upper bounds do not change. If you do not specify the variable_dims input
parameter, except for the unbounded dimensions, the dimensions of the type are fixed. A scalar
variable_dims applies to the bounded dimensions that are not 1 or 0.

When cells specifies a cell array whose elements have different classes, you cannot use
coder.typeof to create a coder.CellType object for a variable-size cell array.

t = coder.newtype('cell',cells) creates a coder.CellType object for a cell array that has
the cells and cell types specified by cells. The cells in cells must be type objects.

t = coder.newtype('cell',cells,sz,variable_dims) creates a coder.CellType that has
upper bounds specified by sz and variable dimensions specified by variable_dims. If sz specifies
inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size.
When sz is [], the upper bounds do not change. If you do not specify the variable_dims input
parameter, except for the unbounded dimensions, the dimensions of the type are fixed. A scalar
variable_dims applies to the bounded dimensions that are not 1 or 0.

When cells specifies a cell array whose elements have different classes, you cannot use
coder.newtype to create a coder.CellType object for a variable-size cell array.

Input Arguments

cells — Specification of cell types
cell array

5 Classes

5-2

Cell array that specifies the cells and cell types for the output coder.CellType object. For
coder.typeof, cells can contain type objects or example values. For coder.newtype, cells
must contain type objects.

sz — Size of cell array
row vector of integer values

Specifies the upper bound for each dimension of the cell array type object. For coder.newtype, sz
cannot change the number of cells for a heterogeneous cell array.

For coder.newtype, the default is [1 1].

variable_dims — Dimensions that are variable size
row vector of logical values

Specifies whether each dimension is variable size (true) or fixed size (false).

For coder.newtype, the default is true for dimensions for which sz specifies an upper bound of
inf and false for all other dimensions.

When cells specifies a cell array whose elements have different classes, you cannot create a
coder.CellType object for a variable-size cell array.

Properties
Cells — Types of cells
cell array

A cell array that specifies the coder.Type of each cell.

ClassName — Name of class
character vector or string scalar

Class of values in this set.

SizeVector — Size of cell array
row vector of integer values

The upper bounds of dimensions of the cell array.

VariableDims — Dimensions that are variable size
row vector of logical values

A vector that specifies whether each dimension of the array is fixed or variable size. If a vector
element is true, the corresponding dimension is variable size.

Methods

isHeterogeneous Determine whether cell array type represents a heterogeneous cell array
isHomogeneous Determine whether cell array type represents a homogeneous cell array
makeHeterogeneous Make a heterogeneous copy of a cell array type
makeHomogeneous Create a homogeneous copy of a cell array type

 coder.CellType class

5-3

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create a Type for a Cell Array Whose Elements Have the Same Class

Create a type for a cell array whose first element has class char and whose second element has class
double.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

The type is homogeneous.

Create a Heterogeneous Type for a Cell Array Whose Elements Have the Same Class

To create a heterogeneous type when the elements of the example cell array type have the same
class, use the makeHeterogeneous method.

t = makeHeterogeneous(coder.typeof({1 2 3}))

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 double

The cell array type is heterogeneous. It is represented as a structure in the generated code.

Create a Cell Array Type for a Cell Array Whose Elements Have Different Classes

Define variables that are example cell values.

a = 'a';
b = 1;

Pass the example cell values to coder.typeof.

t = coder.typeof({a, b})

t =

coder.CellType

5 Classes

5-4

 1x2 heterogeneous cell
 f0: 1x1 char
 f1: 1x1 double

Create a Type for a Variable-Size Homogeneous Cell Array from an Example Cell Array
Whose Elements Have Different Classes

Create a type for a cell array that contains two character vectors that have different sizes.

t = coder.typeof({'aa', 'bbb'})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x2 char
 f1: 1x3 char

The cell array type is heterogeneous.

Create a type using the same cell array input. This time, specify that the cell array type has variable-
size dimensions.

t = coder.typeof({'aa','bbb'},[1,10],[0,1])

t =

coder.CellType
 1×:10 locked homogeneous cell
 base: 1×:3 char

The cell array type is homogeneous. coder.typeof determined that the base type 1x:3 char can
represent 'aa', and 'bbb'.

Create a New Cell Array Type from a Cell Array of Types

Create a type for a scalar int8.

ta = coder.newtype('int8',[1 1]);

Create a type for a :1x:2 double row vector.

tb = coder.newtype('double',[1 2],[1 1]);

Create a cell array type whose cells have the types specified by ta and ta.

t = coder.newtype('cell',{ta,tb})

t =

coder.CellType
 1x2 heterogeneous cell

 coder.CellType class

5-5

 f0: 1x1 int8
 f1: :1x:2 double

Tips
• In the display of a coder.CellType object, the terms locked heterogeneous or locked

homogeneous indicate that the classification as homogeneous or heterogeneous is permanent.
You cannot later change the classification by using the makeHomogeneous or
makeHeterogeneous methods.

• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the
cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods. The
makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous
method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to
create a copy that has a different classification.

Version History
Introduced in R2015b

See Also
coder.ClassType | coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Code Generation for Cell Arrays”
“Create and Edit Input Types by Using the Coder Type Editor”

5 Classes

5-6

coder.ClassType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB classes acceptable for input specification

Description
Objects of the coder.ClassType specify value class objects that the generated code accepts. Use
objects of this class only with the -args option of the fiaccel function. Do not pass as an input to a
generated MEX function.

Creation
t = coder.typeof(classObject) creates a coder.ClassType object for classObject.

t = coder.newtype(className) creates a coder.ClassType object for an object of the
className class.

Note You can create and edit coder.Type objects interactively by using the Coder Type Editor. See
“Create and Edit Input Types by Using the Coder Type Editor”.

Input Arguments

classObject — Value class object
MATLAB class

Value class object for which to create the coder.ClassType object. This input is an expression that
evaluates to an object of a value class.

className — Name of value class definition
string scalar | character vector

Name of a value class definition file on the MATLAB path specified as a character vector or string
scalar.

Properties
When you create a coder.ClassType object t by passing a value class object v to coder.typeof,
t has same as the properties as v with the Constant attribute set to false.

Similarly, when you create a coder.ClassType object t by passing the name of the value class
object, v to coder.newtype, t has same as the properties as v with the Constant attribute set to
false.

Examples

 coder.ClassType class

5-7

Create Type-Based Example Object

This example shows how to create a type object based on an example object in the workspace.

Create a value class myRectangle.

type myRectangle.m

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

Create a function that takes an object of myRectangle as the input.

type getarea.m

function z = getarea(r)
%#codegen
z = calcarea(r);
end

Create an object of myRectangle.

v = myRectangle(1,2)

v =
 myRectangle with properties:

 length: 1
 width: 2

Create a coder.ClassType object based on v.

t = coder.typeof(v)

t =
coder.ClassType
 1×1 myRectangle
 Properties :
 length : 1×1 double
 width : 1×1 double

 Edit Type Object

5 Classes

5-8

coder.typeof creates a coder.ClassType object that has the same properties names and types as
v.

Generate code for getarea. Specify the input type by passing the coder.ClassType object, t, to
the -args option.

codegen getarea -args {t} -report

Code generation successful: To view the report, open('codegen\mex\getarea\html\report.mldatx')

Create Type by Using coder.newtype

This example shows how to create a coder.ClassType object for an object of the value class
mySquare by using coder.newtype.

Create a value class mySquare that has one property, side.

type mySquare.m

classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end

Create a coder.ClassType type for mySquare without assiging any property values.

t = coder.newtype('mySquare')

t =
coder.ClassType
 1×1 mySquare -- class with no properties

 Edit Type Object

To ensure that t has the properties of mySquare, specify the type of side by using t.Properties.

t.Properties.side = coder.typeof(2)

t =
coder.ClassType
 1×1 mySquare
 Properties :
 side : 1×1 double

 Edit Type Object

 coder.ClassType class

5-9

Tips
• After you create a coder.ClassType, you can modify the types of the properties. For example,

modify the type of the prop1 and prop2 properties of an object t:

t = coder.typeof(myClass)
t.Properties.prop1 = coder.typeof(int16(2));
t.Properties.prop2 = coder.typeof([1 2 3]);

• After you create a coder.ClassType object, you can add properties. For example, add the
newprop1 and newprop2 properties of an object t:

t = coder.typeof(myClass)
t.Properties.newprop1 = coder.typeof(int8(2));
t.Properties.newprop2 = coder.typeof([1 2 3]);

• When you generate code, the properties of the coder.ClassType object that you pass to the
codegen function must be consistent with the properties in the class definition file. However, if
the class definition file has properties that your code does not use, the coder.ClassType object
does not have to include those properties. The code generator ignores properties that your code
does not use.

Version History
Introduced in R2017a

See Also
coder.CellType | coder.Type | coder.PrimitiveType | coder.EnumType | coder.CellType
| coder.FiType | coder.Constant | coder.ArrayType | coder.newtype | coder.typeof |
coder.resize | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

5 Classes

5-10

coder.mexconfig
Code acceleration configuration object for use with fiaccel

Description
A coder.MexConfig object contains all the configuration parameters that the fiaccel function
uses when accelerating fixed-point code via a generated MEX function. To use this object, first create
it using the coder.mexconfig function, then pass it to the fiaccel function using the -config
option.

Creation
Syntax
cfg = coder.mexconfig

Description

cfg = coder.mexconfig creates a coder.MexConfig code generation object for use with
fiaccel, which generates a MEX function.

Properties
CompileTimeRecursionLimit — Number of copies of a function allowed in generated code
for compile-time recursion
50 (default) | integer

Number of copies of a function allowed in generated code for compile-time recursion, specified as an
integer. To disallow recursion in the MATLAB code, set CompileTimeRecursionLimit to 0. The
default compile-time recursion limit is high enough for most recursive functions that require compile-
time recursion. If code generation fails because of the compile-time recursion limit, and you want
compile-time recursion, try to increase the limit. Alternatively, change your MATLAB code so that the
code generator uses run-time recursion.

ConstantFoldingTimeout — Maximum number of constant folder instructions
10000 (default) | positive integer

Maximum number of instructions to be executed by the constant folder, specified as a positive
integer.

DynamicMemoryAllocation — Dynamic memory allocation for variable-size data
'Threshold' (default) | 'AllVariableSizeArrays' | 'Off'

Dynamic memory allocation for variable-size data, specified as one of these values:

• 'Threshold' — Dynamic memory allocation is enabled for all variable-size arrays whose size is
greater than DynamicMemoryAllocationThreshold and fiaccel allocates memory for this
variable-size data dynamically on the heap.

 coder.mexconfig

5-11

• 'AllVariableSizeArrays' — Allocate memory for all variable-size arrays dynamically on the
heap. You must use dynamic memory allocation for all unbounded variable-size data.

• 'Off' — Allocate memory statically on the stack.

You must use dynamic memory allocation for all unbounded variable-size data.

The DynamicMemoryAllocation property is enabled only when the EnableVariableSizing
property is set to true. When you set DynamicMemoryAllocation to Threshold, it enables the
DynamicMemoryAllocationThreshold property.

DynamicMemoryAllocationThreshold — Memory allocation threshold
65536 (default) | integer

Size of the threshold for variable-size arrays above which fiaccel allocates memory on the heap,
specified as an integer.

EnableAutoExtrinsicCalls — Treat common visualization functions as extrinsic functions
true (default) | false

Whether fiaccel treats common visualization functions as extrinsic functions, specified as true or
false. When this option is enabled, fiaccel detects calls to many common visualization functions,
such as plot, disp, and figure. It calls out to MATLAB for these functions. This capability reduces
the amount of time that you spend making your code suitable for code generation. It also removes the
requirement to declare these functions extrinsic using the coder.extrinsic function.

EchoExpressions — Show results of code not terminated with semicolons
true (default) | false

Whether to show results of code not terminated with semicolons, specified as true or false.

Set this property to true to have the results of code instructions that do not terminate with a
semicolon appear in the MATLAB Command Window. If you set this property to false, code results
do not appear in the MATLAB Command Window.

EnableRuntimeRecursion — Allow recursive functions in the generated code
true (default) | false

Whether to allow recursive functions in the generated code, specified as true or false. If your
MATLAB code requires run-time recursion and this parameter is false, code generation fails.

EnableDebugging — Compile generated code in debug mode
false (default) | true

Whether to compile generated code in debug mode, specified as true or false.

Set this property to true to compile the generated code in debug mode. Set this property to false
to compile the code in normal mode.

EnableImplicitExpansion — Enable implicit expansion capabilities in generated code
true (default) | false

Whether to enable implicit expansion capabilities in generated code, specified as true or false.

Set this property to true to enable implicit expansion in the generated code. The code generator
includes modifications in the generated code to apply implicit expansion. See “Compatible Array

5 Classes

5-12

Sizes for Basic Operations”. Set this property to false so the generated code does not follow the
rules of implicit expansion.

EnableVariableSizing — Enable support for variable-sized arrays
true (default) | false

Whether to enable support for variable-sized arrays, specified as true or false.

Set this property to true to enable support for variable-sized arrays and to enable the
DynamicMemoryAllocation property. If you set this property to false, variable-sized arrays are
not supported.

ExtrinsicCalls — Extrinsic function calls
true (default) | false

An extrinsic function is a function on the MATLAB path that the generated code dispatches to
MATLAB software for execution. fiaccel does not compile or generate code for extrinsic functions.
Set this property to true to have fiaccel generate code for the call to a MATLAB function, but not
generate the function's internal code. Set this property to false to have fiaccel ignore the
extrinsic function and not generate code for the call to the MATLAB function. If the extrinsic function
affects the output of fiaccel, a compiler error occurs.

ExtrinsicCalls affects how MEX functions built by fiaccel generate random numbers when
using the MATLAB rand, randi, and randn functions. If extrinsic calls are enabled, the generated
mex function uses the MATLAB global random number stream to generate random numbers. If
extrinsic calls are not enabled, the MEX function built with fiaccel uses a self-contained random
number generator.

If you disable extrinsic calls, the generated MEX function cannot display run-time messages from
error or assert statements in your MATLAB code. The MEX function reports that it cannot display
the error message. To see the error message, enable extrinsic function calls and generate the MEX
function again.

GenerateReport — Create an HTML code generation report
false (default) | true

Whether to create an HTML code generation report, specified as true or false.

GlobalDataSyncMethod — MEX function global data synchronization with MATLAB global
workspace
SyncAlways (default) | SyncAtEntryAndExits | NoSync

MEX function global data synchronization with MATLAB global workspace, specified as one of these
values:

• SyncAlways — Synchronize global data at MEX function entry and exit and for all extrinsic calls
to ensure maximum consistency between MATLAB and the generated MEX function. If the
extrinsic calls do not affect global data, use this option in conjunction with the coder.extrinsic
-sync:off option to turn off synchronization for these calls to maximize performance.

• SyncAtEntryAndExits — Global data is synchronized only at MEX function entry and exit. If
your code contains extrinsic calls, but only a few affect global data, use this option in conjunction
with the coder.extrinsic -sync:on option to turn on synchronization for these calls to
maximize performance.

 coder.mexconfig

5-13

• NoSync — No synchronization occurs. Ensure that your MEX function does not interact with
MATLAB globals before disabling synchronization otherwise inconsistencies between MATLAB and
the MEX function might occur.

Data Types: char

InlineStackLimit — Stack size limit for inlined functions
4000 (default) | positive integer

Stack size limit for inlined functions, specified as a positive integer.

InlineThreshold — Maximum size of functions to be inlined
10 (default) | positive integer

Maximum size of functions to be inlined, specified as a positive integer.

InlineThresholdMax — Maximum size of functions after inlining
200 (default) | positive integer

Maximum size of functions after inlining, specified as a positive integer.

IntegrityChecks — Memory integrity
true (default) | false

Set this property to true to detect any violations of memory integrity in code generated for MATLAB.
When a violation is detected, execution stops and a diagnostic message displays. Set this property to
false to disable both memory integrity checks and the runtime stack.

LaunchReport — Open the HTML code generation report automatically
true (default) | false

Whether to open the HTML code generation report automatically when code generation completes,
specified as true or false. This property applies only if you set the GenerateReport property to
true.

ReportPotentialDifferences — Report potential behavior differences between generated
code and MATLAB code
true (default) | false

Whether to report potential behavior differences between generated code and MATLAB code,
specified as true or false. If the ReportPotentialDifferences property is set to true, the
code generation report has a tab that lists the potential differences. A potential difference is a
difference that occurs at run time only under certain conditions.

ResponsivenessChecks — Enable responsiveness checks
true (default) | false

Whether to enable responsiveness checks, specified as true or false.

SaturateOnIntegerOverflow — Saturate on integer overflow
true (default) | false

Whether to saturate on integer overflow, specified as true or false. Overflows saturate to either the
minimum or maximum value that the data type can represent. Set this property to true to have
overflows saturate. Set this property to false to have overflows wrap to the appropriate value
representable by the data type.

5 Classes

5-14

StackUsageMax — Maximum stack usage per application in bytes
200000 (default) | positive integer

Maximum stack usage per application in bytes, specified as a positive integer. Set a limit that is lower
than the available stack size. Otherwise, a runtime stack overflow might occur. Overflows are
detected and reported by the C compiler, not by fiaccel.

Examples

Create a Code Acceleration Configuration Object

This example shows how to use the coder.mexconfig function to create a coder.MexConfig
configuration object. The object is set to disable run-time checks.

cfg = coder.mexconfig;

Turn off integrity checks, extrinsic calls, and responsiveness checks.

cfg.IntegrityChecks = false;
cfg.ExtrinsicCalls = false;
cfg.ResponsivenessChecks = false;

Use the fiaccel function to generate a MEX function for the file foo.m.

fiaccel -config cfg foo

Version History
Introduced in R2011a

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

 coder.mexconfig

5-15

coder.SingleConfig class
Package: coder

Double-precision to single-precision conversion configuration object

Description
A coder.SingleConfig object contains the configuration parameters that the convertToSingle
function requires to convert double-precision MATLAB code to single-precision MATLAB code. To
pass this object to the convertToSingle function, use the -config option.

Construction
scfg = coder.config('single') creates a coder.SingleConfig object for double-precision to
single-precision conversion.

Properties
OutputFileNameSuffix — Suffix for single-precision file name
'_single' (default) | character vector

Suffix that the single-conversion process uses for generated single-precision files.

LogIOForComparisonPlotting — Enable simulation data logging for comparison plotting of
input and output variables
false (default) | true

Enable simulation data logging to plot the data differences introduced by single-precision conversion.

PlotFunction — Name of function for comparison plots
'' (default) | character vector

Name of function to use for comparison plots.

To enable comparison plotting, set LogIOForComparisonPlotting to true. This option takes
precedence over PlotWithSimulationDataInspector.

The plot function must accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

PlotWithSimulationDataInspector — Specify use of Simulation Data Inspector for
comparison plots
false (default) | true

Use Simulation Data Inspector for comparison plots.

5 Classes

5-16

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

TestBenchName — Name of test file
'' (default) | character vector | cell array of character vectors

Test file name or names, specified as a character vector or cell array of character vectors. Specify at
least one test file.

If you do not explicitly specify input parameter data types, the conversion uses the first file to infer
these data types.

TestNumerics — Enable numerics testing
false (default) | true

Enable numerics testing to verify the generated single-precision code. The test file runs the single-
precision code.

Methods

addFunctionReplacement Replace double-precision function with single-precision function during
single-precision conversion

Examples

Generate Single-Precision MATLAB Code

Create a coder.SingleConfig object.

scfg= coder.config('single');

Set the properties of the doubles-to-singles configuration object. Specify the test file. In this example,
the name of the test file is myfunction_test. The conversion process uses the test file to infer input
data types and collect simulation range data. Enable numerics testing and generation of comparison
plots.

scfg.TestBenchName = 'myfunction_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

Run convertToSingle. Use the -config option to specify the coder.SingleConfig object that
you want to use. In this example, the MATLAB function name is myfunction.

convertToSingle -config scfg myfunction

Version History
Introduced in R2015b

See Also
coder.config | convertToSingle

 coder.SingleConfig class

5-17

Topics
“Generate Single-Precision MATLAB Code”

5 Classes

5-18

DataTypeWorkflow.Converter
Create fixed-point converter object

Description
The DataTypeWorkflow.Converter object contains the object functions and parameters needed to
collect simulation and derived data, propose and apply data types to the model, and analyze results.
Use the DataTypeWorkflow.Converter object to perform the same fixed-point conversion tasks as
the Fixed-Point Tool.

Creation

Syntax
converter = DataTypeWorkflow.Converter(systemToScale)
converter = DataTypeWorkflow.Converter(referencedModelSystem,'TopModel',
topModel)

Description

converter = DataTypeWorkflow.Converter(systemToScale) creates a converter object for
the systemToScale.

converter = DataTypeWorkflow.Converter(referencedModelSystem,'TopModel',
topModel) creates a converter object with the specified referenced model,
referencedModelSystem, as the system to scale.

Input Arguments

systemToScale — Name of model or system to scale
character vector

Name of the model or subsystem to scale, specified as a character vector.
Example: converter = DataTypeWorkflow.Converter('ex_fixed_point_workflow');

referencedModelSystem — Name of referenced model or system inside a referenced model
character vector

Name of the referenced model or the subsystem within a referenced model to convert to fixed point,
specified as a character vector.

topModel — Name of top-level model
character vector

Name of the top-level model that references referencedModelSystem, specified as a character
vector. topModel is used during the range collection phase of conversion.

 DataTypeWorkflow.Converter

5-19

Properties
CurrentRunName — Current run in the converter object
character vector

Current run stored in the converter object, specified as a character vector.
Example: converter.CurrentRunName = 'FixedPointRun'
Data Types: char

RunNames — Names of all runs
cell array of character vectors

Names of all runs stored in the converter object, specified as a cell array of character vectors.
Example: converter.RunNames
Data Types: cell

SelectedSystemToScale — Name of model or subsystem
character vector

Name of the model or subsystem to scale, returned as a character vector.
Example: converter.SelectedSystemToScale
Data Types: char

ShortcutsForSelectedSystem — Available system shortcuts
cell array of character vectors

Available system settings shortcuts for the selected subsystem, specified as a cell array of character
vectors.
Example: converter.ShortcutsForSelectedSystem
Data Types: cell

TopModel — Name of top-level model
character vector

Name of the top-level model that references referencedModelSystem, specified as a character
vector. topModel is used during the range collection phase of conversion.
Example: converter.TopModel
Data Types: char

Object Functions
applyDataTypes Apply proposed data types to model
applySettingsFromRun Apply system settings used in previous run to model
applySettingsFromShortcut Apply settings from shortcut to model
deriveMinMax Derive range information for model
proposalIssues Get results which have comments associated with them
proposeDataTypes Propose data types for system
results Find results for selected system in converter object

5 Classes

5-20

saturationOverflows Get results where saturation occurred
simulateSystem Simulate system specified by converter object
verify Compare behavior of baseline and autoscaled systems
wrapOverflows Get results where wrapping occurred

Examples

Create a DataTypeWorkflow.Converter Object

This example shows how to create a DataTypeWorkflow.Converter object.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

The Controller subsystem uses fixed-point data types. Create a DataTypeWorkflow.Converter
object.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

You can view and edit properties of the converter object from the command line. For example, to
change the name of the current run:

converter.CurrentRunName = 'FixedPointRun'

converter =

 Converter with properties:

 CurrentRunName: 'FixedPointRun'
 RunNames: {0x1 cell}
 ShortcutsForSelectedSystem: {6x1 cell}
 TopModel: 'fxpdemo_feedback'

 DataTypeWorkflow.Converter

5-21

 SelectedSystemToScale: 'fxpdemo_feedback/Controller'

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.ProposalSettings | Fixed-Point Tool

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

5 Classes

5-22

DataTypeWorkflow.ProposalSettings
Proposal settings object for data type proposals

Description
The DataTypeWorkflow.ProposalSettings object manages the properties related to how data
types are proposed for a model, including the default floating point data type, and safety margins for
the proposed data types.

Creation

Syntax
propSettings = DataTypeWorkflow.ProposalSettings

Description

propSettings = DataTypeWorkflow.ProposalSettings creates a proposal settings object.

Properties
DefaultWordLength — Default word length for floating-point signals
16 (default) | scalar

Default word length for floating-point signals, specified as a scalar. Use this setting when the
ProposeFractionLength property is set to true.
Example: propSettings.DefaultWordLength = 16
Data Types: double

DefaultFractionLength — Default fraction length for floating-point signals
4 (default) | scalar

Default fraction length for floating-point signals, specified as a scalar. Use this setting when the
ProposeWordLength property is set to true.
Example: propSettings.DefaultFractionLength = 4
Data Types: double

ProposeFractionLength — Whether to propose fraction lengths for specified word length
true (default) | false

Whether to propose fraction lengths for the default word length specified in the
DefaultWordLength property, specified as a Boolean. Setting this property to true automatically
sets the ProposeWordLength property to false.
Example: propSettings.ProposeFractionLength = logical(true)

 DataTypeWorkflow.ProposalSettings

5-23

Data Types: logical

ProposeForInherited — Whether to propose fixed-point data types for objects with an
inherited output data type
true (default) | false

Whether to propose fixed-point data types for objects in the system with inherited output data types,
specified as a Boolean.
Example: propSettings.ProposeForInherited = logical(true)
Data Types: logical

ProposeForFloatingPoint — Whether to propose fixed-point data types for objects with a
floating-point output data type
true (default) | false

Whether to propose fixed-point data types for objects in the system with floating-point output data
types, specified as a Boolean.
Example: propSettings.ProposeForFloatingPoint = logical(true)
Data Types: logical

ProposeSignedness — Whether to propose signedness for objects in the system
true (default) | false

Whether to propose signedness for objects in the system, specified as a Boolean.

The software bases the signedness proposal on collected range information and block constraints.
Signals that are always strictly positive are assigned an unsigned data type proposal, and gain an
additional bit of precision. If you set this property to false, the software proposes a signed data type
for all results that currently specify a floating-point or an inherited output data type unless other
constraints are present. If a result specifies a fixed-point output data type, the software will propose a
data type with the same signedness as the currently specified data type unless other constraints are
present.
Example: propSettings.ProposeForFloatingPoint = logical(true)
Data Types: logical

ProposeWordLength — Whether to propose word lengths for specified default fraction
lengths
false (default) | true

Whether to propose word lengths for the default fraction length in the DefaultFractionLength
property, specified as a Boolean. Setting this property to true automatically sets the
ProposeFractionLength property to false.
Example: propSettings.ProposeWordLength = logical(false)
Data Types: logical

SafetyMargin — Safety margin for simulation minimum and maximum values
0 (default) | scalar

Safety margin for simulation minimum and maximum values, specified as a scalar.

5 Classes

5-24

The simulation minimum and maximum values are adjusted by the percentage designated by this
parameter. This parameter allows you to specify a range different from that obtained from the
simulation run.

For example, a value of 55 specifies that a range at least 55 percent larger is desired. A value of –15
specifies that a range of up to 15 percent smaller is acceptable.
Example: propSettings.SafetyMargin = 55
Data Types: double

UseDerivedMinMax — Whether to use derived ranges to propose data types
true (default) | false

Whether to use derived ranges for data type proposals, specified as a Boolean.
Example: propSettings.UseDerivedMinMax = logical(true)
Data Types: logical

UseSimMinMax — Whether to use simulation ranges to propose data types
true (default) | false

Whether to use simulation ranges for data type proposals, specified as a Boolean.
Example: propSettings.UseSimMinMax = logical(true)
Data Types: logical

Object Functions
addTolerance Specify numeric tolerance for converted system
clearTolerances Clear all tolerances specified by a DataTypeWorkflow.ProposalSettings object
showTolerances Show tolerances specified for a system

Alternatives
The properties of the DataTypeWorkflow.ProposalSettings object can also be controlled from
the Settings menu in the Fixed-Point Tool. For more information, see Fixed-Point Tool.

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.Converter

Topics
“Convert a Model to Fixed Point Using the Command Line”

 DataTypeWorkflow.ProposalSettings

5-25

DataTypeWorkflow.Result
Object containing run result information

Description
The DataTypeWorkflow.Result object manages the results of simulation, derivation, and data type
proposals.

Creation
The results function returns a handle to a DataTypeWorkflow.Result object.

Properties
Comments — Comments associated with the signal
cell array of character vectors

Comments associated with the signal, specified as a cell array of character vectors.
Example: results.Comments
Data Types: cell

CompiledDataType — Data type used during simulation
character vector

Data type used during simulation, specified as a character vector.
Example: results.CompiledDataType
Data Types: char

DerivedMax — Derived maximum value
scalar

Derived maximum value for the signal or internal data based on specified design maximums, specified
as a scalar.

Use the DataTypeWorkflow.ProposalSettings object and related object functions to specify and
manage numeric tolerances for signals.
Example: results.DerivedMax
Data Types: double

DerivedMin — Derived minimum value
scalar

Derived minimum value for the signal or internal data based on specified design minimums, specified
as a scalar.

5 Classes

5-26

Use the DataTypeWorkflow.ProposalSettings object and related object functions to specify and
manage numeric tolerances for signals.
Example: results.DerivedMin
Data Types: double

DesignMax — Design maximum value
scalar

Design maximum value for the signal or internal data, specified as a scalar.
Example: results.DesignMax
Data Types: double

DesignMin — Design minimum value
scalar

Design minimum value for the signal or internal data, specified as a scalar.
Example: results.DesignMin
Data Types: double

ProposedDataType — Proposed data type
character vector

Proposed data type for the signal or internal data type associated with this result, specified as a
character vector.
Example: results.ProposedDataType
Data Types: char

ResultName — Name of signal
character vector

Name of the signal or internal data associated with this result, specified as a character vector.
Example: results.ResultName
Data Types: char

RunName — Name of run associated with result
character vector

Name of the run associated with the result, specified as a character vector.
Example: results.RunName
Data Types: char

Saturations — Number of saturations that occurred
scalar

Number of saturations that occurred, specified as a scalar.

The number of occurrences where the signal or internal data associated with this result saturated at
the maximum or minimum of its specified data type. The value of this property is the cumulative total
of all of the run executions for this result.

 DataTypeWorkflow.Result

5-27

Example: results.Saturations
Data Types: double

SimMax — Simulation maximum
scalar

Simulation maximum, specified as a scalar. This property represents the values obtained for the
signal or internal data during all of the saved executions of the run this result is associated with.
Example: results.SimMax
Data Types: double

SimMin — Simulation minimum
scalar

Simulation minimum, specified as a scalar. This property represents the value obtained for the signal
or internal data during all of the saved executions of the run this result is associated with.
Example: results.SimMin
Data Types: double

SpecifiedDataType — Specified data type of signal
character vector

Specified data type of the signal, specified as a character vector. This property takes effect the next
time the system is run.
Example: results.SpecifiedDataType
Data Types: char

Wraps — Number of wraps that occurred
scalar

Number of wraps that occurred, specified as a scalar.

The number of occurrences where the signal or internal data associated with this result wrapped
around the maximum or minimum of its specified data type. The value of this property is the
cumulative total of all of the run executions for this result.
Example: results.Wraps
Data Types: double

Version History
Introduced in R2014b

See Also
results | DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings

Topics
“Convert a Model to Fixed Point Using the Command Line”

5 Classes

5-28

DataTypeWorkflow.VerificationResult
Verification results after converting a system to fixed point

Description
A DataTypeWorkflow.VerificationResult object contains the results after converting a system
to fixed point. The verification result object indicates whether a conversion was successful based on
the tolerances specified on the DataTypeWorkflow.ProposalSettings object used during the
conversion.

Creation

Syntax
verificationResult = verify(converter,BaselineRunName,RunName)

Description

verificationResult = verify(converter,BaselineRunName,RunName) simulates the
system specified by the DataTypeWorkflow.Converter object, converter, and stores the run
information in a new run, RunName. It returns a DataTypeWorkflow.VerificationResult object
that compares the baseline and verification runs.

The DataTypeWorkflow.Converter object contains instrumentation data from the run specified by
BaselineRunName, as well as the tolerances specified on the associated
DataTypeWorkflow.ProposalSettings object. The software determines if the behavior of the
verification run is acceptable using the tolerances specified by the ProposalSettings object.

Properties
RunName — Name of verification run to create
character vector

Name of the verification run to create during the embedded simulation, specified as a character
vector.
Example: verificationResult.RunName
Data Types: char

BaselineRunName — Baseline run to compare against
character vector

Baseline run to compare against, specified as a character vector.
Example: verificationResult.BaselineRunName
Data Types: char

 DataTypeWorkflow.VerificationResult

5-29

Status — Whether the verification run meets the specified tolerances
Pass | Warn | Fail

Whether the verification run meets the specified tolerances, returned as either Pass, Warn, or Fail.
For additional details, use explore to display logged data in the Simulation Data Inspector.

Status Description
Pass All signals with a specified tolerance on the

associated ProposalSettings object are within
the specified tolerances in the verification run.

Fail One or more signals with a specified tolerance on
the associated ProposalSettings object are
not within the specified tolerances in the
verification run.

Example: verificationResult.Status
Data Types: char

Object Functions
explore Explore comparison of baseline and fixed-point implementations

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings

Topics
“Convert a Model to Fixed Point Using the Command Line”

5 Classes

5-30

fixed.DataGenerator
Creates value set and generates data

Description
Use the fixed.DataSpecification and fixed.DataGenerator objects to generate simulation
inputs to test the full operating range of your designs.

Creation

Syntax
data = fixed.DataGenerator(Name, Value)

Description

data = fixed.DataGenerator(Name, Value) creates a DataGenerator object with additional
properties specified as Name, Value pair arguments.

Properties
DataSpecifications — Properties of generated data
fixed.DataSpecification object | cell array of fixed.DataSpecification objects

Properties of the data to generate, specified as a fixed.DataSpecification object.

Specifying a cell array of DataSpecification objects produces a single DataGenerator object for
input to a system with the same number of inputs and in the same order as elements in the cell array.

NumDataPointsLimit — Maximum number of data points in generated data
100000 (default) | integer-valued scalar

Maximum number of data points in generated data, specified as an integer-valued scalar. For more
information, see getNumDataPointsInfo.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
getUniqueValues Get unique values from fixed.DataGenerator object
getNumDataPointsInfo Get information about number of data points in generated data
outputAllData Get data from fixed.DataGenerator object

Examples

 fixed.DataGenerator

5-31

Create a fixed.DataGenerator object

Create a DataGenerator object by specifying a DataSpecification object in the constructor.

Create the DataSpecification object with an interval from −2π to 2π with a data type of single.

dataspec = fixed.DataSpecification('single', 'Intervals', {-2*pi, 2*pi})

dataspec =
 fixed.DataSpecification with properties:

 DataTypeStr: 'single'
 Intervals: [-6.2832,6.2832]
 ExcludeDenormals: false
 ExcludeNegativeZero: false
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Use the DataSpecification object to create a DataGenerator object. Limit the number of data
points in the generated data to 5000 points. You can specify these properties as name-value pairs in
the constructor of the DataGenerator object.

datagen = fixed.DataGenerator('DataSpecifications', dataspec, 'NumDataPointsLimit', 5000)

datagen =
 fixed.DataGenerator with properties:

 DataSpecifications: {[1x1 fixed.DataSpecification]}
 NumDataPointsLimit: 5000

Use the outputAllData function to see the generated data.

myData = outputAllData(datagen)

myData = 1x262 single row vector

 -6.2832 -6.2832 -4.0000 -4.0000 -4.0000 -2.0000 -2.0000 -2.0000 -1.0000 -1.0000 -1.0000 -0.5000 -0.5000 -0.5000 -0.2500 -0.2500 -0.2500 -0.1250 -0.1250 -0.1250 -0.0625 -0.0625 -0.0625 -0.0313 -0.0312 -0.0156 -0.0078 -0.0078 -0.0078 -0.0039 -0.0039 -0.0039 -0.0020 -0.0020 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

Algorithms
Data Generation for One-Dimensional, Two-Dimensional, and Complex Data

When you use a DataGenerator object to generate data for a DataSpecification object with the
Dimensions property set to 1, the output data always contains the minimum and maximum values of
the specified intervals, and any values specified by the MandatoryValues property.

When you generate data for a DataSpecification object with the Dimensions property set to a
value greater than 1, the output is generated by taking a cartesian product of the one-dimensional
output.

For example, consider the following two DataSpecification objects. The two objects are identical
except that one is one-dimensional, and the other is two-dimensional.

5 Classes

5-32

dataspec_1d = fixed.DataSpecification('single',...
 'Intervals', {-1,1}, 'Dimensions',1);
dataspec_2d = fixed.DataSpecification('single',...
 'Intervals', {-1,1}, 'Dimensions',2);

Create two DataGenerator objects based on these specifications. Set the maximum number of data
points in the generated data to inf.

datagen_1d = fixed.DataGenerator('DataSpecifications', ...
 dataspec_1d, 'NumDataPointsLimit', inf);
datagen_2d = fixed.DataGenerator('DataSpecifications', ...
 dataspec_2d, 'NumDataPointsLimit', inf);

Get the size of the generated data for each of the configurations.

size_1d_data = size(outputAllData(datagen_1d))
size_2d_data = size(outputAllData(datagen_2d))

size_1d_data =

 1 244

size_2d_data =

 2 59536

The length of the two-dimensional data is exactly the squared length of the one-dimensional data.

The DataGenerator generates complex data in a similar way to the two-dimensional data. Create a
DataSpecification object with Dimensions set to 1 and the Complexity set to complex. Create
a DataGenerator object using this specification.

dataspec_complex = fixed.DataSpecification('single', ...
'Intervals', {-1,1}, 'Dimensions', 1, 'Complexity', 'complex');

datagen_complex = fixed.DataGenerator('DataSpecifications', ...
 dataspec_complex, 'NumDataPointsLimit', inf);

Get the size of the generated data from this configuration.

size_complex_data = size(outputAllData(datagen_complex))

size_complex_data =

 1 59536

The length of the output data for the one-dimensional complex data is the same as the length of the
two-dimensional real data.

Version History
Introduced in R2019b

 fixed.DataGenerator

5-33

See Also
Objects
fixed.DataSpecification | fixed.Interval

5 Classes

5-34

fixed.DataSpecification
Specify properties of data to generate

Description
Use the fixed.DataSpecification and fixed.DataGenerator objects to generate simulation
inputs to test the full operating range of your designs.

Creation

Syntax
dataspec = fixed.DataSpecification(numerictype)
dataspec = fixed.DataSpecification(numerictype,Name,Value)

Description

dataspec = fixed.DataSpecification(numerictype) creates a DataSpecification object
with default property values and data type specified by numerictype.

dataspec = fixed.DataSpecification(numerictype,Name,Value)creates a
DataSpecification object with data type specified by numerictype, and additional properties
specified as Name,Value pair arguments.

Input Arguments

numerictype — Data type of generated data
character vector | Simulink.NumericType object | embedded.numerictype object

Data type of the generated data, specified as a string or character vector that evaluates to a numeric
data type, or as a Simulink.NumericType or numerictype object.
Example: dataspec = fixed.DataSpecification('double')
Example: dataspec = fixed.DataSpecification('fixdt(1,16,4)')
Example: dataspec = fixed.DataSpecification(Simulink.NumericType);

Properties
DataTypeStr — Data type of generated data
character vector | Simulink.NumericType object | embedded.numerictype object

Data type of the generated data, specified as a string or character vector that evaluates to a numeric
data type, or as a Simulink.NumericType or numerictype object.

This property cannot be edited after construction.

 fixed.DataSpecification

5-35

Intervals — Intervals within which to generate numeric data
fixed.Interval object | array of fixed.Interval objects | cell array containing inputs to
fixed.Interval constructor

Numeric intervals in which to generate numeric data, specified as a fixed.Interval object, an
array of fixed.Interval objects, or a cell array containing inputs to the fixed.Interval
constructor.

If you do not specify an interval, the default interval uses end points equal to the minimum and
maximum representable values of the specified numeric type.
Example: dataspec.Intervals = {-1,1};
Example: dataspec.Intervals = fixed.Interval(-1,1);

ExcludeDenormals — Whether to exclude denormal numbers from generated data
false (default) | true

Whether to exclude denormal numbers from generated data, specified as a logical.

This property is only applicable when the DataTypeStr property is a floating-point type.
Data Types: logical

ExcludeNegativeZero — Whether to exclude negative zero from generated data
false (default) | true

Whether to exclude negative zero from generated data, specified as a logical.

This property is only applicable when the DataTypeStr property is a floating-point type.
Data Types: logical

MandatoryValues — Values to include in the generated data
<empty> (default) | scalar | vector | matrix | multidimensional array

Values to include in the generated data, specified as a scalar, vector, matrix, or multidimensional
array. If the values specified in MandatoryValues are outside the range of the data type specified in
DataTypeStr, the values are saturated to the nearest representable value.
Example: dataspec.MandatoryValues = [-215, 216];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Complexity — Complexity of generated data
'real' (default) | 'complex'

Complexity of the generated data, specified as either 'real' or 'complex'.
Example: dataspec.Complexity = 'complex';
Data Types: char | string

Dimensions — Dimension of the generated data
1 (default) | positive scalar integer | row vector of positive integers

Dimension of the generated data, specified as a positive scalar integer or row vector of positive
integers.

5 Classes

5-36

Example: dataspec.Dimensions = 3;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
contains Determine whether value domain of a DataSpecification object contains a

specified value
applyOnRootInport (To be removed) Apply properties to Inport block

Examples

Create a fixed.DataSpecification object

Create a fixed.DataSpecification object with default property values and an int16 data type.

dataspec = fixed.DataSpecification('int16')

dataspec =
 fixed.DataSpecification with properties:

 DataTypeStr: 'int16'
 Intervals: [-32768,32767]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

The default interval of the DataSpecification object is equal to the range of the data type
specified in the constructor.

Create a fixed.DataSpecification object from a fixed.Interval object

Create a fixed.Interval object specifying a range of -π to π.

interval = fixed.Interval(-pi,pi)

interval =
 [-3.1416,3.1416]

 1x1 fixed.Interval with properties:

 LeftEnd: -3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true

Create a DataSpecification object using this interval and a data type of fixdt(1,16,10).

dataspec = fixed.DataSpecification('fixdt(1,16,10)','Intervals',interval)

dataspec =
 fixed.DataSpecification with properties:

 fixed.DataSpecification

5-37

 DataTypeStr: 'sfix16_En10'
 Intervals: [-3.1416,3.1416]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Alternatively, you can specify the interval as a cell array of inputs to the fixed.Interval
constructor. The following code generates an equivalent DataSpecification object.

dataspec = fixed.DataSpecification('fixdt(1,16,10)','Intervals',{-pi,pi})

dataspec =
 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En10'
 Intervals: [-3.1416,3.1416]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Create a DataSpecification object that includes NaN and Inf

You can include NaN and Inf values in the generated data by specifying these values as intervals in an
Interval object.

The following code creates a DataSpecification object that references an array of interval objects
that include the values -Inf, Inf, NaN, and the range [-1, 1].

dataspec = fixed.DataSpecification('single', 'Intervals',...
 {{-Inf}, {Inf}, {NaN}, {-1,1}})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'single'
 Intervals: [-Inf] [-1,1] [Inf] [NaN]
 ExcludeDenormals: false
 ExcludeNegativeZero: false
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Version History
Introduced in R2019b

See Also
Objects
fixed.DataGenerator | fixed.Interval

5 Classes

5-38

fixed.Interval
Define interval of values

Description
A fixed.Interval object defines an interval of real-world values. Use the Interval object to
specify a range of values in a fixed.DataSpecification object.

Creation
Syntax
interval = fixed.Interval
interval = fixed.Interval(a)
interval = fixed.Interval(a, b)
interval = fixed.Interval(a, b, endnotes)
interval = fixed.Interval(a, b, Name, Value)
interval = fixed.Interval(numerictype)
interval = fixed.Interval({ ___ }, ...,{ ___ })

Description

interval = fixed.Interval creates a unit interval, [0,1].

interval = fixed.Interval(a) creates a degenerate interval, containing only the value a.

interval = fixed.Interval(a, b) creates a closed interval from a to b.

interval = fixed.Interval(a, b, endnotes) creates an interval from a to b, with the
endnotes argument specifying whether the interval is open or closed.

interval = fixed.Interval(a, b, Name, Value) creates an interval from a to b with the
IsLeftClosed and IsRightClosed properties specified as Name, Value pair arguments.

interval = fixed.Interval(numerictype) creates an interval or array of intervals with end
points equal to the minimum and maximum representable values of the specified numeric type.

interval = fixed.Interval({ ___ }, ...,{ ___ }) returns an array of Interval objects,
where each cell array specifies the arguments for one or more of the objects.

Input Arguments

a — Left endpoint of interval
scalar | vector

Left endpoint of interval, specified as a scalar or vector.

b — Right endpoint of interval
scalar | vector

 fixed.Interval

5-39

Right endpoint of interval, specified as a scalar or vector.

endnotes — Whether the interval is open or closed
'[]' (default) | '[)' | '(]' | '()'

Argument indicating whether the interval is closed, open, or half-open, specified as one of the
following character vectors.

Endnotes Description
'[]' Generates a closed set, which includes both of its

endpoints.
'[)' Generates a half-open interval, in which the first

endpoint is included, but the second is not
included in the set.

'(]' Generates a half-open interval, in which the first
endpoint is not included, but the second is
included in the set.

'()' Generates an open set, in which neither endpoint
is included in the set.

Example: interval = fixed.Interval(1, 10, '()');

numerictype — Numeric data type
Simulink.Numerictype object | embedded.numerictype object | character vector

Numeric data type whose range of representable values defines the Interval object, specified as a
Simulink.Numerictype object, an embedded.numerictype object, or a character vector
representing a numeric data type, for example, 'single'.

When numerictype is 'double', 'single', or 'half', the output Interval object is an array of
4 Interval objects with intervals [-Inf], [Inf], [NaN], and [-realmax, realmax]. For more
information on representable values of a data type, see realmax.
Example: interval = fixed.Interval('fixdt(1,16,8)');

Properties
LeftEnd — Left endpoint of interval
0 (default) | scalar

Left endpoint of interval, specified as a scalar.

This property cannot be edited after object creation.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | fi

RightEnd — Right endpoint of interval
1 (default) | scalar

Right endpoint of interval, specified as a scalar.

This property cannot be edited after object creation.

5 Classes

5-40

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | fi

IsLeftClosed — Whether the left end of the interval is closed
true (default) | false

Whether the left end of the interval is closed, specified as a logical value.

This property cannot be edited after object creation.
Data Types: logical

IsRightClosed — Whether the right end of the interval is closed
true (default) | false

Whether the right end of the interval is closed, specified as a logical value.

This property cannot be edited after object creation.
Data Types: logical

Object Functions
contains Determine if one fixed.Interval object contains another
intersect Intersection of fixed.Interval objects
isDegenerate Determine whether the left and right ends of a fixed.Interval object are degenerate
isLeftBounded Determine whether a fixed.Interval object is left-bounded
isRightBounded Determine whether the a fixed.Interval object is right-bounded
isnan Determine whether a fixed.Interval object is NaN
overlaps Determine if two fixed.Interval objects overlap
quantize Quantize interval to range of numeric data type
setdiff Set difference of fixed.Interval objects
union Union of fixed.Interval objects
unique Get set of unique values in fixed.Interval object

Examples

Create a fixed.Interval object with default values

Create an Interval object with default property values. When you do not specify endpoint values,
the Interval object uses endpoints 0 and 1.

interval = fixed.Interval()

interval =
 [0,1]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 1
 IsLeftClosed: true
 IsRightClosed: true

 fixed.Interval

5-41

Create a degenerate interval

Create a degenerate interval, containing only a single point.

interval = fixed.Interval(pi)

interval =
 [3.1416]

 1x1 fixed.Interval with properties:

 LeftEnd: 3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true

This is equivalent to creating an interval with two equivalent endpoints.

interval = fixed.Interval(pi, pi)

interval =
 [3.1416]

 1x1 fixed.Interval with properties:

 LeftEnd: 3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true

Create an open interval

Specify end notes for an interval to create an open interval.

interval = fixed.Interval(-1, 1,'()') %#ok<*NASGU>

interval =
 (-1,1)

 1x1 fixed.Interval with properties:

 LeftEnd: -1
 RightEnd: 1
 IsLeftClosed: false
 IsRightClosed: false

To create an interval that includes the first endpoint, but not the second, specify the end notes as
'[)'

interval = fixed.Interval(-1, 1,'[)')

interval =
 [-1,1)

 1x1 fixed.Interval with properties:

5 Classes

5-42

 LeftEnd: -1
 RightEnd: 1
 IsLeftClosed: true
 IsRightClosed: false

Create an interval with the range of a numeric data type

When you specify a numeric data type in the constructor of the fixed.Interval object, the range of
the interval is set to the range of the data type.

Create an interval with the range of an int8 data type.

interval_int8 = fixed.Interval('int8')

interval_int8 =
 [-128,127]

 1x1 fixed.Interval with properties:

 LeftEnd: -128
 RightEnd: 127
 IsLeftClosed: true
 IsRightClosed: true

You can also specify a Simulink.NumericType to create an interval with the same range as the
range representable by the NumericType object.

myNumericType = Simulink.NumericType;
myNumericType.DataTypeMode = "Fixed-point: binary point scaling";
myNumericType.Signedness = 'Unsigned';
myNumericType.WordLength = 16;
myNumericType.FractionLength = 14

myNumericType =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 16
 FractionLength: 14
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

interval_16_14 = fixed.Interval(myNumericType)

interval_16_14 =
 [0,3.9999]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 3.9999

 fixed.Interval

5-43

 IsLeftClosed: true
 IsRightClosed: true

Create an array of fixed.Interval objects

To create an array of fixed.Interval objects, in the constructor of the Interval object, you can
specify a series of cell arrays, each of which contain the arguments of an Interval object.

intervalarray = fixed.Interval({-1,1},{5,10,'[)'},...
 {1000,1500,'IsLeftClosed',1,'IsRightClosed',0},...
 {'int8'})

intervalarray =
 [-1,1] [5,10) [1000,1500) [-128,127]

 1x4 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

Version History
Introduced in R2019b

See Also
Objects
fixed.DataGenerator | fixed.DataSpecification

5 Classes

5-44

LUTCompressionResult
Optimized lookup table data for all Lookup Table blocks in a system

Description
A LUTCompressionResult object contains the optimized lookup table data for all Lookup Table
blocks in a system. To create a LUTCompressionResult object, use the
FunctionApproximation.compressLookupTables function. To replace the lookup tables in your
system with the optimized version, use the replace function.

Creation
Create a LUTCompressionResult object using
FunctionApproximation.compressLookupTables.

Properties
MemoryUnits — Units for memory usage
'bytes' (default) | 'bits' | 'Kb' | 'Kibit' | 'KB' | 'KiB' | 'Mb' | 'Mibit' | 'MB' | 'MiB' |
'Gb' | 'Gibit' | 'GB' | 'GiB'

Units for MaxMemoryUsage property, specified as 'bits', 'bytes', or one of the other enumerated
options.
Data Types: char

MemoryUsageTable — Table summarizing the effects of compression
table

Table summarizing the effects of compression. The table contains one row for each lookup table
compressed in the system and its corresponding memory savings.
Data Types: table

NumLUTsFound — Number of lookup tables found in system
integer-valued scalar

Number of lookup tables found in the specified system, specified as an integer-valued scalar.
Data Types: double

NumImprovements — Number of lookup tables compressed
integer-valued scalar

Number of lookup tables compressed in the system, specified as an integer-valued scalar.
Data Types: double

TotalMemoryUsed — Total memory of all lookup tables in system before compression
scalar

 LUTCompressionResult

5-45

Total memory of all lookup tables in the system before compression, returned as a scalar. You can
specify the units of this property by using the MemoryUnits property.
Data Types: double

TotalMemoryUsedNew — Total memory of all lookup tables in system after compression
scalar

Total memory of all lookup tables in the system after compression, returned as a scalar. You can
specify the units of this property by using the MemoryUnits property.
Data Types: double

TotalMemorySavings — Difference between total memory before compression and after
compression
scalar

Difference between the total memory of all lookup tables in the system before and after compression,
returned as a scalar. You can specify the units of this property by using the MemoryUnits property.
Data Types: double

TotalMemorySavingsPercent — Percentage reduction in memory used by lookup tables in
the system
scalar

Percentage reduction in the memory used by the lookup tables in the system after compression,
returned as a scalar.
Data Types: double

SUD — System containing compressed lookup tables
character vector

System containing compressed lookup tables, returned as a character vector. SUD is the same as the
system input argument of the FunctionApproximation.compressLookupTables function.
Data Types: char

WordLengths — Word lengths used for breakpoints and table data in the compressed
lookup tables
scalar | vector

Word lengths used for breakpoints and table data in the compressed lookup tables, returned as a
scalar or vector of integers.
Data Types: double

FindOptions — Options for finding lookup tables in system
Simulink.FindOptions object

Simulink.FindOptions object specifying options for finding lookup tables in the system.

Object Functions
replace Replace all Lookup Table blocks with compressed lookup tables
revert Revert compressed Lookup Table blocks to original versions

5 Classes

5-46

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

 LUTCompressionResult

5-47

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'
 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]
 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Version History
Introduced in R2020a

See Also
Functions
FunctionApproximation.compressLookupTables | replace | revert

5 Classes

5-48

FunctionApproximation.LUTMemoryUsageCalculat
or class
Package: FunctionApproximation

Calculate memory used by lookup table blocks in a system

Description
The FunctionApproximation.LUTMemoryUsageCalculator class helps to calculate the memory
used by each lookup table block, including 1-D Lookup Table, 2-D Lookup Table, and n-D Lookup
Table, used in a model.

Construction
calculator = FunctionApproximation.LUTMemoryUsageCalculator() creates a
FunctionApproximation.LUTMemoryUsageCalculator object. Use the lutmemoryusage
method to calculate the memory used by each lookup table block in a model.

Properties
Public Properties

FindOptions — Options for finding lookup table blocks in a system
Simulink.FindOptions object

Options for finding lookup table blocks in a system, specified as a Simulink.FindOptions object.

Methods
lutmemoryusage Calculate memory used by lookup table blocks in a system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Calculate the Total Memory Used by Lookup Tables in a Model

Use the FunctionApproximation.LUTMemoryUsageCalculator class to calculate the total
memory used by lookup table blocks in a model.

Create a FunctionApproximation.LUTMemoryUsageCalculator object.

calculator = FunctionApproximation.LUTMemoryUsageCalculator

Use the lutmemoryusage method to get the memory used by each lookup table block in the
sldemo_fuelsys model.

 FunctionApproximation.LUTMemoryUsageCalculator class

5-49

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample','supportingfile','sldemo_fuelsys');
lutmemoryusage(calculator, 'sldemo_fuelsys')

ans =

 5×2 table

 BlockPath MemoryUsage
 ___ ___________

 1 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant" 1516
 2 "sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation" 1516
 3 "sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation" 1436
 4 "sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation" 1364
 5 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki" 192

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution

Functions
solve | approximate | compare | totalmemoryusage | solutionfromID |
displayfeasiblesolutions | displayallsolutions | lutmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

5 Classes

5-50

FunctionApproximation.LUTSolution class
Package: FunctionApproximation

Optimized lookup table data or lookup table data approximating a math function

Description
A FunctionApproximation.LUTSolution object contains optimized lookup table data or lookup
table data approximating a math function. To create a FunctionApproximation.LUTSolution
object, use the solve method on a FunctionApproximation.Problem object. To generate a
subsystem containing the lookup table approximate or the optimized lookup table, or to generate the
lookup table as a MATLAB function, use the approximate method of the
FunctionApproximation.LUTSolution object.

You can save a FunctionApproximation.LUTSolution object to a MAT-file and restore the
solution later.

Construction
solution = solve(problem) solves the problem defined by the
FunctionApproximation.Problem object, problem, and returns the approximation or
optimization, solution, as a FunctionApproximation.LUTSolution object.

Input Arguments

problem — Function to approximate, or lookup table to optimize
FunctionApproximation.Problem object

Function to approximate, or lookup table to optimize, and the constraints to consider during the
optimization, specified as a FunctionApproximation.Problem object.

Properties
ID — ID of the solution
scalar integer

ID of the solution, specified as a scalar integer.

This property is read-only.
Data Types: double

Feasible — Whether the approximation meets the constraints
true | false

Whether the approximation or optimization specified by the
FunctionApproximation.LUTSolution object, solution, meets the constraints specified in the
FunctionApproximation.Problem object, problem, and its associated
FunctionApproximation.Options.

This property is read-only.

 FunctionApproximation.LUTSolution class

5-51

Data Types: logical

AllSolutions — All solutions, including infeasible solutions
vector of FunctionApproximation.LUTSolution objects

All solutions found during the approximation, including infeasible solutions, specified as a vector of
FunctionApproximation.LUTSolution objects.

This property is read-only.

FeasibleSolutions — All solutions that meet the constraints
vector of FunctionApproximation.LUTSolution objects

All solutions meeting the specified constraints, specified as a vector of
FunctionApproximation.LUTSolution objects.

This property is read-only.

PercentReduction — Reduction in memory of lookup table
scalar

If the original FunctionApproximation.Problem object specified a lookup table block to optimize,
the PercentReduction property indicates the reduction in memory from the original lookup table.
If the original FunctionApproximation.Problem object specified a math function or function
handle, the PercentReduction is -Inf.

This property is read-only.
Data Types: double

SourceProblem — Problem object approximated by the solution
FunctionApproximation.Problem object

FunctionApproximation.Problem object that the FunctionApproximation.LUTSolution
object approximates.

This property is read-only.

TableData — Lookup table data
struct

Struct containing data related to lookup table approximation. The struct has the following fields.

• BreakpointValues - Breakpoints of the lookup table
• BreakpointDataTypes- Data type of the lookup table breakpoints
• TableValues - Values in the lookup table
• TableDataType - Data type of the table data
• IsEvenSpacing - Boolean value indicating if the breakpoints are evenly spaced.

This property is read-only.

5 Classes

5-52

Methods
approximate Generate a Lookup Table block or lookup table as a MATLAB function from

a FunctionApproximation.LUTSolution
compare Compare numerical results of FunctionApproximation.LUTSolution

to original function or lookup table
displayallsolutions Display all solutions found during function approximation
displayfeasiblesolutions Display all feasible solutions found during function approximation
getErrorValue Get the total error of the lookup table approximation
replaceWithApproximate Replace block with the generated lookup table approximation
revertToOriginal Revert the block that was replaced by the approximation back to its

original state
solutionfromID Access a solution found during the approximation process
totalmemoryusage Calculate total memory used by a lookup table approximation

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator

Functions
solve | approximate | compare

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 FunctionApproximation.LUTSolution class

5-53

FunctionApproximation.Options class
Package: FunctionApproximation

Specify additional options to use with FunctionApproximation.Problem object

Description
The FunctionApproximation.Options object contains additional options for defining a
FunctionApproximation.Problem object.

Construction
options = FunctionApproximation.Options() creates a
FunctionApproximation.Options object to use as an input to a
FunctionApproximation.Problem object. The output, options, uses default property values.

options = FunctionApproximation.Options(Name,Value) creates a
FunctionApproximation.Options object with property values specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
AbsTol — Absolute tolerance of difference between original and approximate
non-negative scalar

Maximum tolerance of the absolute value of the difference between the original output value and the
output value of the approximation, specified as a non-negative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

AllowUpdateDiagram — Whether to allow updating of the model diagram during the
approximation process
true or 1 (default) | false or 0

Whether to allow updating of the model diagram during the approximation process, specified as a
numeric or logical 1 (true) or 0 (false). This property is only relevant for
FunctionApproximation.Problem objects that specify a Lookup Table block, or a Math Function
block as the item to approximate.
Data Types: logical

ApproximateSolutionType — How to output optimized lookup table
'Simulink' (default) | 'MATLAB'

How to output optimized lookup table, specified as 'Simulink' or 'MATLAB'. When this property is
set to 'Simulink', the approximate method produces a Simulink subsystem containing the
optimized lookup table. When this property is set to 'MATLAB', the approximate method outputs
the optimized lookup table as a MATLAB function.

5 Classes

5-54

Generating an optimized lookup table as a MATLAB function is not supported when:

• The AUTOSARCompliant property is set to true
• The UseParallel property is set to true
• The HDLOptimized property is set to true
• The InterpolationMethod property is set to 'None'

Note The Simulink block and MATLAB function lookup table approximations generated by the
FunctionApproximation package may not be exactly numerically equivalent. However, both
solution forms are guaranteed to meet all constraints specified in the optimization problem.

Example: options.ApproximateSolutionType ='MATLAB';
Data Types: char

AUTOSARCompliant — Whether the generated lookup table block is an AUTOSAR block
false or 0 (default) | true or 1

Whether the generated lookup table is AUTOSAR compliant, specified as a numeric or logical 1
(true) or 0 (false). When this property is set to 1 (true), the generated lookup table is a Curve or
Map block from the AUTOSAR Blockset. When this property is set to 1 (true), the data type of the
table data must equal the output data type of the block.

Setting this property to 1 (true) checks out a AUTOSAR Blockset license when you use the
approximate or replaceWithApproximate methods.

This property is not supported when the ApproximateSolutionType property is set to 'MATLAB'.
Data Types: logical

BreakpointSpecification — Spacing of breakpoint data
ExplicitValues (default) | EvenSpacing | EvenPow2Spacing

Spacing of breakpoint data, specified as one of the following values.

Breakpoint Specification Description
ExplicitValues Lookup table breakpoints are specified explicitly.

Breakpoints can be closer together for some
input ranges and farther apart in others.

EvenSpacing Lookup table breakpoints are evenly spaced
throughout.

EvenPow2Spacing Lookup table breakpoints use power-of-two
spacing. This breakpoint specification boasts the
fastest execution speed because a bit shift can
replace the position search.

For more information on how breakpoint specification can affect performance, see “Effects of Spacing
on Speed, Error, and Memory Usage”.
Data Types: char

 FunctionApproximation.Options class

5-55

Display — Whether to display details of each iteration of the optimization
true or 1 (default) | false or 0

Whether to display details of each iteration of the optimization, specified as a numeric or logical 1
(true) or 0 (false). A value of 1 (true) results in information in the command window at each
iteration of the approximation process. A value of 0 (false) does not display information until the
approximation is complete.
Data Types: logical

ExploreHalf — Whether to allow exploration of half precision
true or 1 (default) | false or 0

Whether to allow the optimizer to explore half-precision data types for table data and breakpoints,
specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

HDLOptimized — Whether to generate HDL-optimized approximate
false or 0 (default) | true or 1

Whether to generate an HDL-optimized approximate, specified as a numeric or logical 1 (true) or 0
(false). A value of 1 (true) results in the approximate being a subsystem consisting of a prelookup
step followed by interpolation that functions as a lookup table with explicit pipelining to generate
efficient HDL code.

To generate an HDL-optimized approximate, the function to approximate must be one-dimensional
and BreakpointSpecification must be set to EvenSpacing or EvenPow2Spacing.

This property is not supported when the ApproximateSolutionType property is set to 'MATLAB'.
Data Types: logical

Interpolation — Method when an input falls between breakpoint values
Linear (default) | Flat | Nearest | None

When an input falls between breakpoint values, the lookup table interpolates the output value using
neighboring breakpoints.

Interpolation Method Description
Linear Fits a line between the adjacent breakpoints, and

returns the point on that line corresponding to
the input.

Flat Returns the output value corresponding to the
breakpoint value that is immediately less than the
input value. If no breakpoint value exists below
the input value, it returns the breakpoint value
nearest the input value.

Nearest Returns the value corresponding to the
breakpoint that is closest to the input. If the input
is equidistant from two adjacent breakpoints, the
breakpoint with the higher index is chosen.

5 Classes

5-56

Interpolation Method Description
None Generates a Direct Lookup Table (n-D) block,

which performs table lookups without any
interpolation or extrapolation.

Note When generating a Direct Lookup Table
block, the maximum number of inputs is two.

The interpolation method None is not supported when the ApproximateSolutionType property is
set to 'MATLAB'.
Data Types: char

MaxMemoryUsage — Maximum amount of memory the generated lookup table can use
80000000 (default) | scalar integer

The maximum amount of memory the generated lookup table can use, in bits, specified as a scalar
integer. You can change the units of the option using the MemoryUnits property.
Data Types: double

MaxTime — Maximum amount of time for the approximation to run (in seconds)
Inf (default) | scalar

Maximum amount of time for the approximation to run, specified in seconds as a scalar number. The
approximation runs until it reaches the time specified, finds an ideal solution, or reaches another
stopping criteria.
Data Types: double

MemoryUnits — Units for maximum memory usage
'bits' (default) | 'bytes' | 'Kb' | 'Kibit' | 'KB' | 'KiB' | 'Mb' | 'Mibit' | 'MB' | 'MiB' |
'Gb' | 'Gibit' | 'GB' | 'GiB'

Units for MaxMemoryUsage property, specified as 'bits', 'bytes', or one of the other enumerated
options.
Data Types: char

OnCurveTableValues — Whether to constrain table values to the quantized output of the
function being approximated
false or 0 (default) | true or 1

Whether to constrain table values to the quantized output of the function being approximated,
specified as a numeric or logical 1 (true) or 0 (false). By setting this property to 0 (false) and
allowing off-curve table values, you may be able to reduce the memory of the lookup table while
maintaining the same error tolerances, or maintain the same memory while reducing the error
tolerances.
Data Types: logical

RelTol — Relative tolerance of difference between original and approximate
non-negative scalar

Maximum tolerance of the relative difference between the original output value and the output value
of the approximation, specified as a non-negative scalar.

 FunctionApproximation.Options class

5-57

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

SaturateToOutputType — Saturate output of function to approximate to range of output
type
false or 0 (default) | true or 1

Whether to automatically saturate the range of the output of the function to approximate to the range
of the output data type, specified as a numeric or logical 1 (true) or 0 (false).
Example: options.SaturateToOutputType = 1;
Data Types: logical

UseParallel — Whether to run iterations in parallel
false or 0 (default) | true or 1

Whether to run iterations of the optimization in parallel, specified as a numeric or logical 1 (true) or
0 (false). Running the iterations in parallel requires a Parallel Computing Toolbox license. If you do
not have a Parallel Computing Toolbox license, or if you specify 0 (false), the iterations run in serial.

This property is not supported when the ApproximateSolutionType property is set to 'MATLAB'.
Example: options.UseParallel = true;
Data Types: logical

WordLengths — Word lengths permitted in the lookup table approximate
[8, 16, 32] (default) | integer scalar | integer vector

Specify the word lengths, in bits, that can be used in the lookup table approximate based on your
intended hardware. For example, if you intend to target an embedded processor, you can restrict the
data types in your lookup table to native types, 8, 16, and 32. The word lengths must be between 1
and 128.
Example: options.WordLengths = [8,16,32];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Limitations
• Lookup table objects and breakpoint objects are not supported in a model mask workspace.

Algorithms
When you set BreakpointSpecification to 'ExplicitValues', during the approximation
process, the algorithm also attempts to find a solution using 'EvenSpacing' and
'EvenPow2Spacing'. Likewise, when you set BreakpointSpecification to 'EvenSpacing',
the algorithm also attempts to find a solution using 'EvenPow2Spacing'. If you set the property to
'EvenPow2Spacing', the algorithm only attempts to find a solution using this spacing.

5 Classes

5-58

In cases where the BreakpointSpecification property is set to 'EvenSpacing', but the
InputUpperBounds or InputLowerBounds property of the FunctionApproximation.Problem
object is equal to the range of the InputTypes, the algorithm does not attempt to find a solution
using 'EvenPow2Spacing'.

Version History
Introduced in R2018a

Generate an optimized lookup table approximation as a MATLAB function

You can now use the FunctionApproximation.Problem object to generate an optimized lookup
table approximation as a MATLAB function. To generate MATLAB function, in a
FunctionApproximation.Options object, set the ApproximateSolutionType property to
MATLAB.

The generated MATLAB function is editable and supports C/C++ code generation using MATLAB
Coder.

Generate optimized one-dimensional lookup tables for HDL applications

Use lookup table optimization to generate a subsystem consisting of a prelookup step followed by
interpolation that functions as a lookup table with explicit pipelining to generate efficient HDL code.
To generate an HDL-optimized lookup table, set the HDLOptimized property to true.

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

Functions
solve | approximate | compare | totalmemoryusage | solutionfromID |
displayfeasiblesolutions | displayallsolutions | lutmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”
“Generate an Optimized Lookup Table as a MATLAB Function Programmatically”
“Generate an Optimized Lookup Table as a MATLAB Function”

 FunctionApproximation.Options class

5-59

FunctionApproximation.Problem class
Package: FunctionApproximation

Object defining the function to approximate, or the lookup table to optimize

Description

The FunctionApproximation.Problem object defines the function to approximate with a lookup
table, or the lookup table block to optimize. After defining the problem, use the solve method to
generate a FunctionApproximation.LUTSolution object that contains the approximation.

Construction
approximationProblem = FunctionApproximation.Problem() creates a
FunctionApproximation.Problem object with default property values. When no function input
is provided, the FunctionToApproximate property is set to 'sin'.

approximationProblem = FunctionApproximation.Problem(function) creates a
FunctionApproximation.Problem object to approximate the function, Math Function block, or
lookup table specified by function.

Input Arguments

function — Function or block to approximate, or lookup table block to optimize
'sin' (default) | math function | function handle | cfit object | Math Function block | Lookup Table
block | Subsystem block

Function or block to approximate, or the lookup table block to optimize, specified as a function
handle, a math function, a cfit object, a Simulink block or subsystem, or one of the lookup table
blocks (for example, 1-D Lookup Table, n-D Lookup Table).

If you specify one of the lookup table blocks, the solve method generates an optimized lookup table.

If you specify a math function, a function handle, cfit object, or a block, the solve method
generates a lookup table approximation of the input function.

If you specify a cfit object, use the fittype function to specify a library model to approximate. For
a list of library models, see “List of Library Models for Curve and Surface Fitting” (Curve Fitting
Toolbox).

Function handles must be on the MATLAB search path, or approximation fails.

The MATLAB math functions supported for approximation are:

• 1./x
• 10.^x
• 2.^x
• acos

5 Classes

5-60

• acosh
• asin
• asinh
• atan
• atan2
• atanh
• cos
• cosh
• exp
• log
• log10
• log2
• sin
• sinh
• sqrt
• tan
• tanh
• x.^2

Tip The process of generating a lookup table approximation is faster for a function handle than for a
subsystem. If a subsystem can be represented by a function handle, it is faster to approximate the
function handle.

Data Types: char | function_handle

Properties
FunctionToApproximate — Function to approximate, or lookup table block to optimize
'sin' (default) | math function | function handle | cfit object | Math Function block | Lookup Table
block | Subsystem block

Function or block to approximate, or the lookup table block to optimize, specified as a function
handle, a math function, a Simulink block or subsystem, or one of the lookup table blocks (for
example, 1-D Lookup Table, n-D Lookup Table).

If you specify one of the lookup table blocks, the solve method generates an optimized lookup table.

If you specify a cfit object, use the fittype function to specify a library model to approximate. For
a list of library models, see “List of Library Models for Curve and Surface Fitting” (Curve Fitting
Toolbox).

If you specify a math function, a function handle, cfit object, or a block, the solve method
generates a lookup table approximation of the input function.

Function handles must be on the MATLAB search path, or approximation fails.

 FunctionApproximation.Problem class

5-61

The MATLAB math functions supported for approximation are:

• 1./x
• 10.^x
• 2.^x
• acos
• acosh
• asin
• asinh
• atan
• atan2
• atanh
• cos
• cosh
• exp
• log
• log10
• log2
• sin
• sinh
• sqrt
• tan
• tanh
• x.^2

Tip The process of generating a lookup table approximation is faster for a function handle than for a
subsystem. If a subsystem can be represented by a function handle, it is faster to approximate the
function handle.

Data Types: char | function_handle

NumberOfInputs — Number of inputs to function approximation
1 | 2 | 3

Number of inputs to approximated function. This property is inferred from the
FunctionToApproximate property, therefore it is not a writable property.

If you are generating a Direct Lookup Table, the function to approximate can have no more than two
inputs.
Data Types: double

InputTypes — Desired data types of inputs to function approximation
numerictype object | vector of numerictype objects | Simulink.Numerictype object | vector of
Simulink.Numerictype objects

5 Classes

5-62

Desired data types of the inputs to the approximated function, specified as a numerictype,
Simulink.Numerictype, or a vector of numerictype or Simulink.Numerictype objects. The
number of InputTypes specified must match the NumberOfInputs.
Example: problem.InputTypes = ["numerictype(1,16,13)", "numerictype(1,16,10)"];

InputLowerBounds — Lower limit of range of inputs to function to approximate
scalar | vector

Lower limit of range of inputs to function to approximate, specified as a scalar or vector. If you
specify inf, the InputLowerBounds used during the approximation is derived from the
InputTypes property. The dimensions of InputLowerBounds must match the NumberOfInputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

InputUpperBounds — Upper limit of range of inputs to function to approximate
scalar | vector

Upper limit of range of inputs to function to approximate, specified as a scalar or vector. If you
specify inf, the InputUpperBounds used during the approximation is derived from the
InputTypes property. The dimensions of InputUpperBounds must match the NumberOfInputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

OutputType — Desired data type of the function approximation output
numerictype | Simulink.Numerictype

Desired data type of the function approximation output, specified as a numerictype or
Simulink.Numerictype. For example, to specify that you want the output to be a signed fixed-point
data type with 16-bit word length and best-precision fraction length, set the OutputType property to
"numerictype(1,16)".
Example: problem.OutputType = "numerictype(1,16)";

Options — Additional options and constraints to use in approximation
FunctionApproximation.Options object

Additional options and constraints to use in approximation, specified as a
FunctionApproximation.Options object.

Methods

solve Solve for optimized solution to function approximation problem

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 FunctionApproximation.Problem class

5-63

Examples
Create Problem Object to Approximate a Function Handle

Create a FunctionApproximation.Problem object, specifying a function handle that you want to
approximate.

problem = FunctionApproximation.Problem(@(x,y) sin(x)+cos(y))

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x,y)sin(x)+cos(y)
 NumberOfInputs: 2
 InputTypes: ["numerictype('double')" "numerictype('double')"]
 InputLowerBounds: [-Inf -Inf]
 InputUpperBounds: [Inf Inf]
 OutputType: "numerictype('double')"
 Options: [1×1 FunctionApproximation.Options]

The FunctionApproximation.Problem object, problem, uses default property values.

Set the range of the function inputs to be between zero and 2*pi.

problem.InputLowerBounds = [0,0];
problem.InputUpperBounds = [2*pi, 2*pi]

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x,y)sin(x)+cos(y)
 NumberOfInputs: 2
 InputTypes: ["numerictype('double')" "numerictype('double')"]
 InputLowerBounds: [0 0]
 InputUpperBounds: [6.2832 6.2832]
 OutputType: "numerictype('double')"
 Options: [1×1 FunctionApproximation.Options]

Create Problem Object to Approximate a Math Function

Create a FunctionApproximation.Problem object, specifying a math function to approximate.

problem = FunctionApproximation.Problem('log')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)log(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,10)"
 InputLowerBounds: 0.6250
 InputUpperBounds: 15.6250
 OutputType: "numerictype(1,16,13)"
 Options: [1×1 FunctionApproximation.Options]

5 Classes

5-64

The math functions have appropriate input range, input data type, and output data type property
defaults.

Create Problem Object to Approximate a Curve Fitting Object

Create a FunctionApproximation.Problem object, specifying a cfit object to approximate.

ffun = fittype('exp1');
cfun = cfit(ffun,0.1,0.2);
problem = FunctionApproximation.Problem(cfun);

problem =

 1×1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: [1x1 cfit]
 NumberOfInputs: 1
 InputTypes: "numerictype('double')"
 InputLowerBounds: -Inf
 InputUpperBounds: Inf
 OutputType: "numerictype('double')"
 Options: [1×1 FunctionApproximation.Options]

Create Problem Object to Optimize a Lookup Table Block

Create a FunctionApproximation.Problem object to optimize an existing lookup table.

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample','supportingfile','sldemo_fuelsys');
problem = FunctionApproximation.Problem('sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant'
 NumberOfInputs: 2
 InputTypes: ["numerictype('single')" "numerictype('single')"]
 InputLowerBounds: [50 0.0500]
 InputUpperBounds: [1000 0.9500]
 OutputType: "numerictype('single')"
 Options: [1×1 FunctionApproximation.Options]

The software infers the properties of the problem object from the model.

Limitations
• Lookup table objects and breakpoint objects are not supported in a model mask workspace.

Algorithms
Required Specifications

Functions and function handles that you approximate must meet the following criteria.

 FunctionApproximation.Problem class

5-65

• The function must be time-invariant.
• The function must operate element-wise, meaning for each input there is one output.
• The function must not contain states.

For more information, see “Vectorization”.

Infinite Upper and Lower Input Bounds

When a Problem object specifies infinite input ranges and the input type is non-floating-point, during
the approximation, the software infers upper and lower ranges based on the range of the input data
type. The resulting FunctionApproximation.LUTSolution object specifies the bounds that the
algorithm used during the approximation, not the originally specified infinite bounds.

Upper and Lower Input Bounds and Input Data Type Range

If the InputLowerBounds or InputUpperBounds specified for a Problem object fall outside the
range of the specified InputTypes, the algorithm uses the range of the data type specified by
InputTypes for the approximation.

In cases where the BreakpointSpecification property of the
FunctionApproximation.Options object is set to 'EvenSpacing', but the InputUpperBounds
or InputLowerBounds property of the FunctionApproximation.Problem object is equal to the
range of the InputTypes, the algorithm does not attempt to find a solution using
'EvenPow2Spacing'.

Version History
Introduced in R2018a

Support for curve fitting objects

The FunctionApproximation.Problem object now supports curve fitting cfit objects as valid
inputs for approximation.

Improved memory reduction for 1D and flat interpolation

The Lookup Table Optimizer has an improved algorithm for lookup table value and breakpoint
optimization for one-dimensional functions with flat interpolation. This enhancement can enable
improved memory reduction of the optimized lookup table and faster completion of the lookup table
optimization process.

This improvement applies when the function to approximate is one-dimensional and all of these
options are specified in FunctionApproximation.Options:

• Interpolation is set to Flat.
• BreakpointSpecification is set to ExplicitValues.
• OnCurveTableValues is set to false.

Generate an optimized lookup table approximation as a MATLAB function

5 Classes

5-66

You can now use the FunctionApproximation.Problem object to generate an optimized lookup
table approximation as a MATLAB function. To generate MATLAB function, in a
FunctionApproximation.Options object, set the ApproximateSolutionType property to
MATLAB.

The generated MATLAB function is editable and supports C/C++ code generation using MATLAB
Coder.

Lookup table optimization support for functions with scalar inputs

Previously, the FunctionApproximation.Problem class required that functions and function
handles to approximate were vectorized, meaning that for each input, there is exactly one output.
Lookup table optimization now fully supports approximation of Simulink blocks and subsystems that
only allow scalar inputs.

Improved lookup table value optimization

The Lookup Table Optimizer has an improved algorithm for lookup table value optimization for the
Flat and Nearest interpolation methods when off-curve table values are allowed. This enhancement
can enable faster completion of the lookup table optimization process and improved memory
reduction of the optimized lookup table.

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Options | FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

Functions
solve | approximate | compare

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”
“Generate an Optimized Lookup Table as a MATLAB Function Programmatically”
“Generate an Optimized Lookup Table as a MATLAB Function”
“Optimize Lookup Tables for Periodic Functions”

 FunctionApproximation.Problem class

5-67

fxpOptimizationOptions class
Specify options for data type optimization

Description
The fxpOptimizationOptions object enables you to specify options and constraints to use during
the data type optimization process.

Construction
opt = fxpOptimizationOptions() creates a fxpOptimizationOptions object with default
values.

opt = fxpOptimizationOptions(Name,Value) creates an fxpOptimizationOptions object
with property values specified by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
MaxIterations — Maximum number of iterations to perform
50 (default) | scalar integer

Maximum number of iterations to perform, specified as a scalar integer. The optimization process
iterates through different solutions until it finds an ideal solution, reaches the maximum number of
iterations, or reaches another stopping criteria.
Example: opt.MaxIterations = 75;
Data Types: double

MaxTime — Maximum amount of time for the optimization to run (in seconds)
600 (default) | scalar

Maximum amount of time for the optimization to run, specified in seconds as a scalar number. The
optimization runs until it reaches the time specified, an ideal solution, or another stopping criteria.
Example: opt.MaxTime = 1000;
Data Types: double

Patience — Maximum number of iterations where no new best solution is found
10 (default) | scalar integer

Maximum number of iterations where no new best solution is found, specified as a scalar integer. The
optimization continues as long as the algorithm continues to find new best solutions.
Example: opt.Patience = 15;
Data Types: double

5 Classes

5-68

Verbosity — Level of information displayed at the command line during the optimization
'High' (default) | 'Moderate' | 'Silent'

The level of information displayed at the command line during the optimization process, specified as
either 'High', 'Moderate', or 'Silent'.

• 'Silent' - Nothing is displayed at the command line until the optimization process is finished
• 'Moderate' - Information is displayed at each major step of the optimization process, including

when the process is in the preprocessing, modeling, and optimization phases.
• 'High' - Information is displayed at the command line at each iteration of the optimization

process, including whether a new best solution was found, and the cost of the solution.

Example: opt.Verbosity = 'Moderate';
Data Types: char | string

AllowableWordLengths — Word lengths that can be used in your optimized system under
design
[2:128] (default) | scalar integer | vector of integers

Specify the word lengths that can be used in your optimized system under design. Use this property
to target the neighborhood search of the optimization process. The final result of the optimization
uses word lengths in the intersection of the AllowableWordLengths and word lengths compatible
with hardware constraints specified in the Hardware Implementation pane of your model.
Example: opt.AllowableWordLengths = [8:11,16,32];
Data Types: double

ObjectiveFunction — Objective function to use during optimization search
'BitWidthSum' (default) | 'OperatorCount'

Objective function to use during optimization search, specified as one of these values:

• 'BitWidthSum' — Minimize total bit width sum.
• 'OperatorCount' — Minimize estimated count of operators in generated C code.

This option may result in a lower program memory size for C code generated from Simulink
models. The 'OperatorCount' objective function is not suitable for FPGA or ASIC targets.

Note To use 'OperatorCount' as the objective function during optimization, the model must be
ready for code generation. For more information about determining code generation readiness,
see “Check Model and Configuration for Code Generation” (Embedded Coder).

Data Types: char

UseParallel — Whether to run iterations in parallel
false (default) | true

Whether to run iterations of the optimization in parallel, specified as a logical. Running the iterations
in parallel requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing
Toolbox license, or if you specify false, the iterations run in serial.
Data Types: logical

 fxpOptimizationOptions class

5-69

AdvancedOptions — Additional options for optimization
object

Additional advanced options for optimization. AdvancedOptions is an object containing additional
properties that can affect the optimization.

Property Description
PerformNeighborhoodSearch • 1 (default) – Perform a neighborhood search

for the optimized solution.
• 0 – Do not perform a neighborhood search.

Selecting this option can increase the speed of
the optimization process, but also increases
the chances of finding a less ideal solution.

EnforceLooseCoupling Some blocks have a parameter that forces inputs
to share a data type, or forces the output to share
the same data type as the input.

• 1 (default) – Allow the optimizer to relax this
restriction on all blocks in the system under
design. Relaxing this restriction enables the
optimizer to provide better fitting data types.

• 0 – Do not allow the optimizer to relax this
restriction on blocks in the system under
design.

UseDerivedRangeAnalysis • 0 (default) – The optimizer does not consider
ranges derived from design ranges in the
model when assessing a solution.

• 1 – The optimizer considers both observed
simulation ranges and ranges derived from
design ranges in the model when assessing a
solution.

Depending on the model configuration, derived
range analysis may take longer than simulation of
the model.

SimulationScenarios Define additional simulation scenarios to consider
during optimization using a
Simulink.SimulationInput object. For an
example, see “Optimize Data Types Using
Multiple Simulation Scenarios”.

SafetyMargin Enter a safety margin, specified as a positive
scalar value indicating the percentage increase in
the bounds of the collected range. The safety
margin is applied to the union of all collected
ranges, including simulation ranges, derived
ranges, and design ranges.

5 Classes

5-70

Property Description
DataTypeOverride Override data types specified in the model when

simulating during the range collection phase of
optimization.

• 'Off' (default) – Do not override data types
• 'Single' – Override data types with singles
• 'Double' – Override data types with doubles
• 'ScaledDouble' – Override data types with

scaled doubles
HandleUnsupported Some blocks are not supported for fixed-point

conversion. For more information, see “Blocks
That Do Not Support Fixed-Point Data Types”.

• 'Isolate' (default) – Isolate unsupported
blocks with Data Type Conversion blocks.
Isolated blocks are ignored by the optimizer.

• 'Error' – Stop optimization and report an
error when the system contains blocks that
are not supported for fixed-point conversion.

• 'Warn' – Warn when the system contains
blocks that are not supported for fixed-point
conversion. Ignore unsupported blocks and
continue optimization. This option allows you
to replace unsupported constructs with other
solutions, such as lookup tables, after
optimization is complete.

PerformSlopeBiasCancellation • 0 (default) – Do not propagate slope-bias data
types.

• 1 – Propagate slope-bias data types from
outside the system under design. Slopes and
biases are chosen to reduce the complexity of
generated code.

InstrumentationContext [model '/Subsystem'] – Restrict
instrumentation for minimum, maximum, and
overflow logging for the range collection step of
optimization to a subsystem. The subsystem must
be under the top-level model and contain the
system under design.

Methods

addSpecification Specify known data types in a system
addTolerance Specify numeric tolerance for optimized system
showSpecifications Show specifications for a system
showTolerances Show tolerances specified for a system

 fxpOptimizationOptions class

5-71

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Create an fxpOptimizationOptions Object

Create an fxpOptimizationObject with default property values.

options = fxpOptimizationOptions();

Edit the properties after creation using dot syntax.

options.Patience = 15;
options.AllowableWordLengths = [8,16,32];
options.AdvancedOptions.UseDerivedRangeAnalysis = true

options =
 fxpOptimizationOptions with properties:

 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0

 Advanced Options
 AdvancedOptions: [1x1 DataTypeOptimization.AdvancedFxpOptimizationOptions]

Create an fxpOptimizationOptions Object With Non-Default Settings

Use property name-value pairs to set properties at object creation.

options = fxpOptimizationOptions('Patience',15,'AllowableWordLengths',[8,16,32])

options =
 fxpOptimizationOptions with properties:

 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0

 Advanced Options
 AdvancedOptions: [1x1 DataTypeOptimization.AdvancedFxpOptimizationOptions]

Specify advanced options.

5 Classes

5-72

options.AdvancedOptions.UseDerivedRangeAnalysis = 1

options =
 fxpOptimizationOptions with properties:

 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0

 Advanced Options
 AdvancedOptions: [1x1 DataTypeOptimization.AdvancedFxpOptimizationOptions]

Import an fxpOptimizationOptions Object into Fixed-Point Tool

You can import an fxpOptimizationOptions object into the Fixed-Point Tool to perform data type
optimization in the app. By importing an fxpOptimizationOptions object rather than specifying
settings manually in the app, you can easily save and restore your settings.

Open the model.

model = 'ex_controllerHarness';
open_system(model);

To specify options for the optimization, such as the allowable word length and number of iterations,
use the fxpOptimizationOptions object.

options = fxpOptimizationOptions('AllowableWordLengths', [2:32], 'MaxIterations', 3e2, 'Patience', 50);

Open the Fixed-Point Tool with the Controller subsystem selected.

fxptdlg('ex_controllerHarness/Controller')

In the Fixed-Point Tool, select New > Optimized Fixed-Point Conversion to start the data type
optimization workflow.

In the Setup pane, under Advanced Options, select the optimization options object to import from
the dropdown menu. Click Import.

 fxpOptimizationOptions class

5-73

Expand the Settings menu in the toolstrip to confirm that the optimization options were applied.

5 Classes

5-74

Version History
Introduced in R2018a

Restrict instrumentation to a subsystem

You can now restrict instrumentation to a subsystem by using the InstrumentationContext
property of the fxpOptimizationOptions object to specify the subsystem to use for
instrumentation and range collection.

Warn about unsupported constructs

You can now choose to display a warning message when fxpopt encounters blocks that are not
supported for data type conversion, in addition to the existing options to isolate or error. To warn for

 fxpOptimizationOptions class

5-75

unsupported constructs, set the HandleUnsupported property of the fxpOptimizationOptions
object to 'Warn'.

Override data types with scaled doubles

You can now override data types in a model with scaled doubles.

See Also
Classes
OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

5 Classes

5-76

OptimizationResult class

Result after optimizing fixed-point system

Description
An OptimizationResult object contains the results after optimizing a fixed-point system. If the
optimization process succeeds in finding a new fixed-point implementation, you can use this object to
explore the different implementations that met the specified tolerances found during the process. Use
the explore method to open the Simulation Data Inspector and view the behavior of the optimized
system.

Construction
result = fxpopt(model, sud, options) optimizes the data types in the system specified by
sud in the model, model, with additional options specified in the fxpOptimizationOptions object,
options.

Input Arguments

model — Model containing system under design
character vector

Name of the model containing the system that you want to optimize.
Data Types: char

sud — System whose data types you want to optimize
character vector

System whose data types you want to optimize, specified as a character vector containing the path to
the system.
Data Types: char

options — Additional optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying additional options to use during the data type
optimization process.

Properties
FinalOutcome — Message specifying whether a new optimal solution was found
character vector

Message specifying whether the optimization process found a new optimal solution, returned as a
character vector.
Data Types: char

 OptimizationResult class

5-77

OptimizationOptions — fxpOptimizationOptions object associated with the result
fxpOptimizationOptions object

The fxpOptimizationOptions object used as an input to the fxpopt function used to generate the
OptimizationResult.

Solutions — Vector of OptimizationSolution objects
OptimizationSolution object | vector of OptimizationSolution objects

A vector of OptimizationSolution objects found during the optimization process. If the
optimization finds a feasible solution, the vector is sorted by cost, with the lowest cost (most optimal)
solution as the first element of the vector. If the optimization does not find a feasible solution, the
vector is sorted by maximum difference from the original design.

Methods
explore Explore fixed-point implementations found during optimization process
revert Revert system data types and settings changed during optimization to

original state
openSimulationManager Inspect simulations run during optimization in Simulation Manager

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Version History
Introduced in R2018a

See Also
Classes
fxpOptimizationOptions | OptimizationSolution

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

5 Classes

5-78

OptimizationSolution class
Optimized fixed-point implementation of system

Description
An OptimizationSolution object is a fixed-point implementation of a system whose data types
were optimized using the fxpopt function.

Construction
solution = explore(result) opens the Simulation Data Inspector. If the optimization found a
solution, it returns the OptimizationSolution object with the lowest cost out of the vector of
OptimizationSolution objects contained in the OptimizationResult object, result. If the
optimization did not find a solution, it returns the OptimizationSolution object with the smallest
MaxDifference.

You can also access a OptimizationSolution object by indexing the Solutions property of an
OptimizationResult object. For example, to access the solution with the second lowest cost
contained in the OptimizationResult object, result, enter

solution = result.Solutions(2)

Input Arguments

result — OptimizationResult containing the solution
OptimizationResult object

The Solutions property of the OptimizationResult object is a vector of
OptimizationSolution objects found during the optimization process. If the optimization found a
feasible solution, the vector is sorted by cost, with the lowest cost (most optimal) solution as the first
element of the vector. If the optimization did not find a feasible solution, the vector is sorted by
MaxDifference, with the solution with the smallest MaxDifference as the first element.

Properties
Cost — Sum of word lengths used in the system under design
scalar integer

Sum of all word lengths used in the solution in the system under design. The most optimal solution is
the solution with the smallest cost.
Data Types: double

Pass — Whether the solution meets specified criteria
1 | 0

Whether the solution meets the criteria specified by the associated fxpOptimizationOptions
object, specified as a logical.
Data Types: logical

 OptimizationSolution class

5-79

MaxDifference — Maximum absolute difference between baseline solution run
scalar

The maximum absolute difference between the baseline the solution.
Data Types: double

RunID — Run identifier
scalar integer

Unique numerical identification for the run used by the Simulation Data Inspector. For more
information, see “Inspect and Compare Data Programmatically”.
Data Types: double

RunName — Name of the run
character vector

Name of the run in Simulation Data Inspector.
Data Types: char

Methods
showContents Get summary of changes made during data type optimization

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Version History
Introduced in R2018a

See Also
Classes
fxpOptimizationOptions | OptimizationResult

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

5 Classes

5-80

Methods

6

isHeterogeneous
Class: coder.CellType
Package: coder

Determine whether cell array type represents a heterogeneous cell array

Syntax
tf = isHeterogeneous(t)

Description
tf = isHeterogeneous(t) returns true if the coder.CellType object t is heterogeneous.
Otherwise, it returns false.

Examples

Determine Whether Cell Array Type Is Heterogeneous

Create a coder.CellType object for a cell array whose elements have different classes.

t = coder.typeof({'a', 1})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 char
 f1: 1x1 double

Determine whether the coder.CellType object represents a heterogeneous cell array.

isHeterogeneous(t)

ans =

 1

Tips
• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the

cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods. The

6 Methods

6-2

makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous
method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to
create a copy that has a different classification.

Version History
Introduced in R2015b

See Also
coder.typeof | coder.newtype

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

 isHeterogeneous

6-3

isHomogeneous
Class: coder.CellType
Package: coder

Determine whether cell array type represents a homogeneous cell array

Syntax
tf = isHomogeneous(t)

Description
tf = isHomogeneous(t) returns true if the coder.CellType object t represents a
homogeneous cell array. Otherwise, it returns false.

Examples

Determine Whether Cell Array Type Is Homogeneous.

Create a coder.CellType object for a cell array whose elements have the same class and size.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

Determine whether the coder.CellType object represents a homogeneous cell array.

isHomogeneous(t)

ans =

 1

Test for a Homogeneous Cell Array Type Before Executing Code

Write a function make_varsize. If the input type t is homogeneous, the function returns a variable-
size copy of t.

function c = make_varsize(t, n)
assert(isHomogeneous(t));
c = coder.typeof(t, [n n], [1 1]);
end

Create a heterogeneous type tc.

tc = coder.typeof({'a', 1});

6 Methods

6-4

Pass tc to make_varsize.

tc1 = make_varsize(tc, 5)

The assertion fails because tc is heterogeneous.

Create a homogeneous type tc.

tc = coder.typeof({1 2 3});

Pass tc to make_varsize.

tc1 = make_varsize(tc, 5)

tc1 =

coder.CellType
 :5x:5 homogeneous cell
 base: 1x1 double

Tips
• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the

cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods. The
makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous
method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to
create a copy that has a different classification.

Version History
Introduced in R2015b

See Also
coder.typeof | coder.newtype

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

 isHomogeneous

6-5

makeHeterogeneous
Class: coder.CellType
Package: coder

Make a heterogeneous copy of a cell array type

Syntax
newt = makeHeterogeneous(t)
t = makeHeterogeneous(t)

Description
newt = makeHeterogeneous(t) creates a coder.CellType object for a heterogeneous cell array
from the coder.CellType object t. t cannot represent a variable-size cell array.

The classification as heterogeneous is permanent. You cannot later create a homogeneous
coder.CellType object from newt.

t = makeHeterogeneous(t) creates a heterogeneous coder.CellType object from t and
replaces t with the new object.

Examples

Replace a Homogeneous Cell Array Type with a Heterogeneous Cell Array Type

Create a cell array type t whose elements have the same class and size.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

The cell array type is homogeneous.

Replace t with a cell array type for a heterogeneous cell array.

t = makeHeterogeneous(t)

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 doublee

6 Methods

6-6

The cell array type is heterogeneous. The elements have the size and class of the original
homogeneous cell array type.

Tips
• In the display of a coder.CellType object, the terms locked heterogeneous or locked

homogeneous indicate that the classification as homogeneous or heterogeneous is permanent.
You cannot later change the classification by using the makeHomogeneous or
makeHeterogeneous methods.

• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the
cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods.

Version History
Introduced in R2015b

See Also
coder.typeof | coder.newtype

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

 makeHeterogeneous

6-7

makeHomogeneous
Class: coder.CellType
Package: coder

Create a homogeneous copy of a cell array type

Syntax
newt = makeHomogeneous(t)
t = makeHomogeneous(t)

Description
newt = makeHomogeneous(t) creates a coder.CellType object for a homogeneous cell array
newt from the coder.CellType object t.

To create newt, the makeHomogeneous method must determine a size and class that represent all
elements of t:

• If the elements of t have the same class, but different sizes, the elements of newt are variable size
with upper bounds that accommodate the elements of t.

• If the elements of t have different classes, for example, char and double, the
makeHomogeneous method cannot create a coder.CellType object for a homogeneous cell
array.

The classification as homogeneous is permanent. You cannot later create a heterogeneous
coder.CellType object from newt.

t = makeHomogeneous(t) creates a homogeneous coder.CellType object from t and replaces t
with the new object.

Examples

Replace a Heterogeneous Cell Array Type with a Homogeneous Cell Array Type

Create a cell array type t whose elements have the same class, but different sizes.

t = coder.typeof({1 [2 3]})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double

The cell array type is heterogeneous.

Replace t with a cell array type for a homogeneous cell array.

6 Methods

6-8

t = makeHomogeneous(t)

t =

coder.CellType
 1×2 locked homogeneous cell
 base: 1×:2 double

The new cell array type is homogeneous.

Tips
• In the display of a coder.CellType object, the terms locked heterogeneous or locked

homogeneous indicate that the classification as homogeneous or heterogeneous is permanent.
You cannot later change the classification by using the makeHomogeneous or
makeHeterogeneous methods.

• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the
cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods.

Version History
Introduced in R2015b

See Also
coder.typeof | coder.newtype

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

 makeHomogeneous

6-9

addApproximation
Class: coder.FixPtConfig
Package: coder

Replace floating-point function with lookup table during fixed-point conversion

Syntax
addApproximation(approximationObject)

Description
addApproximation(approximationObject) specifies a lookup table replacement in a
coder.FixPtConfig object. During floating-point to fixed-point conversion, the conversion process
generates a lookup table approximation for the function specified in the approximationObject.

Input Arguments
approximationObject — Function replacement configuration object
coder.mathfcngenerator.LookupTable configuration object

Function replacement configuration object that specifies how to create an approximation for a
MATLAB function. Use the coder.FixPtConfig configuration object addApproximation method
to associate this configuration object with a coder.FixPtConfig object. Then use the fiaccel
function -float2fixed option with coder.FixPtConfig to convert floating-point MATLAB code to
fixed-point MATLAB code.

Examples

Replace log function with an optimized lookup table replacement

Create a function replacement configuration object that specifies to replace the log function with an
optimized lookup table.

logAppx = coder.approximation('Function','log','OptimizeLUTSize',...
 true,'InputRange',[0.1,1000],'InterpolationDegree',1,...
 'ErrorThreshold',1e-3,...
 'FunctionNamePrefix','log_optim_','OptimizeIterations',25);

Create a fixed-point configuration object and associate the function replacement configuration object
with it.

fixptcfg = coder.config('fixpt');
fixptcfg.addApproximation(logAppx);

You can now generate fixed-point code using the fiaccel function.

See Also
coder.FixPtConfig | fiaccel

6 Methods

6-10

Topics
“Replace the exp Function with a Lookup Table”
“Replace a Custom Function with a Lookup Table”
“Replacing Functions Using Lookup Table Approximations”

 addApproximation

6-11

addDesignRangeSpecification
Class: coder.FixPtConfig
Package: coder

Add design range specification to parameter

Syntax
addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

Description
addDesignRangeSpecification(fcnName,paramName,designMin, designMax) specifies the
minimum and maximum values allowed for the parameter, paramName, in function, fcnName. The
fixed-point conversion process uses this design range information to derive ranges for downstream
variables in the code.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples
Add a Design Range Specification
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');

6 Methods

6-12

cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;

% Derive ranges and generate fixed-point code
fiaccel -float2fixed cfg dti

See Also
coder.FixPtConfig | fiaccel | hasDesignRangeSpecification |
removeDesignRangeSpecification | clearDesignRangeSpecifications |
getDesignRangeSpecification

 addDesignRangeSpecification

6-13

addFunctionReplacement
Class: coder.FixPtConfig
Package: coder

Replace floating-point function with fixed-point function during fixed-point conversion

Syntax
addFunctionReplacement(floatFn,fixedFn)

Description
addFunctionReplacement(floatFn,fixedFn) specifies a function replacement in a
coder.FixPtConfig object. During floating-point to fixed-point conversion, the conversion process
replaces the specified floating-point function with the specified fixed-point function. The fixed-point
function must be in the same folder as the floating-point function or on the MATLAB path.

Input Arguments
floatFn — Name of floating-point function
'' (default) | string

Name of floating-point function, specified as a string.

fixedFn — Name of fixed-point function
'' (default) | string

Name of fixed-point function, specified as a string.

Examples

Specify Function Replacement in Fixed-Point Conversion Configuration Object

Suppose that:

• The function myfunc calls a local function myadd.
• The test function mytest calls myfunc.
• You want to replace calls to myadd with the fixed-point function fi_myadd.

Create a coder.FixPtConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is mytest.

fixptcfg.TestBenchName = 'mytest';

Specify that the floating-point function, myadd, should be replaced with the fixed-point function,
fi_myadd.

6 Methods

6-14

fixptcfg.addFunctionReplacement('myadd', 'fi_myadd');

Convert the floating-point MATLAB function, myfunc, to fixed-point.

fiaccel -float2fixed fixptcfg myfunc

fiaccel replaces myadd with fi_myadd during floating-point to fixed-point conversion.

See Also
coder.FixPtConfig | fiaccel

 addFunctionReplacement

6-15

addFunctionReplacement
Class: coder.SingleConfig
Package: coder

Replace double-precision function with single-precision function during single-precision conversion

Syntax
addFunctionReplacement(doubleFn,singleFn)

Description
addFunctionReplacement(doubleFn,singleFn) specifies a function replacement in a
coder.SingleConfig object. During double-precision to single-precision conversion, the conversion
process replaces the specified double-precision function with the specified single-precision function.
The single-precision function must be in the same folder as the double-precision function or on the
MATLAB path. It is a best practice to provide unique names to local functions that a replacement
function calls. If a replacement function calls a local function, do not give that local function the same
name as a local function in a different replacement function file.

Input Arguments
doubleFn — Name of double-precision function
'' (default) | string

Name of double-precision function, specified as a string.

singleFn — Name of single-precision function
'' (default) | string

Name of single-precision function, specified as a string.

Examples

Specify Function Replacement in Single-Precision Conversion Configuration Object

Suppose that:

• The function myfunc calls a local function myadd.
• The test function mytest calls myfunc.
• You want to replace calls to myadd with the single-precision function single_myadd.

Create a coder.SingleConfig object, scfg, with default settings.

scfg = coder.config('single');

Set the test file name. In this example, the test file function name is mytest.

scfg.TestBenchName = 'mytest';

6 Methods

6-16

Specify that you want to replace the double-precision function, myadd, with the single-precision
function, single_myadd.

scfg.addFunctionReplacement('myadd', 'single_myadd');

Convert the double-precision MATLAB function, myfunc to a single-precision MATLAB function.

convertToSingle -config scfg myfunc

The double-precision to single-precision conversion replaces instances of myadd with
single_myadd.

Version History
Introduced in R2015b

See Also

 addFunctionReplacement

6-17

clearDesignRangeSpecifications
Class: coder.FixPtConfig
Package: coder

Clear all design range specifications

Syntax
clearDesignRangeSpecifications()

Description
clearDesignRangeSpecifications() clears all design range specifications.

Examples
Clear a Design Range Specification

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now remove the design range
cfg.clearDesignRangeSpecifications()
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also
coder.FixPtConfig | fiaccel | addDesignRangeSpecification |
removeDesignRangeSpecification | hasDesignRangeSpecification |
getDesignRangeSpecification

6 Methods

6-18

getDesignRangeSpecification
Class: coder.FixPtConfig
Package: coder

Get design range specifications for parameter

Syntax
[designMin, designMax] = getDesignRangeSpecification(fcnName,paramName)

Description
[designMin, designMax] = getDesignRangeSpecification(fcnName,paramName) gets the
minimum and maximum values specified for the parameter, paramName, in function, fcnName.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Output Arguments
designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

 getDesignRangeSpecification

6-19

Examples
Get Design Range Specifications

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Get the design range for the 'dti' function parameter 'u_in'
[designMin, designMax] = cfg.getDesignRangeSpecification('dti','u_in')

designMin =

 -1

designMax =

 1

See Also
coder.FixPtConfig | fiaccel | addDesignRangeSpecification |
hasDesignRangeSpecification | removeDesignRangeSpecification |
clearDesignRangeSpecifications

6 Methods

6-20

hasDesignRangeSpecification
Class: coder.FixPtConfig
Package: coder

Determine whether parameter has design range

Syntax
hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

Description
hasDesignRange = hasDesignRangeSpecification(fcnName,paramName) returns true if the
parameter, param_name in function, fcn, has a design range specified.

Input Arguments
fcnName — Name of function
string

Function name, specified as a string.
Example: ‘dti’
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Example: ‘dti’
Data Types: char

Output Arguments
hasDesignRange — Parameter has design range
true | false

Parameter has design range, returned as a boolean.
Data Types: logical

Examples
Verify That a Parameter Has a Design Range Specification

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';

 hasDesignRangeSpecification

6-21

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

hasDesignRanges =

 1

See Also
coder.FixPtConfig | fiaccel | addDesignRangeSpecification |
removeDesignRangeSpecification | clearDesignRangeSpecifications |
getDesignRangeSpecification

6 Methods

6-22

removeDesignRangeSpecification
Class: coder.FixPtConfig
Package: coder

Remove design range specification from parameter

Syntax
removeDesignRangeSpecification(fcnName,paramName)

Description
removeDesignRangeSpecification(fcnName,paramName) removes the design range
information specified for parameter, paramName, in function, fcnName.

Input Arguments
fcnName — Name of function
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Examples
Remove Design Range Specifications

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now clear the design ranges and verify that
% hasDesignRangeSpecification returns false
cfg.removeDesignRangeSpecification('dti', 'u_in')
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

 removeDesignRangeSpecification

6-23

See Also
coder.FixPtConfig | fiaccel | addDesignRangeSpecification |
clearDesignRangeSpecifications | hasDesignRangeSpecification |
getDesignRangeSpecification

6 Methods

6-24

applyDataTypes
Package: DataTypeWorkflow

Apply proposed data types to model

Syntax
applyDataTypes(converter,RunName)

Description
applyDataTypes(converter,RunName) applies the proposed data types for the specified run,
RunName, to the system specified by the converter object.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run to apply data types to
character vector

Name of run to apply data types to, specified as a character vector.
Example: applyDataTypes(converter,'Run1')
Data Types: char

Alternatives
The applyDataTypes object function provides functionality similar to the Fixed-Point Tool button

Apply Data Types . For more information, see Fixed-Point Tool.

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.ProposalSettings | proposeDataTypes

Topics
“Convert a Model to Fixed Point Using the Command Line”

 applyDataTypes

6-25

applySettingsFromRun
Package: DataTypeWorkflow

Apply system settings used in previous run to model

Syntax
applySettingsFromRun(converter,RunName)

Description
applySettingsFromRun(converter,RunName) applies the data type override and
instrumentation settings used in a previous run, RunName, to the model specified in the converter
object.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run
character vector

Name of run from which to apply settings, specified as a character vector.
Example: applySettingsFromRun(converter,'Run1')
Data Types: char

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.Converter | applySettingsFromShortcut

Topics
“Convert a Model to Fixed Point Using the Command Line”

6 Methods

6-26

applySettingsFromShortcut
Package: DataTypeWorkflow

Apply settings from shortcut to model

Syntax
applySettingsFromShortcut(converter,shortcutName)

Description
applySettingsFromShortcut(converter,shortcutName) applies settings from the specified
system shortcut, shortcutName, to a converter object.

Examples

Configure Model for Conversion Using a Shortcut

This example shows how to configure a model for fixed-point conversion using a shortcut.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

Create a DataTypeWorkflow.Converter object for the Controller subsystem.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

Configure the model for conversion by using a shortcut. Find the shortcuts that are available for the
system by accessing the ShortcutsForSelectedSystem property of the converter object.

shortcuts = converter.ShortcutsForSelectedSystem

shortcuts =

 applySettingsFromShortcut

6-27

 6x1 cell array

 {'Range collection using double override' }
 {'Range collection with specified data types' }
 {'Range collection using single override' }
 {'Disable range collection' }
 {'Remove overrides and disable range collection'}
 {'Range collection using scaled double override'}

To collect idealized ranges for the system, use the 'Range collection using double
override' shortcut to override the system with double-precision data types and enable
instrumentation.

applySettingsFromShortcut(converter,shortcuts{1})

This shortcut also updates the current run name property of the converter object.

converter.CurrentRunName

ans =

 'Ranges(Double)'

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

shortcutName — Name of shortcut
character vector

Name of the shortcut that specifies which settings to use, specified as a character vector.
Example: applySettingsFromShortcut(converter,'Range collection using double
override')

Data Types: char

Version History
Introduced in R2014b

See Also
applySettingsFromRun | DataTypeWorkflow.Converter

Topics
“Convert a Model to Fixed Point Using the Command Line”

6 Methods

6-28

deriveMinMax
Package: DataTypeWorkflow

Derive range information for model

Syntax
deriveMinMax(converter)

Description
deriveMinMax(converter) derives the minimum and maximum values for each block in the
system specified by the DataTypeWorkflow.Converter object based on design minimum and
maximum values.

Input Arguments
converter — Converter object for system under design
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

Tips
If any issues come up during the derivation, they can be queried using the proposalIssues object
function.

Alternatives

The deriveMinMax object function is equivalent to the Collect Ranges button () with Range
Collection Mode set to Derived Ranges in the Fixed-Point Tool. For more information, see Fixed-
Point Tool.

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.Converter | simulateSystem | proposalIssues

Topics
“Convert a Model to Fixed Point Using the Command Line”

 deriveMinMax

6-29

proposeDataTypes
Package: DataTypeWorkflow

Propose data types for system

Syntax
proposeDataTypes(converter,RunName,propSettings)

Description
proposeDataTypes(converter,RunName,propSettings) proposes data types for the system
specified by the DataTypeWorkflow.Converter object, converter, based on the range results
stored in RunName and the settings specified in propSettings.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object, specified as a DataTypeWorkflow.Converter object, for the system under
design.

RunName — Name of run
character vector

Name of run to propose data types for, specified as a character vector.
Data Types: char

propSettings — Proposed data type settings
DataTypeWorkflow.ProposalSettings object

Proposed data type settings, specified as a DataTypeWorkflow.ProposalSettings object. Use
this object to specify proposal settings such as the default data type for all floating point signals.
Data Types: char

Alternatives
The proposeDataTypes object function provides functionality similar to the Fixed-Point Tool

Propose Data Types button. For more information, see Fixed-Point Tool.

Version History
Introduced in R2014b

6 Methods

6-30

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings | applyDataTypes

Topics
“Convert a Model to Fixed Point Using the Command Line”

 proposeDataTypes

6-31

results
Package: DataTypeWorkflow

Find results for selected system in converter object

Syntax
results = results(converter,RunName)
results = results(converter,RunName,filterFunc)

Description
results = results(converter,RunName) returns all results in the specified run, for the model
specified by the DataTypeWorkflow.Converter object, converter.

results = results(converter,RunName,filterFunc) returns the results in the specified run
that match the criteria specified by filterFunc.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run
character vector

Name of the run to query, specified as a character vector.
Data Types: char

filterFunc — Function to use to filter results
function handle

Function to use to filter results, specified as a function handle with a DataTypeWorkflow.Result
object as its input.
Data Types: function_handle

Output Arguments
results — Filtered results
array of Result objects

Filtered results, returned as an array of DataTypeWorkflow.Result objects.

6 Methods

6-32

Alternatives
The results object function offers a command-line approach to using the Fixed-Point Tool. For more
information, see Fixed-Point Tool.

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.Converter | proposalIssues | wrapOverflows | saturationOverflows

Topics
“Convert a Model to Fixed Point Using the Command Line”

 results

6-33

proposalIssues
Package: DataTypeWorkflow

Get results which have comments associated with them

Syntax
results = proposalIssues(converter,RunName)

Description
results = proposalIssues(converter,RunName) returns all results in RunName for the model
specified by a DataTypeWorkflow.Converter object, converter, that have associated comments.
The comments field of the returned results provides information related to any issues found.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for system under design, specified as a DataTypeWorkflow.Converter object.

RunName — Name of run
character vector

Name of the run to look for comments in, specified as a character vector.
Data Types: char

Output Arguments
results — Results that have associated comments
DataTypeWorkflow.Result object

Results that have associated comments, returned as a DataTypeWorkflow.Result object, for all
signals in RunName.

Alternatives
The DataTypeWorkflow.Converter.proposalIssues object function offers a command-line
approach to using the Fixed-Point Tool. See Fixed-Point Tool for more information.

Version History
Introduced in R2014b

See Also
DataTypeWorkflow.Converter | results | wrapOverflows | saturationOverflows

6 Methods

6-34

Topics
“Convert a Model to Fixed Point Using the Command Line”

 proposalIssues

6-35

saturationOverflows
Package: DataTypeWorkflow

Get results where saturation occurred

Syntax
results = saturationOverflows(converter,RunName)

Description
results = saturationOverflows(converter,RunName) returns all results in RunName, for the
model specified by the DataTypeWorkflow.Converter object, converter, that saturated during
simulation.

Examples

Get Saturation Results for Specified Run

This example shows how to get saturation results for the specified run of a
DataTypeWorkflow.Converter object.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

Create a DataTypeWorkflow.Converter object for the Controller subsystem.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

Simulate the model and store the results in a run titled InitialRun.

converter.CurrentRunName = 'InitialRun';
simulateSystem(converter);

6 Methods

6-36

Determine if there were any overflows in the run.

saturations = saturationOverflows(converter,'InitialRun')

saturations =

 Result with properties:

 ResultName: 'fxpdemo_feedback/Controller/Up Cast'
 SpecifiedDataType: 'fixdt(1,16,14)'
 CompiledDataType: 'fixdt(1,16,14)'
 ProposedDataType: ''
 Wraps: []
 Saturations: 23
 WholeNumber: 0
 SimMin: -2
 SimMax: 1.9999
 DerivedMin: []
 DerivedMax: []
 RunName: 'InitialRun'
 Comments: {'An output data type cannot be specified on this result. The output type is the same as the input type.'}
 DesignMin: []
 DesignMax: []

A saturation occurs in the Up Cast block of the Controller subsystem during the simulation. There are
no wrapping overflows.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run
character vector

Name of run to look for saturations in, specified as a character vector.
Example: saturations = saturationOverflows(converter,'Run 1')
Data Types: char

Output Arguments
results — Results that saturated
DataTypeWorkflow.Result object

Results that saturated, returned as a DataTypeWorkflow.Result object.

Version History
Introduced in R2014b

 saturationOverflows

6-37

See Also
DataTypeWorkflow.Converter | results | wrapOverflows | proposalIssues

Topics
“Convert a Model to Fixed Point Using the Command Line”

6 Methods

6-38

simulateSystem
Package: DataTypeWorkflow

Simulate system specified by converter object

Syntax
simOut = simulateSystem(converter)
simOut = simulateSystem(converter,Name,Value)
simOut = simulateSystem(converter,simIn)
simOut = simulateSystem(converter,ParameterStruct)
simOut = simulateSystem(converter,ConfigSet)

Description
simOut = simulateSystem(converter) simulates the system specified by the
DataTypeWorkflow.Converter object, converter.

simOut = simulateSystem(converter,Name,Value) simulates the system specified by the
DataTypeWorkflow.Converter object, converter, using additional options specified by one or
more Name,Value pair arguments. This function accepts the same Name,Value pairs as the sim
function.

simOut = simulateSystem(converter,simIn) simulates the system specified by the
DataTypeWorkflow.Converter object, converter, using the inputs specified in the
Simulink.SimulationInput object simIn.

simOut = simulateSystem(converter,ParameterStruct) simulates the system specified by
the DataTypeWorkflow.Converter object, converter, using the parameter values specified in
the structure, ParameterStruct.

simOut = simulateSystem(converter,ConfigSet) simulates the system specified by the
DataTypeWorkflow.Converter object, converter, using the configuration settings specified in
the model configuration set, ConfigSet.

Examples

Simulate a DataTypeWorkflow.Converter Object's System

This example shows how to simulate the converter object's system.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

 simulateSystem

6-39

Create a DataTypeWorkflow.Converter object for the Controller subsystem.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

Simulate the model.

simulateSystem(converter);

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

simIn — Simulation input for the system
Simulink.SimulationInput object | array of Simulink.SimulationInput objects

Simulation input for the system, specified as a Simulink.SimulationInput object or an array of
Simulink.SimulationInput objects.

When you use a SimulationInput object as an input to the simulateSystem function, you can
also specify the following Name,Value pair arguments.

Parameter Values
ShowSimulationManager • 'on' - Opens the Simulation Manager.

• 'off' (default) - Does not open the
Simulation Manager.

ShowProgress • 'on' - View the progress of the simulation in
the command window.

• 'off' (default) - The progress of the
simulation does not display in the command
window.

ParameterStruct — Parameter settings
structure

6 Methods

6-40

Names of the configuration parameters for the simulation, specified as a structure. The
corresponding values are the parameter values.
Data Types: struct

ConfigSet — Configuration set
Simulink.ConfigSet object

Configuration set, specified as a Simulink.ConfigSet object, that contains the values of the model
parameters.

Output Arguments
simOut — Simulation output
Simulink.SimulationOutput object

Simulation output, returned as a Simulink.SimulationOutput object. The returned object
includes the simulation outputs: logged time, states, and signals.

Tips
• To name your simulation run, before simulation, change the CurrentRunName property of the

DataTypeWorkflow.Converter object.
• simulateSystem provides functionality similar to the sim command, except that

simulateSystem preserves the model-wide data type override and instrumentation settings of
each run.

Note

• The SimulationMode property must be set to normal. The Fixed-Point Designer software does
collect simulation ranges in Rapid accelerator or Hot restart modes.

• The StopTime property cannot be set to inf.
• The SrcWorkspace parameter must be set to either base or current.

Version History
Introduced in R2014b

See Also
sim | DataTypeWorkflow.Converter

Topics
“Convert a Model to Fixed Point Using the Command Line”

 simulateSystem

6-41

verify
Package: DataTypeWorkflow

Compare behavior of baseline and autoscaled systems

Syntax
verificationResult = verify(converter,baselineRun,verificationRunName)

Description
verificationResult = verify(converter,baselineRun,verificationRunName) simulates
the system specified by the DataTypeWorkflow.Converter object, converter, and stores the run
information in a new run, verificationRun. It returns a
DataTypeWorkflow.VerificationResult object that compares the baseline and verification
runs.

Input Arguments
converter — Converter object for system to verify
DataTypeWorkflow.Converter object

Converter object for system to verify, specified as a DataTypeWorkflow.Converter object. The
DataTypeWorkflow.Converter object contains instrumentation data from the baseline run, as well
as the tolerances specified on the associated DataTypeWorkflow.ProposalSettings object. The
software determines if the behavior of the verification run is acceptable using the tolerances specified
on the ProposalSettings object.

baselineRun — Baseline run to compare against
character vector

Baseline run to compare against, specified as a character vector.
Data Types: char | string

verificationRunName — Name of the verification run to create
character vector

Name of the verification run to create during the embedded simulation, specified as a character
vector.
Data Types: char | string

Output Arguments
verificationResult — Comparison of the baseline run and the verification run
DataTypeWorkflow.VerificationResult object

Comparison of the baseline run and the verification run, returned as a
DataTypeWorkflow.VerificationResult object.

6 Methods

6-42

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.VerificationResult

Topics
“Convert a Model to Fixed Point Using the Command Line”

 verify

6-43

wrapOverflows
Package: DataTypeWorkflow

Get results where wrapping occurred

Syntax
results = wrapOverflows(converter,RunName)

Description
results = wrapOverflows(converter,RunName) returns all results in RunName, for the system
specified by the DataTypeWorkflow.Converter object, converter, that wrapped during
simulation.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object, specified as a DataTypeWorkflow.Converter object, for the system under
design.

RunName — Name of run
character vector

Name of run in which to look for wrap overflows, specified as a character vector.
Example: results = wrapOverflows(converter,'Run3')
Data Types: char

Output Arguments
results — Signals that wrapped during the specified run
DataTypeWorkflow.Result object

Signals that wrapped during the specified run, returned as a DataTypeWorkflow.Result object.

Version History
Introduced in R2014b

See Also
results | saturationOverflows | proposalIssues

Topics
“Convert a Model to Fixed Point Using the Command Line”

6 Methods

6-44

addTolerance
Package: DataTypeWorkflow

Specify numeric tolerance for converted system

Syntax
addTolerance(proposalSettings,block_path,port_index,tolerance_type,
tolerance_value)

Description
addTolerance(proposalSettings,block_path,port_index,tolerance_type,
tolerance_value) adds numeric tolerance data to a DataTypeWorkflow.ProposalSettings
object for the output signal specified by block_path and port_index, with the tolerance type
specified by tolerance_type and value specified by tolerance_value.

Examples

Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example,
you add tolerances to a DataTypeWorkflow.proposalSettings object, and then remove all
tolerances from this object.

model = 'fxpdemo_feedback';
open_system(model);

Create a DataTypeWorkflow.ProposalSettings object.

propSettings = DataTypeWorkflow.ProposalSettings;

Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

 addTolerance

6-45

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

Add a relative tolerance of 1% to the same signal.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);

Use showTolerances to see all tolerances associated with the proposal settings object.

showTolerances(propSettings)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'AbsTol'} 0.05
 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'RelTol'} 0.01

Clear the tolerances stored in the ProposalSettings object.

clearTolerances(propSettings)

Using showTolerances, verify that there are no longer any tolerances stored in the
ProposalSettings object.

showTolerances(propSettings)

Input Arguments
proposalSettings — Object that contains proposal settings
DataTypeWorkflow.ProposalSettings object

Object that contains proposal settings, specified as a DataTypeWorkflow.ProposalSettings
object. You add tolerance specifications to the DataTypeWorkflow.ProposalSettings object.

block_path — Path to block for which to add tolerance
character vector

Path to the block for which to add a tolerance to, specified as a character vector.
Data Types: char | string

port_index — Index of output port of block
scalar integer

Index of the output port of the blocks, specified as a scalar integer.
Data Types: double

tolerance_type — Type of tolerance
'AbsTol' | 'RelTol' | 'TimeTol'

Type of tolerance, specified as one of these values:

• 'AbsTol' – Absolute tolerance
• 'RelTol' – Relative tolerance
• 'TimeTol' – Time tolerance

6 Methods

6-46

Data Types: char

tolerance_value — Acceptable difference between original output and output of new
design
scalar double

Acceptable difference between the original output and the output of the new design, specified as a
scalar double.

If tolerance_type is set to 'AbsTol', then tolerance_value represents the absolute value of
the maximum acceptable difference between the original output and the output of the new design.

If tolerance_type is set to 'RelTol', then tolerance_value represents the maximum relative
difference, specified as a percentage, between the original output and the output of the new design.
For example, a value of 1e-2 indicates a maximum difference of one percent between the original
output and the output of the new design.

If tolerance_type is set to 'TimeTol', then tolerance_value defines a time interval, in
seconds, in which the maximum and minimum values define the upper and lower values to compare
against. For more information, see “How the Simulation Data Inspector Compares Data”.
Data Types: double

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.ProposalSettings | showTolerances | clearTolerances

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

 addTolerance

6-47

clearTolerances
Package: DataTypeWorkflow

Clear all tolerances specified by a DataTypeWorkflow.ProposalSettings object

Syntax
clearTolerances(proposalSettings)

Description
clearTolerances(proposalSettings) clears the absolute, relative, and time tolerances of a
proposalSettings object.

Examples

Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example,
you add tolerances to a DataTypeWorkflow.proposalSettings object, and then remove all
tolerances from this object.

model = 'fxpdemo_feedback';
open_system(model);

Create a DataTypeWorkflow.ProposalSettings object.

propSettings = DataTypeWorkflow.ProposalSettings;

Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

Add a relative tolerance of 1% to the same signal.

6 Methods

6-48

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);

Use showTolerances to see all tolerances associated with the proposal settings object.

showTolerances(propSettings)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'AbsTol'} 0.05
 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'RelTol'} 0.01

Clear the tolerances stored in the ProposalSettings object.

clearTolerances(propSettings)

Using showTolerances, verify that there are no longer any tolerances stored in the
ProposalSettings object.

showTolerances(propSettings)

Input Arguments
proposalSettings — Object that contains proposal settings
DataTypeWorkflow.ProposalSettings object

Object that contains proposal settings, specified as a DataTypeWorkflow.ProposalSettings
object. A DataTypeWorkflow.ProposalSettings object specifies tolerances and settings to use
during the data type proposal process.

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.ProposalSettings | showTolerances | addTolerance

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

 clearTolerances

6-49

showTolerances
Package: DataTypeWorkflow

Show tolerances specified for a system

Syntax
showTolerances(proposalSettings)

Description
showTolerances(proposalSettings) displays the absolute, relative, and time tolerances
specified for a system specified by the proposalSettings object. If the proposalSettings object
has no tolerances specified, the showTolerances object function does not display anything.

Examples

Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example,
you add tolerances to a DataTypeWorkflow.proposalSettings object, and then remove all
tolerances from this object.

model = 'fxpdemo_feedback';
open_system(model);

Create a DataTypeWorkflow.ProposalSettings object.

propSettings = DataTypeWorkflow.ProposalSettings;

Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

6 Methods

6-50

Add a relative tolerance of 1% to the same signal.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);

Use showTolerances to see all tolerances associated with the proposal settings object.

showTolerances(propSettings)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'AbsTol'} 0.05
 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'RelTol'} 0.01

Clear the tolerances stored in the ProposalSettings object.

clearTolerances(propSettings)

Using showTolerances, verify that there are no longer any tolerances stored in the
ProposalSettings object.

showTolerances(propSettings)

Input Arguments
proposalSettings — Object that contains proposal settings
DataTypeWorkflow.ProposalSettings object

Object that contains proposal settings, specified as a DataTypeWorkflow.ProposalSettings
object. This object specifies tolerances and settings to use during the data type proposal process.

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.ProposalSettings | clearTolerances | addTolerance

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

 showTolerances

6-51

convertToSingle
Package: DataTypeWorkflow

Convert a double-precision system to single precision

Syntax
ConversionReport = DataTypeWorkflow.Single.convertToSingle(systemToConvert)

Description
ConversionReport = DataTypeWorkflow.Single.convertToSingle(systemToConvert)
converts the system specified by systemToConvert to single precision and returns a report. Data
types that are specified as Boolean, fixed point, or one of the built-in integers are not affected by
conversion.

Examples

Convert a System to Single Precision

1 Open the system to convert to single precision.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_fuel_rate_calculation

2 Use the DataTypeWorkflow.Single.convertToSingle method to convert the system from
double precision to single precision.

report = DataTypeWorkflow.Single.convertToSingle('ex_fuel_rate_calculation')

The specified system now uses single-precision data types instead of double-precision data types.
Data types in the model that were specified as Boolean, fixed-point, or one of the built-in integers
remain the same after conversion.

Input Arguments
systemToConvert — System to convert to single precision
character vector

The system to convert from double-precision to single-precision, specified as a character vector. The
system must be open before using this method.
Data Types: char

Output Arguments
ConversionReport — Report containing results from the conversion
report

Report containing results from the conversion.

6 Methods

6-52

Alternatives
You can also use the Single Precision Converter app to convert a system from double precision to
single precision. To open the Single Precision Converter app, in the Simulink Apps tab, select Single
Precision Converter. For more information, see “Getting Started with Single Precision Converter”.

Version History
Introduced in R2016b

See Also
Single Precision Converter

Topics
“Convert a System to Single Precision”
“Getting Started with Single Precision Converter”

 convertToSingle

6-53

explore
Package: DataTypeWorkflow

Explore comparison of baseline and fixed-point implementations

Syntax
explore(verificationResult)

Description
explore(verificationResult) opens the Simulation Data Inspector with the logged data for the
DataTypeWorkflow.VerificationResult object specified by verificationResult.

Input Arguments
verificationResult — Object comparing behavior of a baseline run and a verification run
DataTypeWorkflow.VerificationResult object

Object comparing the behavior of a baseline run and a verification run, specified as a
DataTypeWorkflow.VerificationResult object.

Version History
Introduced in R2019a

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.VerificationResult

Topics
“Convert a Model to Fixed Point Using the Command Line”

6 Methods

6-54

getNumDataPointsInfo
Package: fixed

Get information about number of data points in generated data

Syntax
datainfo = getNumDataPointsInfo(datagenerator)

Description
datainfo = getNumDataPointsInfo(datagenerator) returns information about the data
points generated by the fixed.DataGenerator object, datagenerator.

Examples

Get information about number of data points in generated data

The getNumDataPointsInfo function returns information related to the number of data points in
the data generated from a fixed.DataGenerator object.

dataspec = fixed.DataSpecification('fixdt(1,16,13)',...
 'Intervals', {-1,1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En13'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20);
getNumDataPointsInfo(datagen)

ans =

 struct with fields:

 Current: 20
 Next: 21
 Min: 5
 Max: 75

The output indicates that there are currently 20 data combinations in the generated data. The
maximum number of combinations that the DataGenerator object would produce is 75.

 getNumDataPointsInfo

6-55

Get information about number of data points for multidimensional data

When the dimension of the generated data is greater than one, it can be useful to find the next
possible size of generated data.

Create a DataGenerator object where the associated DataSpecification object specifies 2-
dimensional data.

dataspec = fixed.DataSpecification('single', 'Dimensions', 2);
datagen = fixed.DataGenerator('DataSpecifications', dataspec)

datagen =

 fixed.DataGenerator with properties:

 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 100000

The DataGenerator object uses the default limit of 100000 data points in the generated data.

Get information about the number of data points generated.

getNumDataPointsInfo(datagen)

ans =

 struct with fields:

 Current: 99856
 Next: 100489
 Min: 81
 Max: 130321

The current size of the generated data is 99856 points. By setting the NumDataPointsLimit
property of the DataGenerator object to the value specified in Max, you can get the maximum
possible number of data combinations.

Set the NumDataPointsLimit property of the DataGenerator object to the maximum possible
number of data points.

datagen.NumDataPointsLimit = 130321;
getNumDataPointsInfo(datagen)

ans =

 struct with fields:

 Current: 130321
 Next: 130321
 Min: 81
 Max: 130321

Input Arguments
datagenerator — Object from which you want to get information
fixed.DataGenerator object

Object from which you want to get information, specified as a fixed.DataGenerator object.

6 Methods

6-56

Output Arguments
datainfo — Information about the number of data points
struct

Information about the number of data points in the data generated from a fixed.DataGenerator
object, returned as a struct with the following fields.

Field Description
Current The number of data combinations in the

generated data.
Next Next possible size of data combinations.
Min Minimum number of combinations of data

required to be in the generated data.

This number is equal to the number of boundary
values and mandatory values in the
DataSpecification objects associated with the
DataGenerator object.

Max Maximum number of combinations that could be
in the generated data.

Version History
Introduced in R2019b

See Also
fixed.DataGenerator | getUniqueValues | outputAllData

 getNumDataPointsInfo

6-57

getUniqueValues
Package: fixed

Get unique values from fixed.DataGenerator object

Syntax
data = getUniqueValues(datagenerator)

Description
data = getUniqueValues(datagenerator) returns all unique values in the data generated by
the fixed.DataGenerator object, datagenerator.

Examples

Get unique values in data from DataGenerator object

In data generated from a fixed.DataGenerator object, there can be repeated values. Use the
getUniqueValues function to get all of the unique values in the data set.

dataspec = fixed.DataSpecification('fixdt(1,16,13)',...
 'Intervals', {-1,1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En13'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20);
getUniqueValues(datagen)

ans =

 -1.0000
 -0.9999
 -0.4999
 -0.2500
 -0.0624
 -0.0313
 -0.0039
 -0.0021
 -0.0005
 -0.0002
 0

6 Methods

6-58

 0.0010
 0.0018
 0.0078
 0.0155
 0.0157
 0.1249
 0.1251
 0.9999
 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
datagenerator — Input fixed.DataGenerator object
fixed.DataGenerator object

Input fixed.DataGenerator object to get unique values from.

Output Arguments
data — Unique set of values in data
scalar | vector | matrix

Unique set of data generated by the input fixed.DataGenerator object, returned as a scalar,
vector, or matrix.

Version History
Introduced in R2019b

See Also
fixed.DataGenerator | getNumDataPointsInfo | outputAllData

 getUniqueValues

6-59

outputAllData
Package: fixed

Get data from fixed.DataGenerator object

Syntax
data = outputAllData(datagenerator)
data = outputAllData(datagenerator, format)

Description
data = outputAllData(datagenerator) returns the data generated by the
fixed.DataGenerator object, datagenerator.

data = outputAllData(datagenerator, format) returns the data generated by the
fixed.DataGenerator object, datagenerator, in the format specified by format.

Examples

Get data as an array

Get the data from a fixed.DataGenerator object, returned as an array of values.

dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1});
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20)

datagen =

 fixed.DataGenerator with properties:

 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 20

Use the outputAllData function to access the data in the DataGenerator object.

data = outputAllData(datagen)

data =

 1×3 int8 row vector

 -1 0 1

The function returns the data in an array with the type specified by the fixed.DataSpecification
object.

6 Methods

6-60

Get data as a timeseries object

Get the data from a fixed.DataGenerator object, returned as a timeseries object.

dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1});
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 2000)

datagen =

 fixed.DataGenerator with properties:

 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 20000

Specify the format of the output type to get a timeseries object.

data = outputAllData(datagen, 'timeseries')

 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [3x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [3x1 int8]
 DataInfo: [1x1 tsdata.datametadata]

Input Arguments
datagenerator — Object from which you want to get data
fixed.DataGenerator object

Object from which you want to get data, specified as a fixed.DataGenerator object.

format — Format in which you want data returned
'array' (default) | 'timeseries' | 'dataset'

Format in which you want data returned, specified as either 'array', 'timeseries', or
'dataset'.

Specifying 'dataset' returns a Simulink.SimulationData.Dataset object. Specifying
'timeseries' returns a timeseries object.
Example: data = outputAllData(datagen, 'timeseries');
Data Types: char

Output Arguments
data — Data from the DataGenerator object
scalar | vector | matrix | timeseries object

Data from the DataGenerator object, returned as either a scalar, vector, matrix, or timeseries
object.

 outputAllData

6-61

Version History
Introduced in R2019b

See Also
fixed.DataGenerator | getUniqueValues | getNumDataPointsInfo

6 Methods

6-62

applyOnRootInport
Package: fixed

(To be removed) Apply properties to Inport block

Note applyOnRootInport will be removed in a future release.

Syntax
applyOnRootInport(dataspec, model, inportnumber)

Description
applyOnRootInport(dataspec, model, inportnumber) applies the properties specified in
fixed.DataSpecification object, dataspec to the specified Inport block in model.

Input Arguments
dataspec — Properties to apply to Inport block
fixed.DataSpecification object

Properties to apply to Inport block, specified as a fixed.DataSpecification object.

model — Model containing Inport block
character vector

Name of the model containing the Inport block to apply settings to, specified as a character vector.
Data Types: char

inportnumber — Number of Inport block
scalar integer

Port number of root-level Inport block on which you want to apply properties from the
fixed.DataSpecification object. The following properties of the DataSpecification object
are applied to the block:

• Data type
• Complexity
• Dimensions

Data Types: double

Version History
Introduced in R2019b

applyOnRootInport will be removed
Warns starting in R2020a

 applyOnRootInport

6-63

applyOnRootInport will be removed in a future release.

See Also
fixed.DataSpecification | contains

6 Methods

6-64

contains
Package: fixed

Determine whether value domain of a DataSpecification object contains a specified value

Syntax
bool = contains(dataspec, value)

Description
bool = contains(dataspec, value) returns a boolean value indicating whether the value
domain of the fixed.DataSpecification object, dataspec, contains the value, value.

Examples

Determine whether a fixed.DataSpecification object contains a value

Use the contains function to determine whether a fixed.DataSpecification object contains a
specified value.

dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'int8'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Determine whether dataspec contains the value 0.

bool = contains(dataspec, 0)

bool =

 logical

 1

Input Arguments
dataspec — fixed.DataSpecification object
fixed.DataSpecification object

Input fixed.DataSpecification object.

 contains

6-65

value — Value
scalar | vector

Value or values to check for in the fixed.DataSpecification object, specified as a scalar, or
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
bool — Whether the fixed.DataSpecification object contains the value
true | false | vector of logical values

Whether the fixed.DataSpecification object contains the value, returned as a boolean value.

If the value argument is a vector, the output is a boolean vector of the same length.

Version History
Introduced in R2019b

See Also
fixed.DataSpecification | applyOnRootInport

6 Methods

6-66

contains
Package: fixed

Determine if one fixed.Interval object contains another

Syntax
bool = contains(A, B)

Description
bool = contains(A, B) returns a boolean indicating whether fixed.Interval object A contains
the fixed.Interval object B.

Examples

Determine if a fixed.Interval object contains another

Create two fixed.Interval objects. Use the contains function to determine if the intervals in
interval2 are contained within the corresponding intervals in interval1.

interval1 = fixed.Interval({0,1}, {2,3}, {3,4});
interval2 = fixed.Interval({0,0.5}, {2.5, 3}, {4,5});
bool = contains(interval1, interval2)

bool = 1x3 logical array

 1 1 0

When the second input is a scalar Interval object, contains determines whether each interval of
the first input contains the interval of the second input.

interval2 = fixed.Interval(0,1);
bool = contains(interval1, interval2)

bool = 1x3 logical array

 1 0 0

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

 contains

6-67

If A is an array of Interval objects, B must be a scalar Interval object or an Interval object
with the same dimensions as A.

Output Arguments
bool — Whether B is contained in A
true | false | logical array

Whether fixed.Interval object B is contained in fixed.Interval object A, returned as a logical
value.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

Version History
Introduced in R2019b

See Also
fixed.Interval | intersect | overlaps | setdiff | union | unique

6 Methods

6-68

intersect
Package: fixed

Intersection of fixed.Interval objects

Syntax
C = intersect(A, B)

Description
C = intersect(A, B) returns the intersection of fixed.Interval objects A and B.

Examples

Get intersection of two fixed.Interval objects

Create two fixed.Interval objects.

interval1 = fixed.Interval(-10,10)

interval1 =
 [-10,10]

 1x1 fixed.Interval with properties:

 LeftEnd: -10
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true

interval2 = fixed.Interval(0,20)

interval2 =
 [0,20]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true

Find the intersection of the two Interval objects.

intervalIntersection12 = intersect(interval1,interval2)

intervalIntersection12 =
 [0,10]

 1x1 fixed.Interval with properties:

 intersect

6-69

 LeftEnd: 0
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true

The output is an Interval object whose range is the intersection of the ranges of the two input
Interval objects.

When the ranges of the two input Interval objects do not overlap, the output is an empty
Interval object.

interval3 = fixed.Interval(100,200)

interval3 =
 [100,200]

 1x1 fixed.Interval with properties:

 LeftEnd: 100
 RightEnd: 200
 IsLeftClosed: true
 IsRightClosed: true

intervalIntersection13 = intersect(interval1,interval3)

intervalIntersection13 =

 1x0 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
C — Intersection of fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Intersection of input fixed.Interval objects, returned as a fixed.Interval object or an array of
fixed.Interval objects.

The output Interval object contains all values in both inputs, A and B.

Version History
Introduced in R2019b

6 Methods

6-70

See Also
fixed.Interval | contains | overlaps | setdiff | union | unique

 intersect

6-71

isDegenerate
Package: fixed

Determine whether the left and right ends of a fixed.Interval object are degenerate

Syntax
bool = isDegenerate(A)

Description
bool = isDegenerate(A) returns a boolean indicating whether the left and right ends of the
fixed.Interval object A are the same, or equivalently, whether the interval contains only one
point.

Examples

Determine if a fixed.Interval object has degenerate end points

Create a fixed.Interval object. Use the isDegenerate function to determine whether the left
and right ends of the Interval object are the same.

interval = fixed.Interval({-pi,pi},{1,1});
bool = isDegenerate(interval)

bool = 1x2 logical array

 0 1

The output is a logical 0 when the left and right ends of the interval are different, and 1 when they
are the same.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether left and right ends of A are degenerate
true | false | logical array

6 Methods

6-72

Indicates whether the fixed.Interval object A has degenerate end points. Returns 1 (true) when
the left and right ends of A are the same, or equivalently, when the interval contains only one point,
and 0 (false) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

Version History
Introduced in R2019b

See Also
isLeftBounded | isRightBounded | isnan | fixed.Interval

 isDegenerate

6-73

isLeftBounded
Package: fixed

Determine whether a fixed.Interval object is left-bounded

Syntax
bool = isLeftBounded(A)

Description
bool = isLeftBounded(A) returns a boolean indicating whether the fixed.Interval object A is
left-bounded.

Examples

Determine if a fixed.Interval object is left bounded

Create a fixed.Interval object. Use the isLeftBounded function to determine whether the
interval is bounded on the left.

interval = fixed.Interval({-pi,pi},{-inf,1});
bool = isLeftBounded(interval)

bool = 1x2 logical array

 1 0

The output is a logical 1 when the left end of the interval is bounded, and 0 otherwise.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether left end of A is bounded
true | false | logical array

Indicates whether the fixed.Interval object A is left-bounded, returned as a logical value. Returns
0 (false) when A contains -inf, and 1 (true) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

6 Methods

6-74

Version History
Introduced in R2019b

See Also
isDegenerate | isRightBounded | isnan | fixed.Interval

 isLeftBounded

6-75

isnan
Package: fixed

Determine whether a fixed.Interval object is NaN

Syntax
bool = isnan(A)

Description
bool = isnan(A) returns a boolean indicating whether a fixed.Interval object A is NaN.

Examples

Determine if a fixed.Interval object is NaN

Create a fixed.Interval object. Use the isnan function to determine whether the Interval
object is not a number.

interval = fixed.Interval({-pi,pi},{nan,1},{nan,nan});
bool = isnan(interval)

bool = 1x3 logical array

 0 1 1

The output is a logical 1 when the interval contains one or more NaN elements, and 0 otherwise.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether elements of A are NaN
true | false | logical array

Indicates whether the fixed.Interval object A is NaN, returned as a logical value.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

6 Methods

6-76

Version History
Introduced in R2019b

See Also
isDegenerate | isLeftBounded | isRightBounded | fixed.Interval

 isnan

6-77

isRightBounded
Package: fixed

Determine whether the a fixed.Interval object is right-bounded

Syntax
bool = isRightBounded(A)

Description
bool = isRightBounded(A) returns a boolean indicating whether the fixed.Interval object A
is right-bounded.

Examples

Determine if a fixed.Interval object is right bounded

Create a fixed.Interval object. Use the isRightBounded function to determine whether the
interval is bounded on the right.

interval = fixed.Interval({-pi,pi},{-1,inf});
bool = isRightBounded(interval)

bool = 1x2 logical array

 1 0

The output is logical 1 when the right end of the interval is bounded, and 0 otherwise.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether right end of A is bounded
Boolean scalar | Boolean array

Indicates whether the fixed.Interval object A is right-bounded, returned as a logical value.
Returns 0 (false) when A contains inf, and 1 (true) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

6 Methods

6-78

Version History
Introduced in R2019b

See Also
isDegenerate | isLeftBounded | isnan | fixed.Interval

 isRightBounded

6-79

overlaps
Package: fixed

Determine if two fixed.Interval objects overlap

Syntax
bool = overlaps(A, B)

Description
bool = overlaps(A, B) returns a boolean indicating whether two fixed.Interval objects
overlap.

Examples

Determine if two fixed.Interval objects overlap

Create two fixed.Interval objects and determine if their ranges overlap.

interval1 = fixed.Interval(-1, 1);
interval2 = fixed.Interval(0, 1);
overlaps(interval1, interval2)

ans =

 logical

 1

When the ranges of the Interval objects overlap, the overlaps function returns a value of 1, or
true.

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
bool — Whether the intervals overlap
true | false | vector of logical values

Whether the input fixed.Interval objects overlap, returned as a logical value or a vector of logical
values.

6 Methods

6-80

Version History
Introduced in R2019b

See Also
fixed.Interval | contains | intersect | setdiff | union | unique

 overlaps

6-81

quantize
Package: fixed

Quantize interval to range of numeric data type

Syntax
quantizedinterval = quantize(interval, numerictype)
quantizedinterval = quantize(interval, numerictype, Name,Value)

Description
quantizedinterval = quantize(interval, numerictype) returns the quantized range of
fixed.Interval object, interval, quantized to the numeric type specified by numerictype.

quantizedinterval = quantize(interval, numerictype, Name,Value) returns the
quantized range of fixed.Interval object, interval, with additional properties specified as
name-value pairs.

Examples

Quantize a numeric interval to uint8

Create a fixed.Interval object and find the range of the Interval object quantized to an
unsigned 8-bit integer.

interval = fixed.Interval(-200,200);
quantizedInterval = quantize(interval, 'fixdt(0,8,0)')

quantizedInterval =

 1×2 uint8 row vector

 0 200

Because fixdt(0,8,0) is equivalent to uint8, the quantize function returns the quantized range
as a uint8 row vector with the endpoints within the representable range of the numeric type.

To return the quantized row vector as a fixed-point data type, set the 'PreferBuiltIn' property to
false.

quantizedInterval = quantize(interval, 'fixdt(0,8,0)',...
 'PreferBuiltIn', false)

quantizedInterval =

 0 200

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned

6 Methods

6-82

 WordLength: 8
 FractionLength: 0

Input Arguments
interval — Input fixed.Interval objects to quantize
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

numerictype — Numeric data type
Simulink.Numerictype object | embedded.numerictype object | character vector

Numeric data type to quantize the Interval, specified as a Simulink.Numerictype object, an
embedded.numerictype object, or a character vector representing a numeric data type, for
example, 'single'.
Example: quantizedinterval = quantize(interval, 'fixdt(1,16,8)');

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: interval = quantize(interval, 'fixdt(1,16,0)', 'PreferBuiltIn', false,
'PreferStrict', true);

PreferBuiltIn — Quantize to built-in data type when possible
true (default) | false

When this property is true, if the specified numerictype has an equivalent built-in integer type the
software returns the built-in type. For example, when this property is true, a specified numerictype
of 'fixdt(1,8,0)' would return an int8.
Data Types: logical

PreferStrict — Quantize end points to numeric type
false (default) | true

When this property is true, all ends are quantized to the closest representable values within original
intervals regardless of whether the intervals are closed or open.
Data Types: logical

Output Arguments
quantizedinterval — Quantized interval range
N-by-2 matrix

N-by-2 matrix with rows consisting of endpoints of input Interval objects quantized to the numeric
data type specified by numerictype.

 quantize

6-83

When the 'PreferStrict' property is set to false, the end points after quantization may lie
outside the original interval.

Version History
Introduced in R2019b

See Also
fixed.Interval | contains | intersect | overlaps | union | unique

6 Methods

6-84

setdiff
Package: fixed

Set difference of fixed.Interval objects

Syntax
C = setdiff(A, B)

Description
C = setdiff(A, B) returns a fixed.Interval object containing the values in fixed.Interval
object A, but not in B.

Examples

Get set difference of two fixed.Interval objects

Create two fixed.Interval objects. Use the setdiff function to find the values that are in
Interval object interval1 but not in interval2. In this example, interval1 contains all values
between 0 and 1, but interval2 only contains values from 0 to 0.5, so the output Interval object
has an interval from 0.5 to 1.

interval1 = fixed.Interval(0,1);
interval2 = fixed.Interval(0,0.5);
intervaldiff = setdiff(interval1, interval2)

intervaldiff =
 (0.5000,1]

 1x1 fixed.Interval with properties:

 LeftEnd: 0.5000
 RightEnd: 1
 IsLeftClosed: false
 IsRightClosed: true

Create an interval object that excludes zero

You can use the setdiff function to create an interval object based on another interval, while
excluding zero.

Create an Interval object that contains zero.

myInterval = fixed.Interval(-1,1);

 setdiff

6-85

To create an interval based on the Interval object, myInterval, use the setdiff function.
Include the constructor for a degenerate Interval object containing only zero as the second
argument.

myInterval_nozero = setdiff(myInterval, {0});

myInterval_nozero =

 [-1,0) (0,1]

 1x2 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

The output Interval object, myInterval_nozero, contains two intervals, each with an open end
point at zero. Therefore, the interval contains all values between -1 and 1, except 0.

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
C — Set difference of fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Set difference of input fixed.Interval objects, returned as a fixed.Interval object or an array
of fixed.Interval objects.

The output Interval object contains all values in first input, A, but not in B.

Version History
Introduced in R2019b

See Also
fixed.Interval | contains | intersect | overlaps | union

6 Methods

6-86

union
Package: fixed

Union of fixed.Interval objects

Syntax
C = union(A, B)

Description
C = union(A, B) returns the union of fixed.Interval objects A and B.

Examples

Get the union of two fixed.Interval objects

Create two fixed.Interval objects.

interval1 = fixed.Interval(-10, 10)

interval1 =
 [-10,10]

 1x1 fixed.Interval with properties:

 LeftEnd: -10
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true

interval2 = fixed.Interval(0,20)

interval2 =
 [0,20]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true

Find the union of the two Interval objects.

intervalUnion = union(interval1, interval2)

intervalUnion =
 [-10,20]

 1x1 fixed.Interval with properties:

 union

6-87

 LeftEnd: -10
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true

The output is an Interval object whose range is the union of the ranges of the two input objects.

When the ranges of the two input Interval objects do not overlap, the output is an array of
Interval objects covering the union of the ranges of the inputs.

interval3 = fixed.Interval(100, 200)

interval3 =
 [100,200]

 1x1 fixed.Interval with properties:

 LeftEnd: 100
 RightEnd: 200
 IsLeftClosed: true
 IsRightClosed: true

intervalUnion = union(interval1, interval3)

intervalUnion =
 [-10,10] [100,200]

 1x2 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
C — Union of fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Union of input fixed.Interval objects, returned as a fixed.Interval object or an array of
fixed.Interval objects.

The output Interval object contains all values in A or B.

Version History
Introduced in R2019b

6 Methods

6-88

See Also
fixed.Interval | contains | intersect | overlaps | setdiff

 union

6-89

unique
Package: fixed

Get set of unique values in fixed.Interval object

Syntax
uniqueinterval = unique(interval)

Description
uniqueinterval = unique(interval) returns a vector of incrementally sorted and non
overlapping intervals that represent an equivalent value set as fixed.Interval object, interval.

Examples

Create a non-overlapping set of intervals from an array of Interval objects

Use the unique function to get a non-overlapping set of intervals from an array of Interval objects.

intervals = fixed.Interval({-5,5},{-10,10},{4,20},{50,100})

 [-5,5] [-10,10] [4,20] [50,100]

 1x4 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

The first three intervals represented in the object overlap with one another. The fourth interval is
disjointed from the set.

uniqueInterval = unique(intervals)

uniqueInterval =

 [-10,20] [50,100]

 1x2 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

6 Methods

6-90

The output, uniqueInterval, an array of two Interval objects, merges the three overlapping
intervals into a single Interval object.

Input Arguments
interval — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
uniqueinterval — Non-overlapping set of Interval objects
fixed.Interval object | array of fixed.Interval objects

Non-overlapping set of Interval objects, returned as a fixed.Interval object or an array of
fixed.Interval objects.

When interval is a scalar Interval object, the output is the same as the input.

Version History
Introduced in R2019b

See Also
fixed.Interval | contains | intersect | overlaps | setdiff | union

 unique

6-91

quantize
Quantize fi values using fixed.Quantizer object

Note quantize and fixed.Quantizer are not recommended. Use cast, zeros, ones, eye, or
subsasgn instead. For more information, see Compatibility Considerations.

Syntax
y = quantize(q,x)

Description
y = quantize(q,x) uses the fixed.Quantizer object q to quantize x. x can be any fixed-point
fi number except a Boolean value.

• If x is a scaled double, the data of the output y will be the same as the data of the input x. Only
the fixed-point settings of y will change.

• When x is a double or single, then y = x. This functionality allows you to share the same code for
both floating-point data types and fixed-point fi data types when quantizers are present.

Examples

Reduce Word Length Resulting From Adding Two Fixed-Point Numbers

Use fixed.Quantizer to reduce the word length that results from adding two fixed-point numbers.

q = fixed.Quantizer
x1 = fi(0.1,1,16,15);
x2 = fi(0.8,1,16,15);
y = quantize(q,x1+x2)

q =

 fixed.Quantizer with properties:

 Signed: 1
 WordLength: 16
 SlopeAdjustmentFactor: 1
 FixedExponent: -15
 Bias: 0
 Signedness: 'Signed'
 Slope: 3.0518e-05
 FractionLength: 15
 RoundingMethod: 'Floor'
 OverflowAction: 'Wrap'

y =

6 Methods

6-92

 0.9000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Quantize Binary-Point Scaled Fixed-Point fi to Slope-Bias Scaled Fixed-Point fi

Use a fixed.Quantizer object to change a binary-point scaled fixed-point fi to a slope-bias scaled
fixed-point fi.

x = fi(pi,1,16,13)
q = fixed.Quantizer(numerictype(1,7,1.6,0.2),'Round','Saturate')
y = quantize(q,x)

x =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

q =

 fixed.Quantizer with properties:

 Signed: 1
 WordLength: 7
 SlopeAdjustmentFactor: 1.6000
 FixedExponent: 0
 Bias: 0.2000
 Signedness: 'Signed'
 Slope: 1.6000
 FractionLength: 0
 RoundingMethod: 'Round'
 OverflowAction: 'Saturate'

y =

 3.4000

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2

Input Arguments
q — Data type properties
fixed.Quantizer object

 quantize

6-93

Data type properties to use for quantization, specified as a fixed.Quantizer object.

x — Data to quantize
fi object

Data to quantize, specified as a fi object.
Data Types: fi

Version History
Introduced in R2011b

quantize is not recommended
Not recommended starting in R2013a

quantize and fixed.Quantizer are not recommended. Use cast, zeros, ones, eye, or
subsasgn instead. There are no plans to remove fixed.Quantizer.

Starting in R2013a, use cast, zeros, ones, eye, or subsasgn instead. The cast, zeros, ones,
eye, and subsasgn functions can quantize other data types in addition to fi objects.

Not Recommended Recommended
x = fi(pi,1,16,13);

q = fixed.Quantizer(numerictype(1,7,1.6,0.2),'Round','Saturate');
y = quantize(q,x)

y =

 3.4000

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2

x = fi(pi,1,16,13);

F = fimath('RoundingMethod','Round','OverflowAction','Saturate');
nt = fi([],1,7,1.6,0.2,F);
y = cast(x,'like',nt)

y =

 3.4000

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 7
 Slope: 1.6
 Bias: 0.2

See Also
fixed.Quantizer

6 Methods

6-94

FunctionApproximation.compressLookupTables
Compress all Lookup Table blocks in a system

Syntax
CompressionResult = FunctionApproximation.compressLookupTables(system)
CompressionResult = FunctionApproximation.compressLookupTables(system,
Name,Value)

Description
CompressionResult = FunctionApproximation.compressLookupTables(system)
compresses all n-D Lookup Table blocks in the specified system. The compressed Lookup Table blocks
output the same numerical results as the original Lookup Table blocks within the bounds of the
breakpoints.

You can achieve additional memory savings by compressing each lookup table in the model
individually and specifying tolerances for the compressed lookup table.

CompressionResult = FunctionApproximation.compressLookupTables(system,
Name,Value) compresses all n-D Lookup Table blocks in the specified system with additional
properties specified by name and value pair arguments.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

 FunctionApproximation.compressLookupTables

6-95

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'

6 Methods

6-96

 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]
 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Input Arguments
system — Name of model or subsystem in which to compress all Lookup Table blocks
character vector

Name of model or subsystem in which to compress all n-D Lookup Table blocks, specified as a
character vector.
Example: compressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys');

Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: CompressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys', 'WordLengths',
[8,16,32])

Display — Whether to display details of each iteration of the optimization
true (default) | false

Whether to display details of each iteration of the optimization, specified as a logical. A value of 1
results in information in the command window at each iteration of the approximation process. A value
of 0 does not display information until the approximation is complete.
Data Types: logical

WordLengths — Word lengths permitted in the lookup table approximate
integer scalar | integer vector

Specify the word lengths, in bits, that can be used in the lookup table approximate based on your
intended hardware. For example, if you intend to target an embedded processor, you can restrict the
data types in your lookup table to native types, 8, 16, and 32. The word lengths must be between 1
and 128.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 FunctionApproximation.compressLookupTables

6-97

FindOptions — Options for finding lookup tables in system
Simulink.FindOptions object

Simulink.FindOptions object specifying options for finding lookup tables in the system.

Output Arguments
CompressionResult — LUTCompressionResult object created during compression of
lookup tables
LUTCompressionResult object

Compression result object created during compression of the Lookup Table blocks in the model,
returned as a LUTCompressionResult object.

Version History
Introduced in R2020a

See Also
Classes
LUTCompressionResult

Functions
replace | revert

6 Methods

6-98

lutmemoryusage
Class: FunctionApproximation.LUTMemoryUsageCalculator
Package: FunctionApproximation

Calculate memory used by lookup table blocks in a system

Syntax
memory = lutmemoryusage(calculator,system)

Description
memory = lutmemoryusage(calculator,system) calculates the memory used by each lookup
table block in the specified model or subsystem.

Input Arguments
calculator — FunctionApproximation.LUTMemoryUsageCalculator object
FunctionApproximation.LUTMemoryUsageCalculator

FunctionApproximation.LUTMemoryUsageCalculator object.

system — Model or subsystem containing lookup table blocks
character vector

Model or subsystem containing lookup table blocks, specified as a character vector.
Data Types: char

Output Arguments
memory — Memory used by the lookup tables in the system
table

Table displaying the memory, in bits, used by each lookup table block in the specified system.

Examples
Calculate the Total Memory Used by Lookup Tables in a Model

Use the FunctionApproximation.LUTMemoryUsageCalculator class to calculate the memory
used by lookup table blocks in a model.

Create a FunctionApproximation.LUTMemoryUsageCalculator object.

calculator = FunctionApproximation.LUTMemoryUsageCalculator

Use the lutmemoryusage method to get the memory used by each lookup table block in the
sldemo_fuelsys model.

 lutmemoryusage

6-99

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample','supportingfile','sldemo_fuelsys');
lutmemoryusage(calculator, 'sldemo_fuelsys')

ans =

 5×2 table

 BlockPath MemoryUsage
 ___ ___________

 1 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant" 1516
 2 "sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation" 1516
 3 "sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation" 1436
 4 "sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation" 1364
 5 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki" 192

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

6 Methods

6-100

approximate
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Generate a Lookup Table block or lookup table as a MATLAB function from a
FunctionApproximation.LUTSolution

Syntax
approximate(solution)
approximate(solution,'Name',fileName)
approximate(solution,'Name',fileName,'Path',filePath)

Description
approximate(solution) generates either a Simulink model containing a subsystem made up of
the Lookup Table block, or a lookup table as a MATLAB function, depending on the
ApproximateSolutionType property of the FunctionApproximation.Options object. Data and
breakpoints of the generated lookup table are specified by the
FunctionApproximation.LUTSolution object, solution. The generated Lookup Table block is
surrounded with Data Type Conversion blocks.

approximate(solution,'Name',fileName) generates a lookup table as a MATLAB function with
the name of the generated .m script specified by fileName. This option is only available when the
ApproximateSolutionType property of FunctionApproximation.Options is set to MATLAB.

approximate(solution,'Name',fileName,'Path',filePath) generates a lookup table as a
MATLAB function with the file path for the generated .m script specified by filePath. This option is
only available when the ApproximateSolutionType property of
FunctionApproximation.Options is set to MATLAB.

Input Arguments
solution — Solution to generate lookup table from
FunctionApproximation.LUTSolution object

The solution to generate a lookup table from, specified as a
FunctionApproximation.LUTSolution object.

fileName — File name for generated MATLAB function
approximateFunction_timeStamp (default) | character array

File name for generated MATLAB function, specified as a character array. If no custom file name is
specified, a time stamp is used to generate a unique file name. For example,
approximateFunction_20210617T111033122.m.
Example: approximate(solution,'Name','myLUT')
Data Types: char

 approximate

6-101

filePath — File path for generated MATLAB function
current working directory (default) | character array

File path for generated MATLAB function, specified as a character array. If no custom file path name
is specified, the current working directory is used.
Example: approximate(solution,'Name','myLUT','Path','C:\Users\myPath')
Data Types: char

Examples
Generate a Lookup Table Approximating a Function

Create a FunctionApproximation.Problem object defining the function you want to approximate.

problem = FunctionApproximation.Problem('tanh')

problem =

 1x1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: @(x)tanh(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,12)"
 InputLowerBounds: -8
 InputUpperBounds: 8
 OutputType: "numerictype(1,16,15)"
 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. Approximate the tanh function using the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenSpacing	7.812500e-03, 7.229091e-01
1	1248	1	76	16	16	EvenSpacing	7.812500e-03, 4.368265e-03
2	1232	1	75	16	16	EvenSpacing	7.812500e-03, 4.439035e-03
3	944	1	57	16	16	EvenSpacing	7.812500e-03, 7.780470e-03
4	928	1	56	16	16	EvenSpacing	7.812500e-03, 6.110240e-03
5	656	0	39	16	16	EvenSpacing	7.812500e-03, 1.678519e-02
6	640	0	38	16	16	EvenSpacing	7.812500e-03, 1.660649e-02
7	784	1	47	16	16	EvenSpacing	7.812500e-03, 7.743777e-03
8	704	1	42	16	16	EvenSpacing	7.812500e-03, 7.805676e-03
9	672	1	40	16	16	EvenSpacing	7.812500e-03, 7.809550e-03
10	368	0	21	16	16	EvenSpacing	7.812500e-03, 4.855583e-02
11	512	0	30	16	16	EvenSpacing	7.812500e-03, 2.773526e-02
12	592	0	35	16	16	EvenSpacing	7.812500e-03, 2.088471e-02
13	624	0	37	16	16	EvenSpacing	7.812500e-03, 1.870074e-02
14	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03
15	384	0	12	16	16	ExplicitValues	7.812500e-03, 1.196141e-02
16	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 14 | 384 | 1 | 12 | 16 | 16 | ExplicitValues | 7.812500e-03, 7.812317e-03 |

6 Methods

6-102

solution =

 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 14
 Feasible: "true"

Generate a Simulink™ subsystem containing a Lookup Table block approximating the tanh function.

approximate(solution)

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

Functions
solve | approximate | compare

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”
“Generate an Optimized Lookup Table as a MATLAB Function Programmatically”
“Generate an Optimized Lookup Table as a MATLAB Function”

 approximate

6-103

compare
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Compare numerical results of FunctionApproximation.LUTSolution to original function or
lookup table

Syntax
data = compare(solution)

Description
data = compare(solution) plots the difference between the data contained in the
FunctionApproximation.LUTSolution object, solution, and the original lookup table, function,
or Math Function block.

Input Arguments
solution — Solution to compare original behavior against
FunctionApproximation.LUTSolution object

The solution to compare original behavior against, specified as a
FunctionApproximation.LUTSolution object.

Output Arguments
data — Struct containing data comparing original and the solution
struct

Struct containing data comparing the original function or lookup table and the approximation
contained in the solution.

Examples
Compare Function Approximation to Original Function

Create a FunctionApproximation.Problem object defining the function you want to approximate.

problem = FunctionApproximation.Problem('tanh')

problem =
 1x1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: @(x)tanh(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,12)"
 InputLowerBounds: -8
 InputUpperBounds: 8
 OutputType: "numerictype(1,16,15)"

6 Methods

6-104

 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. Approximate the tanh function using the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenSpacing	7.812500e-03, 7.229091e-01
1	1248	1	76	16	16	EvenSpacing	7.812500e-03, 4.368265e-03
2	1232	1	75	16	16	EvenSpacing	7.812500e-03, 4.439035e-03
3	944	1	57	16	16	EvenSpacing	7.812500e-03, 7.780470e-03
4	928	1	56	16	16	EvenSpacing	7.812500e-03, 6.110240e-03
5	656	0	39	16	16	EvenSpacing	7.812500e-03, 1.678519e-02
6	640	0	38	16	16	EvenSpacing	7.812500e-03, 1.660649e-02
7	784	1	47	16	16	EvenSpacing	7.812500e-03, 7.743777e-03
8	704	1	42	16	16	EvenSpacing	7.812500e-03, 7.805676e-03
9	672	1	40	16	16	EvenSpacing	7.812500e-03, 7.809550e-03
10	368	0	21	16	16	EvenSpacing	7.812500e-03, 4.855583e-02
11	512	0	30	16	16	EvenSpacing	7.812500e-03, 2.773526e-02
12	592	0	35	16	16	EvenSpacing	7.812500e-03, 2.088471e-02
13	624	0	37	16	16	EvenSpacing	7.812500e-03, 1.870074e-02
14	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03
15	384	0	12	16	16	ExplicitValues	7.812500e-03, 1.196141e-02
16	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 14 | 384 | 1 | 12 | 16 | 16 | ExplicitValues | 7.812500e-03, 7.812317e-03 |

solution =
 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 14
 Feasible: "true"

Compare the original function and the function approximation.

data = compare(solution)

 compare

6-105

data = struct with fields:
 Breakpoints: [65536x1 double]
 Original: [65536x1 double]
 Approximate: [65536x1 double]

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

6 Methods

6-106

Functions
solve | approximate | compare

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 compare

6-107

displayallsolutions
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Display all solutions found during function approximation

Syntax
displayallsolutions(solution)

Description
displayallsolutions(solution) displays all solutions, including the non-feasible solutions,
associated with a FunctionApproximation.LUTSolution object.

Input Arguments
solution — Solution object from which to display all associated solutions
FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object from which to display all associated solutions.

Examples
Display All Solutions Found During Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Display all solutions found during the approximation process using the displayallsolutions
method.

problem = FunctionApproximation.Problem('sin')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

solution =

 FunctionApproximation.LUTSolution with properties

6 Methods

6-108

 ID: 8
 Feasible: "true"

displayallsolutions(solution)

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.590463e+00
1	464	0	27	16	16	EvenPow2Spacing	7.812500e-03, 7.823061e-03
2	864	1	52	16	16	EvenPow2Spacing	7.812500e-03, 1.978726e-03
3	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.000000e+00
4	560	1	33	16	16	EvenSpacing	7.812500e-03, 4.817965e-03
5	304	0	17	16	16	EvenSpacing	7.812500e-03, 1.887217e-02
6	432	0	25	16	16	EvenSpacing	7.812500e-03, 8.513680e-03
7	496	1	29	16	16	EvenSpacing	7.812500e-03, 6.288182e-03
8	464	1	27	16	16	EvenSpacing	7.812500e-03, 7.324035e-03
9	448	0	26	16	16	EvenSpacing	7.812500e-03, 7.895832e-03
10	704	1	22	16	16	ExplicitValues	7.812500e-03, 7.323370e-03

Best Solution
| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 8 | 464 | 1 | 27 | 16 | 16 | EvenSpacing | 7.812500e-03, 7.324035e-03 |

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution

Functions
totalmemoryusage | solutionfromID | displayfeasiblesolutions

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 displayallsolutions

6-109

displayfeasiblesolutions
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Display all feasible solutions found during function approximation

Syntax
displayfeasiblesolutions(solution)

Description
displayfeasiblesolutions(solution) displays all feasible solutions found during the
approximation process, including the best solution. Feasible solutions are defined as any solutions to
the original FunctionApproximation.Problem object that met the constraints defined in the
associated FunctionApproximation.Options object.

Input Arguments
solution — Solution object from which to display all associated feasible solutions
FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object from which to display all associated feasible
solutions.

Examples
Display All Feasible Solutions Found During Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Display all feasible solutions found during the approximation process using the
displayfeasiblesolutions method.

problem = FunctionApproximation.Problem('sin')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

6 Methods

6-110

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 8
 Feasible: "true"

displayfeasiblesolutions(solution)

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
2	864	1	52	16	16	EvenPow2Spacing	7.812500e-03, 1.978726e-03
4	560	1	33	16	16	EvenSpacing	7.812500e-03, 4.817965e-03
7	496	1	29	16	16	EvenSpacing	7.812500e-03, 6.288182e-03
8	464	1	27	16	16	EvenSpacing	7.812500e-03, 7.324035e-03
10	704	1	22	16	16	ExplicitValues	7.812500e-03, 7.323370e-03

Best Solution
| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 8 | 464 | 1 | 27 | 16 | 16 | EvenSpacing | 7.812500e-03, 7.324035e-03 |

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution

Functions
compare | totalmemoryusage | solutionfromID | displayallsolutions

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 displayfeasiblesolutions

6-111

getErrorValue
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Get the total error of the lookup table approximation

Syntax
memory = getErrorValue(solution)

Description
memory = getErrorValue(solution) returns the total error of the lookup table approximation
specified by solution.

Input Arguments
solution — Solution to get error of
FunctionApproximation.LUTSolution object

Solution to get error of, specified as a FunctionApproximation.LUTSolution object.

Output Arguments
error — Total error of the lookup table approximation
struct

Total error of the lookup table approximation, returned as a struct.

The struct contains two fields. The MaxErrorInSolution field specifies the maximum difference
between the original function or block and the lookup table approximation. The ErrorUpperBound
field displays the maximum error that was acceptable according to the tolerances specified on the
FunctionApproximation.Options object.

Examples

Calculate the Total Error of a Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Calculate the total error of the FunctionApproximation.LUTSolution object using the
getErrorValue method.

problem = FunctionApproximation.Problem('sin')

problem =

6 Methods

6-112

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 8
 Feasible: "true"

error = getErrorValue(solution)

error =

 struct with fields:

 MaxErrorInSolution: 0.0073
 ErrorUpperBound: 0.0078

Version History
Introduced in R2019a

See Also
FunctionApproximation.LUTSolution

Topics
“Approximate Functions with a Direct Lookup Table”
“Optimize Lookup Tables for Memory-Efficiency Programmatically”

 getErrorValue

6-113

replaceWithApproximate
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Replace block with the generated lookup table approximation

Syntax
replaceWithApproximate(solution)

Description
replaceWithApproximate(solution) replaces the simulink block with its lookup table
approximation, generated using the approximate method of the
FunctionApproximation.LUTSolution object.

Input Arguments
solution — Solution to use to replace the source block
FunctionApproximation.LUTSolution object

Solution to replace the source block, specified as a FunctionApproximation.LUTSolution object.

Examples

Replace a Block with an Approximation

This example shows how to approximate a block using a lookup table approximation, replace the
original block with the approximation, and then revert the block back to its original state.

Open the model containing the block to approximate. In this example, replace the tan block with a
lookup table approximation.

open_system('ex_luto_approx')

Create a FunctionApproximation.Problem object specifying what you want to approximate.

problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function')

problem =

 1x1 FunctionApproximation.Problem with properties:

6 Methods

6-114

 FunctionToApproximate: 'ex_luto_approx/Trigonometric Function'
 NumberOfInputs: 1
 InputTypes: "numerictype('double')"
 InputLowerBounds: -1.5083
 InputUpperBounds: 1.5083
 OutputType: "numerictype('double')"
 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. To approximate the block use the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	48	0	2	8	16	EvenSpacing	7.812500e-03, 9.471100e+00
1	800	0	49	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
2	1584	1	98	8	16	EvenSpacing	7.812500e-03, 1.016505e-05
3	1056	0	65	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
4	544	0	33	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
5	416	0	25	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
6	368	0	22	8	16	EvenSpacing	7.812500e-03, 4.534664e+00
7	64	0	2	16	16	EvenSpacing	7.812500e-03, 9.517788e+00
8	768	1	46	16	16	EvenSpacing	7.812500e-03, 2.192364e-04
9	752	1	45	16	16	EvenSpacing	7.812500e-03, 1.220687e-04
10	592	1	35	16	16	EvenSpacing	7.812500e-03, 2.388241e-04
11	576	1	34	16	16	EvenSpacing	7.812500e-03, 6.201875e-05
12	416	0	24	16	16	EvenSpacing	7.812500e-03, 8.559014e-01
13	400	0	23	16	16	EvenSpacing	7.812500e-03, 1.008229e+00
14	496	0	29	16	16	EvenSpacing	7.812500e-03, 2.136958e-01
15	528	1	31	16	16	EvenSpacing	7.812500e-03, 1.018354e-04
16	512	0	30	16	16	EvenSpacing	7.812500e-03, 1.037605e-01
17	288	0	16	16	16	EvenSpacing	7.812500e-03, 2.391904e+00
18	464	0	27	16	16	EvenSpacing	7.812500e-03, 4.491186e-01
19	80	0	2	8	32	EvenSpacing	7.812500e-03, 9.471052e+00
20	48	0	2	8	16	EvenPow2Spacing	7.812500e-03, 1.146582e+01
21	416	0	25	8	16	EvenPow2Spacing	7.812500e-03, 4.497029e-01
22	224	0	13	8	16	EvenPow2Spacing	7.812500e-03, 2.887487e+00
23	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
24	432	0	25	16	16	EvenPow2Spacing	7.812500e-03, 6.957588e-01
25	240	0	13	16	16	EvenPow2Spacing	7.812500e-03, 3.221296e+00
26	80	0	2	8	32	EvenPow2Spacing	7.812500e-03, 1.146600e+01
27	432	0	13	8	32	EvenPow2Spacing	7.812500e-03, 2.887556e+00
28	96	0	2	16	32	EvenPow2Spacing	7.812500e-03, 1.145661e+01
29	448	0	13	16	32	EvenPow2Spacing	7.812500e-03, 3.221186e+00
30	128	0	2	32	32	EvenPow2Spacing	7.812500e-03, 1.145660e+01
31	480	0	13	32	32	EvenPow2Spacing	7.812500e-03, 3.220685e+00
32	96	0	2	32	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
33	464	0	25	32	16	EvenPow2Spacing	7.812500e-03, 6.951333e-01
34	272	0	13	32	16	EvenPow2Spacing	7.812500e-03, 3.220611e+00
35	216	1	9	8	16	ExplicitValues	7.812500e-03, 9.900552e-04
36	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
37	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
38	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
39	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
40	192	1	8	8	16	ExplicitValues	7.812500e-03, 1.383244e-03
41	144	0	2	8	64	EvenSpacing	7.812500e-03, 1.118208e+01
42	144	0	2	8	64	EvenPow2Spacing	7.812500e-03, 1.195947e+01

 replaceWithApproximate

6-115

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 40 | 192 | 1 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.383244e-03 |

solution =

 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 40
 Feasible: "true"

Generate a Simulink™ subsystem containing the lookup table approximation using the approximate
method.

approximate(solution)

Replace the original block with the approximation.

replaceWithApproximate(solution)

You can revert the system back to its original state using the revertToOriginal method.

revertToOriginal(solution)

Version History
Introduced in R2018b

See Also
revertToOriginal | approximate

Topics
“Approximate Functions with a Direct Lookup Table”
“Optimize Lookup Tables for Memory-Efficiency Programmatically”

6 Methods

6-116

revertToOriginal
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Revert the block that was replaced by the approximation back to its original state

Syntax
revertToOriginal(solution)

Description
revertToOriginal(solution) reverts the block that was replaced by a lookup table
approximation back to its original state.

Note You can only revert a block back to its original state within a single MATLAB session.

Input Arguments
solution — Solution approximating the block you want to revert to its original state
FunctionApproximation.LUTSolution object

The solution approximating the block you want to revert to its original state, specified as a
FunctionApproximation.LUTSolution object.

Examples

Replace a Block with an Approximation

This example shows how to approximate a block using a lookup table approximation, replace the
original block with the approximation, and then revert the block back to its original state.

Open the model containing the block to approximate. In this example, replace the tan block with a
lookup table approximation.

open_system('ex_luto_approx')

Create a FunctionApproximation.Problem object specifying what you want to approximate.

problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function')

problem =

 revertToOriginal

6-117

 1x1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: 'ex_luto_approx/Trigonometric Function'
 NumberOfInputs: 1
 InputTypes: "numerictype('double')"
 InputLowerBounds: -1.5083
 InputUpperBounds: 1.5083
 OutputType: "numerictype('double')"
 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. To approximate the block use the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	48	0	2	8	16	EvenSpacing	7.812500e-03, 9.471100e+00
1	800	0	49	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
2	1584	1	98	8	16	EvenSpacing	7.812500e-03, 1.016505e-05
3	1056	0	65	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
4	544	0	33	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
5	416	0	25	8	16	EvenSpacing	7.812500e-03, 4.497029e-01
6	368	0	22	8	16	EvenSpacing	7.812500e-03, 4.534664e+00
7	64	0	2	16	16	EvenSpacing	7.812500e-03, 9.517788e+00
8	768	1	46	16	16	EvenSpacing	7.812500e-03, 2.192364e-04
9	752	1	45	16	16	EvenSpacing	7.812500e-03, 1.220687e-04
10	592	1	35	16	16	EvenSpacing	7.812500e-03, 2.388241e-04
11	576	1	34	16	16	EvenSpacing	7.812500e-03, 6.201875e-05
12	416	0	24	16	16	EvenSpacing	7.812500e-03, 8.559014e-01
13	400	0	23	16	16	EvenSpacing	7.812500e-03, 1.008229e+00
14	496	0	29	16	16	EvenSpacing	7.812500e-03, 2.136958e-01
15	528	1	31	16	16	EvenSpacing	7.812500e-03, 1.018354e-04
16	512	0	30	16	16	EvenSpacing	7.812500e-03, 1.037605e-01
17	288	0	16	16	16	EvenSpacing	7.812500e-03, 2.391904e+00
18	464	0	27	16	16	EvenSpacing	7.812500e-03, 4.491186e-01
19	80	0	2	8	32	EvenSpacing	7.812500e-03, 9.471052e+00
20	48	0	2	8	16	EvenPow2Spacing	7.812500e-03, 1.146582e+01
21	416	0	25	8	16	EvenPow2Spacing	7.812500e-03, 4.497029e-01
22	224	0	13	8	16	EvenPow2Spacing	7.812500e-03, 2.887487e+00
23	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
24	432	0	25	16	16	EvenPow2Spacing	7.812500e-03, 6.957588e-01
25	240	0	13	16	16	EvenPow2Spacing	7.812500e-03, 3.221296e+00
26	80	0	2	8	32	EvenPow2Spacing	7.812500e-03, 1.146600e+01
27	432	0	13	8	32	EvenPow2Spacing	7.812500e-03, 2.887556e+00
28	96	0	2	16	32	EvenPow2Spacing	7.812500e-03, 1.145661e+01
29	448	0	13	16	32	EvenPow2Spacing	7.812500e-03, 3.221186e+00
30	128	0	2	32	32	EvenPow2Spacing	7.812500e-03, 1.145660e+01
31	480	0	13	32	32	EvenPow2Spacing	7.812500e-03, 3.220685e+00
32	96	0	2	32	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
33	464	0	25	32	16	EvenPow2Spacing	7.812500e-03, 6.951333e-01
34	272	0	13	32	16	EvenPow2Spacing	7.812500e-03, 3.220611e+00
35	216	1	9	8	16	ExplicitValues	7.812500e-03, 9.900552e-04
36	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
37	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
38	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
39	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
40	192	1	8	8	16	ExplicitValues	7.812500e-03, 1.383244e-03

6 Methods

6-118

| 41 | 144 | 0 | 2 | 8 | 64 | EvenSpacing | 7.812500e-03, 1.118208e+01 |
| 42 | 144 | 0 | 2 | 8 | 64 | EvenPow2Spacing | 7.812500e-03, 1.195947e+01 |

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 40 | 192 | 1 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.383244e-03 |

solution =

 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 40
 Feasible: "true"

Generate a Simulink™ subsystem containing the lookup table approximation using the approximate
method.

approximate(solution)

Replace the original block with the approximation.

replaceWithApproximate(solution)

You can revert the system back to its original state using the revertToOriginal method.

revertToOriginal(solution)

Version History
Introduced in R2018b

See Also
approximate | replaceWithApproximate

Topics
“Approximate Functions with a Direct Lookup Table”
“Optimize Lookup Tables for Memory-Efficiency Programmatically”

 revertToOriginal

6-119

solutionfromID
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Access a solution found during the approximation process

Syntax
other_solution = solutionfromID(solution,id)

Description
other_solution = solutionfromID(solution,id) returns the solution associated with the
FunctionApproximation.LUTSolution object, solution, with the ID specified by id.

Input Arguments
solution — Solution object
FunctionApproximation.LUTSolution object

The solution object containing the solution you want to explore, specified as a
FunctionApproximation.LUTSolution object.

id — ID of the solution
scalar integer

ID of the solution that you want to explore, specified as a scalar integer.
Data Types: double

Output Arguments
other_solution — FunctionApproximation.LUTSolution specified by id
FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object associated with the specified ID.

Examples
Examine Infeasible Function Approximation Solution

This example shows how to use the solutionfromID method of the
FunctionApproximation.LUTSolution object to examine other approximation solutions.

Create a FunctionApproximation.Problem object defining a math function to approximate. Then
use the solve method to get a FunctionApproximation.LUTSolution object.

problem = FunctionApproximation.Problem('sin')

problem =
 1x1 FunctionApproximation.Problem with properties:

6 Methods

6-120

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1x1 FunctionApproximation.Options]

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.000000e+00
1	784	1	47	16	16	EvenSpacing	7.812500e-03, 5.388912e-03
2	768	1	46	16	16	EvenSpacing	7.812500e-03, 4.534419e-03
3	608	1	36	16	16	EvenSpacing	7.812500e-03, 4.089765e-03
4	592	1	35	16	16	EvenSpacing	7.812500e-03, 4.272461e-03
5	416	1	24	16	16	EvenSpacing	7.812500e-03, 6.201693e-03
6	400	1	23	16	16	EvenSpacing	7.812500e-03, 6.836819e-03
7	224	0	12	16	16	EvenSpacing	7.812500e-03, 4.013411e-02
8	304	0	17	16	16	EvenSpacing	7.812500e-03, 1.887217e-02
9	352	1	20	16	16	EvenSpacing	7.812500e-03, 7.807773e-03
10	320	0	18	16	16	EvenSpacing	7.812500e-03, 1.695679e-02
11	336	1	19	16	16	EvenSpacing	7.812500e-03, 7.810061e-03
12	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.315166e+00
13	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03
14	512	0	16	16	16	ExplicitValues	7.812500e-03, 1.190175e-02
15	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 11 | 336 | 1 | 19 | 16 | 16 | EvenSpacing | 7.812500e-03, 7.810061e-03 |

solution =
 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 11
 Feasible: "true"

Display all feasible solutions found during the approximation process.

displayfeasiblesolutions(solution)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
1	784	1	47	16	16	EvenSpacing	7.812500e-03, 5.388912e-03
2	768	1	46	16	16	EvenSpacing	7.812500e-03, 4.534419e-03
3	608	1	36	16	16	EvenSpacing	7.812500e-03, 4.089765e-03
4	592	1	35	16	16	EvenSpacing	7.812500e-03, 4.272461e-03
5	416	1	24	16	16	EvenSpacing	7.812500e-03, 6.201693e-03
6	400	1	23	16	16	EvenSpacing	7.812500e-03, 6.836819e-03
9	352	1	20	16	16	EvenSpacing	7.812500e-03, 7.807773e-03
11	336	1	19	16	16	EvenSpacing	7.812500e-03, 7.810061e-03
13	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03
15	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03

Best Solution

 solutionfromID

6-121

| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 11 | 336 | 1 | 19 | 16 | 16 | EvenSpacing | 7.812500e-03, 7.810061e-03 |

Solution with ID 5 is not listed as a feasible solution in the table. Explore this solution to see why it is
not feasible.

solution5 = solutionfromID(solution, 5)

solution5 =
 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 5
 Feasible: "true"

Compare the numerical behavior of the solution with ID 5.

compare(solution5)

ans = struct with fields:
 Breakpoints: [51473x1 double]
 Original: [51473x1 double]

6 Methods

6-122

 Approximate: [51473x1 double]

You can see from the plot that the solution does not meet the required tolerances.

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution

Functions
totalmemoryusage | displayfeasiblesolutions | displayallsolutions

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 solutionfromID

6-123

totalmemoryusage
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Calculate total memory used by a lookup table approximation

Syntax
memory = totalmemoryusage(solution,units)

Description
memory = totalmemoryusage(solution,units) returns the total memory used by the lookup
table approximation specified by solution, in the units specified by units.

Input Arguments
solution — Solution to get memory of
FunctionApproximation.LUTSolution object

Solution to get memory of, specified as a FunctionApproximation.LUTSolution object.

units — Units in which to display the total memory used
'bits' (default) | 'bytes' | 'GiB' | 'KiB' | 'MiB'

Units in which to display the total memory used, specified as a character vector.
Data Types: char

Output Arguments
memory — total memory used by a lookup table approximation
scalar

Total memory used by a lookup table approximation, returned as a scalar.

Examples
Calculate the Total Memory Used by a Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Calculate the total memory used by the FunctionApproximation.LUTSolution object using the
totalmemoryusage method.

problem = FunctionApproximation.Problem('sin')

problem =

6 Methods

6-124

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 8
 Feasible: "true"

totalmemoryusage(solution, 'bytes')

ans =

 58

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution

Functions
compare | solutionfromID | displayfeasiblesolutions | displayallsolutions

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 totalmemoryusage

6-125

solve
Class: FunctionApproximation.Problem
Package: FunctionApproximation

Solve for optimized solution to function approximation problem

Syntax
solution = solve(problem)

Description
solution = solve(problem) solves the optimization problem defined by the
FunctionApproximation.Problem object, problem, and returns the optimized result, solution,
as a FunctionApproximation.LUTSolution object.

Input Arguments
problem — Optimization problem
FunctionApproximation.Problem

Optimization problem specified as a FunctionApproximation.Problem object defining the
function or Math Function block to approximate, or the Lookup Table block to optimize, and other
parameters and constraints to use during the optimization process.

Output Arguments
solution — Approximation solution
FunctionApproximation.LUTSolution object

Approximation solution, returned as a FunctionApproximation.LUTSolution object.

Examples
Approximate a Math Function

Create a FunctionApproximation.Problem object, specifying a math function to approximate.

problem = FunctionApproximation.Problem('log')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)log(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,10)"
 InputLowerBounds: 0.6250
 InputUpperBounds: 15.6250

6 Methods

6-126

 OutputType: "numerictype(1,16,13)"
 Options: [1×1 FunctionApproximation.Options]

Use default values for all other options.

Use the solve method to generate an approximation of the function.

solution = solve(problem)

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.178125e+00
1	1984	1	122	16	16	EvenPow2Spacing	7.812500e-03, 4.192649e-03
2	1024	0	62	16	16	EvenPow2Spacing	7.812500e-03, 1.416713e-02
3	1968	1	121	16	16	EvenPow2Spacing	7.812500e-03, 4.192649e-03
4	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.138984e+00
5	416	1	13	16	16	ExplicitValues	7.812500e-03, 7.310789e-03

Best Solution
| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 5 | 416 | 1 | 13 | 16 | 16 | ExplicitValues | 7.812500e-03, 7.310789e-03 |

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 5
 Feasible: "true"

You can then use the approximate method to generate a subsystem containing the lookup table
approximation.

Version History
Introduced in R2018a

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

Functions
approximate | compare

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

 solve

6-127

addSpecification
Class: fxpOptimizationOptions

Specify known data types in a system

Syntax
addSpecification(options,Name,Value)

Description
addSpecification(options,Name,Value) specifies known data types in the model using name-
value pairs. After specifying these known parameters, if you optimize the data types in a system, the
optimization process will not change the specified block parameter data type. Specifications are
applied to the model during evaluation and to the final model. Specifications are not considered
during range collection.

You can use this method in cases where parts of a system are known to always be a certain data type.
For example, if the input to your system comes from an 8-bit sensor.

Input Arguments
options — Associated fxpOptimizationOptions object
fxpOptimizationOptions object

fxpOptimizationOptions object in which to specify a known data type for a system.
Example: opt = fxpOptimizationOptions;

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addSpecification(opt,'BlockParameter',bp,'Variable',var)

BlockParameter — Block parameters
Simulink.Simulation.BlockParameter object | array of
Simulink.Simulation.BlockParameter objects

An element or array of Simulink.Simulation.BlockParameter objects specifying the data types
of block parameters that should not change during the optimization. The value specified must be a
valid data type for the block.

Variable — Variable values
Simulink.Simulation.Variable object | array of Simulink.Simulation.Variable objects

6 Methods

6-128

An element or array of Simulink.Simulation.Variable objects specifying the data types of
variables that should not change during the optimization. You can specify values for
Simulink.Parameter or Simulink.NumericType variables.

Examples

Specify Known Data Types for Block Parameters Before Data Type Optimization

This example shows how to specify known data types for block parameters within your system.

Load the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

To specify that the input to the system you are converting will always be an eight-bit integer, create a
BlockParameter object that specifies the block parameter, and the data type.

bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal','OutDataTypeStr','int8');

The fxpOptimizationOptions object, opt, specifies options to use during data type optimization.
To specify the data type of the input to the system, use the addSpecification method.

opt = fxpOptimizationOptions;
addSpecification(opt,'BlockParameter',bp)

You can view all specifications added to a fxpOptimizationOptions object using the
showSpecifications method.

showSpecifications(opt)

 Index Name BlockPath Value
 _____ ______________ ____________________________________ ______

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'int8'

Specify Known Data Types for Variables Before Data Type Optimization

This example shows how to specify known data types for variables within your system.

Create a Simulink.Parameter object to set the value a parameter in your model.

myParam = Simulink.Parameter(2);
myParamCopy = copy(myParam);

Make a copy of the parameter and set the data type to the desired known value.

myParamCopy = copy(myParam);
myParamCopy.DataType = 'single';

Specify the variable using a Simulink.Simulation.Variable object.

var = Simulink.Simulation.Variable('myParam',myParamCopy);

 addSpecification

6-129

The fxpOptimizationOptions object, opt, specifies options to use during data type optimization.
To specify the data type of the variable, use the addSpecification method.

opt = fxpOptimizationOptions();
addSpecification(opt,'Variable',var);

You can view all specifications added to a fxpOptimizationOptions object using the
showSpecifications method.

showSpecifications(opt)

Version History
Introduced in R2020a

Enforce known data types for variables in a system

You can now use the addSpecification function to specify known data types for variables within
your system in addition to being able to specify known data types for block parameters.

See Also
Classes
Simulink.Simulation.BlockParameter | fxpOptimizationOptions | OptimizationResult
| OptimizationSolution

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”
“Optimize Data Types for an FPGA with DSP Slices”

6 Methods

6-130

addTolerance
Class: fxpOptimizationOptions

Specify numeric tolerance for optimized system

Syntax
addTolerance(options,blockPath,portIndex,tolType,tolValue)
addTolerance(options,blockPath,portIndex,tolType,tolValue,
'LoggingInfo',logInfo)

Description
addTolerance(options,blockPath,portIndex,tolType,tolValue) specifies a numeric
tolerance for the output signal specified by blockPath and portIndex, with the tolerance type
specified by tolType and value specified by tolValue.

addTolerance(options,blockPath,portIndex,tolType,tolValue,
'LoggingInfo',logInfo) specifies a tolerance and options for logging information with
Simulink.SimulationData.LoggingInfo.

Input Arguments
options — Associated fxpOptimizationOptions object
fxpOptimizationOptions

fxpOptimizationOptions object to add a tolerance specification.

blockPath — Path to block for which to add tolerance
block path name

Path to the block to add a tolerance to, specified as a character vector.
Data Types: char | string

portIndex — Index of output port of block
scalar integer

Index of output port of the block specified by blockPath for which you want to specify a tolerance,
specified as a scalar integer.
Data Types: double

tolType — Type of tolerance to specify
'AbsTol' | 'RelTol' | 'TimeTol'

Type of tolerance to add to the port indicated specified as either absolute tolerance, 'AbsTol',
relative tolerance, 'RelTol', or time tolerance, 'TimeTol'.
Data Types: char

 addTolerance

6-131

tolValue — Difference between the original output and the output of the new design
scalar double

Acceptable level of tolerance for the signal specified by blockPath and portIndex.

If tolType is set to 'AbsTol', then tolValue represents the absolute value of the maximum
acceptable difference between the original output, and the output of the new design.

If tolType is set to 'RelTol', then tolValue represents the maximum relative difference,
specified as a percentage, between the original output, and the output of the new design. For
example, a value of 1e-2 indicates a maximum difference of one percent between the original output,
and the output of the new design.

If tolType is set to 'TimeTol', then tolValue defines a time interval, in seconds, in which the
maximum and minimum values define the upper and lower values to compare against.

For more information, see “How the Simulation Data Inspector Compares Data”.
Data Types: double

'LoggingInfo',logInfo — Optional signal logging settings
Simulink.SimulationData.LoggingInfo object

Optional signal logging settings, specified as a name-value pair where logInfo is a
Simulink.SimulationData.LoggingInfo object. Use this input argument to specify a
“Decimation” value to control the amount of data logged by the Simulation Data Inspector.
Example: logInfo = Simulink.SimulationData.LoggingInfo(); logInfo.DecimateData
= true; logInfo.Decimation = 10; addTolerance(options, 'model/
blockPath',2,'AbsTol',1,'LoggingInfo',logInfo);

Examples
Specify required numeric tolerance for optimized system

Load the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

Create a fxpOptimizationOptions object with default property values.

options = fxpOptimizationOptions;

To specify a required numeric tolerance to use during the optimization process, use the
addTolerance method of the fxpOptimizationOptions object. To specify several tolerance
constraints, call the method once per constraint. You can specify either relative, or absolute tolerance
constraints.

addTolerance(options, 'ex_auto_gain_controller/output_signal', 1, 'AbsTol', 5e-2);
addTolerance(options, 'ex_auto_gain_controller/input_signal', 1, 'RelTol', 1e-2);

Use the showTolerances method to display all tolerance constraints added to a specified
fxpOptimizationOptions object.

showTolerances(options)

6 Methods

6-132

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

ans =

 2x4 table

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

Version History
Introduced in R2018a

Specify multiple types of tolerances
Behavior changed in R2021b

You can now specify multiple types of tolerances using the addTolerance function.

addTolerance(options,'model/blockPath',1,'AbsTol',5e-2,'RelTol',1e-2);

Change in syntax for fxpOptimizationOptions.addTolerance
Behavior changed in R2021b

In previous releases, you specified options for logging information with a
Simulink.SimulationData.LoggingInfo object as:

addTolerance(options,blockPath,portIndex,tolType,tolValue,loggingInfo)

Starting in R2021b, you must now specify logging information as a name-value pair:

addTolerance(options,blockPath,portIndex,tolType,tolValue,'LoggingInfo',logInfo)

Log a reduced set of data points

Using the addTolerance method of the fxpOptimizationOptions object, you can now control the
amount of data logged by the Simulation Data Inspector by specifying a decimation factor.

logInfo = Simulink.SimulationData.LoggingInfo();
logInfo.DecimateData = true;
logInfo.Decimation = 10;
addTolerance(options, 'model/blockPath', 2, 'AbsTol', 1, logInfo);

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

 addTolerance

6-133

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

6 Methods

6-134

showSpecifications
Class: fxpOptimizationOptions

Show specifications for a system

Syntax
showSpecifications(options)

Description
showSpecifications(options) displays all parameters that were specified for a system using the
addSpecification method of the fxpOptimizationOptions class. If the options object has no
parameters specified, the showSpecifications method does not display anything.

Input Arguments
options — Optimization options
fxpOptimizationOptions object

Optimization options, specified as an fxpOptimizationOptions object with known data types
specified for a system.

Examples

Specify Known Data Types for Block Parameters Before Data Type Optimization

This example shows how to specify known data types for block parameters within your system.

Load the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

To specify that the input to the system you are converting will always be an eight-bit integer, create a
BlockParameter object that specifies the block parameter, and the data type.

bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal','OutDataTypeStr','int8');

The fxpOptimizationOptions object, opt, specifies options to use during data type optimization.
To specify the data type of the input to the system, use the addSpecification method.

opt = fxpOptimizationOptions;
addSpecification(opt,'BlockParameter',bp)

You can view all specifications added to a fxpOptimizationOptions object using the
showSpecifications method.

showSpecifications(opt)

 showSpecifications

6-135

 Index Name BlockPath Value
 _____ ______________ ____________________________________ ______

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'int8'

Version History
Introduced in R2020a

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

6 Methods

6-136

showTolerances
Class: fxpOptimizationOptions

Show tolerances specified for a system

Syntax
showTolerances(options)

Description
showTolerances(options) displays the absolute and relative tolerances specified for a system
using the addTolerance method of the fxpOptimizationOptions class. If the options object
has no tolerances specified, the showTolerances method does not display anything.

Input Arguments
options — Optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying options and tolerances to use during the data type
optimization process.

Examples
Specify required numeric tolerance for optimized system

Load the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

Create a fxpOptimizationOptions object with default property values.

options = fxpOptimizationOptions;

To specify a required numeric tolerance to use during the optimization process, use the
addTolerance method of the fxpOptimizationOptions object. To specify several tolerance
constraints, call the method once per constraint. You can specify either relative, or absolute tolerance
constraints.

addTolerance(options, 'ex_auto_gain_controller/output_signal', 1, 'AbsTol', 5e-2);
addTolerance(options, 'ex_auto_gain_controller/input_signal', 1, 'RelTol', 1e-2);

Use the showTolerances method to display all tolerance constraints added to a specified
fxpOptimizationOptions object.

showTolerances(options)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 showTolerances

6-137

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

ans =

 2x4 table

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

Version History
Introduced in R2018a

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | explore | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

6 Methods

6-138

replace
Replace all Lookup Table blocks with compressed lookup tables

Syntax
replace(compressionResult)
replace(compressionResult, index)

Description
replace(compressionResult) replaces all n-D Lookup Table blocks in a system with the
compressed versions described in the LUTCompressionResult object compressionResult.

replace(compressionResult, index) replaces the lookup tables at the indices specified by
index.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

 replace

6-139

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'

6 Methods

6-140

 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]
 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Input Arguments
compressionResult — Results of lookup table compression
LUTCompressionResult object

Results of lookup table compression, specified as a LUTCompressionResult object.

index — Index of Lookup Table blocks to replace
scalar | vector

Index of the Lookup Table blocks to replace in the system, specified as an integer-valued scalar or
vector.

The index of each lookup table corresponds to the ID column in the MemoryUsageTable property of
the LUTCompressionResult object.
Data Types: double

Version History
Introduced in R2020a

See Also
Classes
LUTCompressionResult

Functions
FunctionApproximation.compressLookupTables | revert

 replace

6-141

revert
Revert compressed Lookup Table blocks to original versions

Syntax
revert(compressionResult)
revert(compressionResult, index)

Description
revert(compressionResult) reverts the Lookup Table blocks compressed by the
FunctionApproximation.compressLookupTables function back to their original state.

revert(compressionResult, index) reverts the lookup tables at the indices specified by index.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

6 Methods

6-142

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'

 revert

6-143

 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]
 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Input Arguments
compressionResult — Results of lookup table compression
LUTCompressionResult object

Results of lookup table compression, specified as a LUTCompressionResult object.

index — Index of Lookup Table blocks to revert
scalar | vector

Index of the Lookup Table blocks to revert in the system, specified as an integer-valued scalar or
vector.

The index of each lookup table corresponds to the ID column in the MemoryUsageTable property of
the LUTCompressionResult object.
Data Types: double

Version History
Introduced in R2020a

See Also
Classes
LUTCompressionResult

Functions
FunctionApproximation.compressLookupTables | replace

6 Methods

6-144

explore
Class: OptimizationResult

Explore fixed-point implementations found during optimization process

Syntax
explore(result)
explore(result,Name,Value)
solution = explore(result,Name,Value)

Description
explore(result) applies the data types of the best solution found during the optimization process
for the OptimizationResult object specified by result. If you have defined tolerances for logged
signals in your system, explore opens the Simulation Data Inspector with logging data displayed for
further exploration of numeric behavior. By default, the best solution and the first simulation scenario
will be applied on the model and explored.

explore(result,Name,Value) explores result with additional options specified by name-value
pairs.

solution = explore(result,Name,Value) explores result with additional options specified
by name-value pairs and returns an OptimizationSolution object, solution.

Input Arguments
result — OptimizationResult to explore
OptimizationResult object

OptimizationResult object to explore.

If the optimization finds a feasible solution, the vector of OptimizationSolution objects contained
in the result object is sorted by cost, with the lowest cost (most optimal) solution as the first
element of the vector. If the optimization does not find a feasible solution, the vector is sorted by least
violation.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: solution =
explore(result,'SolutionIndex',1,'ScenarioIndex',5,'KeepOriginalModelParamete
rs',false);

SolutionIndex — nth best solution
1 (default) | positive integer

 explore

6-145

nth best solution contained in result to apply to the model, specified as a positive integer. By default,
the best solution is applied.

If optimization finds a feasible result, the best solution is defined as the solution with minimal cost
that meets all behavioral constraints. If optimization finds only infeasible solutions, the best solution
is defined as the least-violating solution.
Example: solution = explore(result,'SolutionIndex',2); returns the second-best
solution.

ScenarioIndex — nth simulation scenario
1 (default) | positive integer

nth simulation scenario contained in result. If no simulation scenarios were used for optimization,
this value is set to 1.
Example: solution = explore(result,'SolutionIndex',2,'ScenarioIndex',5); returns
the second-best solution using the simulation scenario with index 5.

KeepOriginalModelParameters — Whether to maintain original values of model
parameters
false or 0 (default) | true or 1

Whether to maintain original values of model parameters that are altered during the optimization
process, specified as a numeric or logical 1 (true) or 0 (false).

A value of true maintains the original model parameters, but may lead to inconsistencies with the
results returned by fxpopt. For more information, see “Model Configuration Changes Made During
Data Type Optimization”.
Example: solution = explore(result,'KeepOriginalModelParameters',true) maintains
the original values of model parameters.

Output Arguments
solution — OptimizationSolution containing information related to fixed-point
implementation for system
OptimizationSolution object

OptimizationSolution object containing information related to the optimal fixed-point
implementation for the system, including total cost of the implementation and the maximum
difference between the baseline and the solution.

Version History
Introduced in R2018a

Maintain original values of model parameters that are altered by fxpopt

Use the KeepOriginalModelParameters option of explore to maintain the original values of
model configuration parameters during the optimization process.

6 Methods

6-146

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”
“Model Configuration Changes Made During Data Type Optimization”

 explore

6-147

revert
Class: OptimizationResult

Revert system data types and settings changed during optimization to original state

Syntax
revert(result)

Description
revert(result) reverts the changes made during optimization, including system settings and data
types, to their original state.

Input Arguments
result — OptimizationResult to revert
OptimizationResult object

OptimizationResult object to revert to its state before optimization.

Considerations
If the system you are optimizing contains a MATLAB Function block, the optimization replaces the
block with a Variant Subsystem, Variant Model, Variant Assembly Subsystem block in which one
variant contains the original MATLAB Function block and the other variant contains the block with
the optimized, fixed-point data types. When you revert a system containing a MATLAB Function block,
the variant containing the original MATLAB Function block is set as the active variant.

Similarly, if the system you are optimizing contains a Stateflow® chart, the optimization process first
replaces all data types in the chart with Simulink.NumericType objects. When you revert a system
containing a Stateflow chart, the data type of the Simulink.NumericType objects are restored to
their original data type, but the NumericType objects still exist in the model.

In both of these cases, when you revert your system, the model behaves numerically identically to
how it did before the optimization, however, the model is not actually identical to its state before
optimization.

Version History
Introduced in R2020a

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

6 Methods

6-148

Functions
addTolerance | showTolerances | fxpopt

Topics
“Optimize Fixed-Point Data Types for a System”

 revert

6-149

openSimulationManager
Class: OptimizationResult

Inspect simulations run during optimization in Simulation Manager

Syntax
openSimulationManager(result)

Description
openSimulationManager(result) opens Simulation Manager with simulations displayed for the
OptimizationResult object specified by result.

Input Arguments
result — OptimizationResult to inspect
OptimizationResult

OptimizationResult object containing simulations to inspect in Simulation Manager.

Version History
Introduced in R2020b

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | explore | revert | fxpopt

Topics
Simulation Manager
“Optimize Fixed-Point Data Types for a System”

6 Methods

6-150

showContents
Class: OptimizationSolution

Get summary of changes made during data type optimization

Syntax
showContents(Solution)
showContents(Solution, index)

Description
showContents(Solution) returns a summary of the changes made during optimization contained
in the OptimizationSolution object, Solution, including model settings, block parameters, and
data types in the model.

showContents(Solution, index) returns a summary of the changes made during optimization in
the simulation scenario specified by index.

Input Arguments
Solution — Solution to data type optimization
OptimizationSolution object

Solution to data type optimization, specified as an OptimizationSolution object.

index — Index of simulation scenario
scalar integer

Index of simulation scenario, specified as a scalar integer.
Data Types: double

Version History
Introduced in R2020a

See Also
fxpopt | OptimizationSolution

 showContents

6-151

Model Metrics Objects and Object
Functions

7

metric.Engine
Collect metric data on models

Description
A metric.Engine object represents the metric engine that you can execute with the execute
object function to collect metric data on your design. Use the getMetrics function to access the
metric data and return an array of metric.Result objects. Use generateReport to access a
detailed report of metrics collected. Use design cost metric data to estimate the cost of implementing
your design in embedded C code. For additional metrics, see “Model Testing Metrics” (Simulink
Check).

Creation

Syntax
metric_engine = metric.Engine()
metric_engine = metric.Engine(projectPath)

Description

metric_engine = metric.Engine() creates a metric engine object that collects metric data on
the current project.

metric_engine = metric.Engine(projectPath) opens the project projectPath and creates
a metric engine object that collects metric data on the project.

Input Arguments

projectPath — Path of project
character vector | string scalar

Path of project for which to collect metric data, specified as a character vector or string scalar.

Properties
ProjectPath — Project for which engine collects metric data
string scalar

This property is read-only.

Project for which engine collects metric data, returned as a string.

Object Functions
deleteMetrics Delete metric results for model testing artifacts
execute Collect metric data

7 Model Metrics Objects and Object Functions

7-2

generateReport Generate report file that contains metric results
getArtifactErrors Return errors that occurred during metric execution
getAvailableMetricIds Return metric identifiers for available metrics
getMetrics Access metric data for model testing artifacts
openArtifact Open testing artifact traced from metric result
updateArtifacts Update trace information for pending artifact changes in project

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project. This example requires Simulink Check to run.

To open the project, enter this command.

dashboardCCProjectStart

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of all available design cost estimation metrics.

metric_Ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation')

metric_Ids =

 1×2 string array

 "DataSegmentEstimate" "OperatorCount"

To collect results, execute the metric engine.

execute(metric_engine,metric_Ids);

Because the engine was executed without the argument for ArtifactScope, the engine collects
metrics for the db_Controller model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report
'MetricResultsReport.pdf'.

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
 'App','DesignCostEstimation',...
 'Type','pdf',...
 'Location',reportLocation);

 metric.Engine

7-3

The report contains a detailed breakdown of the operator count and data segment estimate metric
results.

Version History
Introduced in R2022a

See Also
metric.Engine | getAvailableMetricIds | execute | generateReport | updateArtifacts |
“Design Cost Model Metrics” | “Model Testing Metrics” (Simulink Check)

Topics
“How to Collect Design Cost Metrics”

7 Model Metrics Objects and Object Functions

7-4

metric.Result
Metric data for specified metric algorithm

Description
A metric.Result object contains the metric data for a specified metric algorithm that traces to the
specified unit.

Creation

Syntax
metric_result = metric.Result

Description

metric_result = metric.Result creates a handle to a metric result object.

Alternatively, if you collect results by executing a metric.Engine object, using the getMetrics
function on the engine object returns the collected metric.Result objects in an array.

Properties
MetricID — Metric identifier
string

Metric identifier for metric algorithm that calculates results, returned as a string.
Example: 'DataSegmentEstimate'

Artifacts — Testing artifacts
structure | array of structures

Testing artifacts for which metric is calculated, returned as a structure or an array of structures. For
each artifact that the metric analyzes, the returned structure contains these fields:

• UUID — Unique identifier of artifact
• Name — Name of artifact
• Type — Type of artifact
• ParentUUID — Unique identifier of file that contains artifact
• ParentName — Name of the file that contains artifact
• ParentType — Type of file that contains artifact

Value — Result value
integer | string | double vector | structure

 metric.Result

7-5

Result value of the metric for specified algorithm and artifacts, returned as an integer, string, double
vector, or structure. For a list of metrics and their result values, see “Design Cost Model Metrics” and
“Model Testing Metrics” (Simulink Check).

Scope — Scope of metric results
structure

Scope of metric results, returned as a structure. The scope is the unit for which the metric collected
results. The structure contains these fields:

• UUID — Unique identifier of unit
• Name — Name of unit
• Type — Type of unit
• ParentUUID — Unique identifier of file that contains unit
• ParentName — Name of file that contains unit
• ParentType — Type of file that contains unit

UserData — User data
string

User data provided by the metric algorithm, returned as a string.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project.

To open the project, enter this command.

dashboardCCProjectStart

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of all available design cost estimation metrics.

metric_Ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation')

metric_Ids =

 1×2 string array

7 Model Metrics Objects and Object Functions

7-6

 "DataSegmentEstimate" "OperatorCount"

To collect results, execute the metric engine.

execute(metric_engine,metric_Ids);

Because the engine was executed without the argument for ArtifactScope, the engine collects
metrics for the db_Controller model reference hierarchy.

Use the getMetrics function to access the high-level design cost metric results.

results_OperatorCount = getMetrics(metric_engine,'OperatorCount');
results_DataSegmentEstimate = getMetrics(metric_engine,'DataSegmentEstimate');

disp(['Unit: ', results_OperatorCount.Artifacts.Name])
disp(['Total Cost: ', num2str(results_OperatorCount.Value)])

disp(['Unit: ', results_DataSegmentEstimate.Artifacts.Name])
disp(['Data Segment Size (bytes): ', num2str(results_DataSegmentEstimate.Value)])

Unit: db_Controller
Total Cost: 334

Unit: db_Controller
Data Segment Size (bytes): 151

The results show that for the db_Controller model, the estimated total cost of the design is 334
and the estimated data segment size is 151 bytes.

Use the generateReport function to access detailed metric results in a pdf report. Name the report
'MetricResultsReport.pdf'.

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
 'App','DesignCostEstimation',...
 'Type','pdf',...
 'Location',reportLocation);

The report contains a detailed breakdown of the operator count and data segment estimate metric
results.

Version History
Introduced in R2022a

 metric.Result

7-7

See Also
metric.Engine | execute | getMetrics | “Design Cost Model Metrics”

Topics
“How to Collect Design Cost Metrics”

7 Model Metrics Objects and Object Functions

7-8

deleteMetrics
Package: metric

Delete metric results for model testing artifacts

Syntax
deleteMetrics(metricEngine,metricIDs)
deleteMetrics(metricEngine,metricIDs,'ArtifactScope',scope)

Description
deleteMetrics(metricEngine,metricIDs) deletes the metric results specified by metricIDs
for the specified metricEngine object. To collect metric results for the metricEngine object, use
the execute function. To access the results, use the generateReport function.

deleteMetrics(metricEngine,metricIDs,'ArtifactScope',scope) deletes the metric
results for the artifacts in the specified scope. For example, you can specify scope to be a single
design unit in your project, such as a Simulink model or an entire model reference hierarchy.

Examples

Delete Metric Data for Specific Metrics

To open the project, enter this command.

dashboardCCProjectStart

Create a metric.Engine object.

metric_engine = metric.Engine();

To collect results for the metric OperatorCount, execute the metric engine.

execute(metric_engine,{'OperatorCount'});

Delete the metric results.

deleteMetrics(metric_engine,'OperatorCount')

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which to delete metric results, specified as a metric.Engine object.

metricIDs — Metric identifiers
character vector | cell array of character vectors

 deleteMetrics

7-9

Metric identifiers for metrics that you want to delete, specified as a character vector or cell array of
character vectors. For a list of design cost metrics, see “Design Cost Model Metrics”. For a list of
model testing metrics and their identifiers, see “Model Testing Metrics” (Simulink Check).
Example: 'DataSegmentEstimate'
Example: {'DataSegmentEstimate', 'Operator Count'}

scope — Path and identifier of project file
cell array of character vectors

Path and identifier of project file for which to delete metric results, specified as a cell array of
character vectors. The first element of the array is the full path to a project file. The second element
is the identifier of the object inside the project file.

For a unit model, the first element is the full path to the model file. The second element is the name of
the block diagram. When you use this argument, the metric engine deletes the results for the
artifacts that trace to specified project file.
Example: {'C:\work\MyModel.slx', 'MyModel'}

Tips
• If design changes are not reflected in the design cost metric results, first use the deleteMetrics

function to delete the metric.Result, then use the execute function to collect metrics.
• Report generation using the generateReport function requires that the metric collection be

executed in the current session. To recollect design cost metrics, first use the deleteMetrics
function to delete the metric.Result, then use the execute function to collect metrics.

Version History
Introduced in R2022a

See Also
metric.Engine | execute | getMetrics | “Design Cost Model Metrics”

Topics
“How to Collect Design Cost Metrics”

7 Model Metrics Objects and Object Functions

7-10

execute
Package: metric

Collect metric data

Syntax
execute(metricEngine,metricIDs)
execute(metricEngine,metricIDs,'ArtifactScope',scope)

Description
execute(metricEngine,metricIDs) collects results in the metricEngine object specified by
metricEngine for the metrics specified by metricIDs.

execute(metricEngine,metricIDs,'ArtifactScope',scope) collects metric results for the
artifacts in the specified scope. For example, you can specify scope to be a single design unit in your
project, such as a Simulink model or an entire model reference hierarchy. A unit is a functional entity
in your software architecture that you can execute and test independently or as part of larger system
tests.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project.

To open the project, enter this command.

dashboardCCProjectStart

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of all available design cost estimation metrics.

metric_Ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation')

metric_Ids =

 execute

7-11

 1×2 string array

 "DataSegmentEstimate" "OperatorCount"

To collect results, execute the metric engine.

execute(metric_engine,metric_Ids);

Because the engine was executed without the argument for ArtifactScope, the engine collects
metrics for the db_Controller model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report
'MetricResultsReport.pdf'.

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
 'App','DesignCostEstimation',...
 'Type','pdf',...
 'Location',reportLocation);

The report contains a detailed breakdown of the operator count and data segment estimate metric
results.

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which to collect metric results, specified as a metric.Engine object.

metricIDs — Metric identifiers
character vector | cell array of character vectors

Metric identifiers for metrics to collect, specified as a character vector or cell array of character
vectors. Collecting results for design cost metrics requires a Fixed-Point Designer license. For a list of
design cost metrics and their identifiers, see “Design Cost Model Metrics”. For additional metrics, see
“Model Testing Metrics” (Simulink Check).
Example: 'DataSegmentEstimate'
Example: {'DataSegmentEstimate', 'OperatorCount'}

scope — Path and identifier of project file
cell array of character vectors

7 Model Metrics Objects and Object Functions

7-12

Path and identifier of project file for which to execute metric results, specified as a cell array of
character vectors. The first entry is the full path to a project file. The second entry is the identifier of
the object inside the project file.

For a unit model, the first entry is the full path to the model file. The second entry is the name of the
block diagram. When you use this argument, the metric engine executes the metrics for the artifacts
that trace to specified project file.
Example: {'C:\work\MyModel.slx', 'MyModel'}

Version History
Introduced in R2022a

See Also
metric.Engine | getAvailableMetricIds | execute | generateReport | updateArtifacts |
“Design Cost Model Metrics” | “Model Testing Metrics” (Simulink Check)

Topics
“How to Collect Design Cost Metrics”

 execute

7-13

generateReport
Package: metric

Generate report file that contains metric results

Syntax
reportFile = generateReport(metricEngine,'App','DesignCostEstimation')
reportFile = generateReport(___ ,Name,Value)

Description
reportFile = generateReport(metricEngine,'App','DesignCostEstimation') creates a
PDF report of the metric results from metricEngine in the root folder of the project. The generated
report shows detailed design cost metric results. Before you generate the report, collect metric
results for the engine by using the execute function. For a syntax to generate a report for
requirements-based model metrics, see generateReport (Simulink Check).

reportFile = generateReport(___ ,Name,Value) specifies options using one or more name-
value arguments. For example, 'Type','html-file' generates an HTML file.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project.

To open the project, enter this command.

dashboardCCProjectStart

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of all available design cost estimation metrics.

metric_Ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation')

metric_Ids =

7 Model Metrics Objects and Object Functions

7-14

 1×2 string array

 "DataSegmentEstimate" "OperatorCount"

To collect results, execute the metric engine.

execute(metric_engine,metric_Ids);

Because the engine was executed without the argument for ArtifactScope, the engine collects
metrics for the db_Controller model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report
'MetricResultsReport.pdf'.

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
 'App','DesignCostEstimation',...
 'Type','pdf',...
 'Location',reportLocation);

The report contains a detailed breakdown of the operator count and data segment estimate metric
results.

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which metric results are collected, specified as a metric.Engine object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','html-file'

LaunchReport — Whether to open generated report automatically
true (default) | false

Whether to open generated report automatically, specified as true or false.
Data Types: logical

 generateReport

7-15

Location — Full file name
character vector | string scalar

Full file name for generated report, specified as a character vector or string scalar. Use the location
to specify the name of the report. By default, the report is named untitled.
Example: 'C:\MyProject\Reports\RBTResults.html'

Type — File type
'pdf' (default) | 'html-file'

File type for generated report, specified as 'pdf' or 'html-file'.
Example: 'html-file'

Output Arguments
reportFile — Full file name of generated report
character vector

Full file name of generated report, returned as a character vector.

Version History
Introduced in R2022a

See Also
metric.Engine | getAvailableMetricIds | execute | generateReport | updateArtifacts |
“Design Cost Model Metrics” | “Model Testing Metrics” (Simulink Check)

Topics
“How to Collect Design Cost Metrics”

7 Model Metrics Objects and Object Functions

7-16

getArtifactErrors
Package: metric

Return errors that occurred during metric execution

Syntax
errors = getArtifactErrors(metricEngine)

Description
errors = getArtifactErrors(metricEngine) returns the errors that occur when the
metricEngine analyzes the Simulink models. The metricEngine object does not collect results for
artifacts that return errors during analysis.

Examples

Check for Artifact Errors After Collecting Metric Results

Collect design cost metrics for artifacts in a project. Then, check if artifacts return errors and were
not analyzed.

To open the project, enter this command.

dashboardCCProjectStart

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to ensure that the artifact information is up to
date.

updateArtifacts(metric_engine)

Collect results for the design cost metrics by using the execute function on the metric.Engine
object.

execute(metric_engine,{'DataSegmentEstimate','OperatorCount'});

Access the errors that occurred during analysis.

getArtifactErrors(metric_engine)

ans =

 0×0 empty struct array with fields:

 Address
 UUID
 ErrorId
 ErrorMessage

 getArtifactErrors

7-17

For this example, the artifacts did not return errors.

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object to check for errors, specified as a metric.Engine object.

Output Arguments
errors — Artifact errors
struct array

Artifact errors that occur when metric.Engine object is executed, returned as an array of
structures that correspond to the errors. The structure for an error contains these fields:

• Address — Address of artifact that returns the error
• UUID — Unique identifier of artifact
• ErrorID — Identifier of error
• ErrorMessage — Description of error

Version History
Introduced in R2022a

See Also
metric.Engine | execute | getMetrics | updateArtifacts | getArtifactErrors | “Design
Cost Model Metrics”

Topics
“How to Collect Design Cost Metrics”

7 Model Metrics Objects and Object Functions

7-18

getAvailableMetricIds
Return metric identifiers for available metrics

Syntax
availableMetricIds = getAvailableMetricIds(metricEngine)
availableMetricIds = getAvailableMetricIds(
metricEngine,'App','DesignCostEstimation')
availableMetricIds = getAvailableMetricIds(___ ,'Installed',
installationStatus)

Description
availableMetricIds = getAvailableMetricIds(metricEngine) returns the metric
identifiers for the metrics available for the specified metricEngine object. By default, the list
includes only the metrics available with the current installation.

availableMetricIds = getAvailableMetricIds(
metricEngine,'App','DesignCostEstimation') returns the metric identifiers for design cost
estimation metrics. For an additional syntax to display metric identifiers for requirements-based
model metrics, see getAvailableMetricIds.

availableMetricIds = getAvailableMetricIds(___ ,'Installed',
installationStatus) returns the metric identifiers filtered by the installation status specified by
installationStatus. For example, specifying installationStatus as false returns the metric
identifier for each available metric, even if the associated MathWorks products are not currently
installed on your machine.

Examples

View Available Metrics

Create a metric.Engine object and view all metrics available with the current installation.

metric_engine = metric.Engine();
ids = getAvailableMetricIds(metric_engine)

ids =

 1×29 string array

 Columns 1 through 6

 "ConditionCoverage…" "ConditionCoverage…" "DataSegmentEstimate" "DecisionCoverageB…" "DecisionCoverageF…" "ExecutionCoverage…"

 Columns 7 through 12

 "ExecutionCoverage…" "MCDCCoverageBreak…" "MCDCCoverageFragm…" "OperatorCount" "RequirementWithTe…" "RequirementWithTe…"

 Columns 13 through 19

 getAvailableMetricIds

7-19

 "RequirementWithTe…" "RequirementsPerTe…" "RequirementsPerTe…" "TestCaseStatus" "TestCaseStatusDis…" "TestCaseStatusPer…" "TestCaseTag"

 Columns 20 through 25

 "TestCaseTagDistri…" "TestCaseType" "TestCaseTypeDistr…" "TestCaseVerificat…" "TestCaseVerificat…" "TestCaseWithRequi…"

 Columns 26 through 29

 "TestCaseWithRequi…" "TestCaseWithRequi…" "TestCasesPerRequi…" "TestCasesPerRequi…"

View Available Design Cost Metrics

Create a metric.Engine object and view all design cost metrics available.

metric_engine = metric.Engine();
ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation',...
 'Installed',false)

ids =

 1×2 string array

 "DataSegmentEstimate" "OperatorCount"

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which to collect metric results, specified as a metric.Engine object.

installationStatus — Filter for metric installation status
1 (true) (default) | 0 (false)

Filter for metric installation status, specified as one of these values:

• 1 (true) — Returns only metric identifiers associated with the MathWorks products currently
installed on your machine.

• 0 (false) — Returns metric identifiers for each available metric, even if the associated
MathWorks products are not currently installed on your machine.

Example: false
Data Types: logical

Output Arguments
availableMetricIds — Metric identifiers
string | string array

7 Model Metrics Objects and Object Functions

7-20

Metric identifiers for available metrics, returned as a string or string array. For a list of design cost
metrics and their identifiers, see “Design Cost Model Metrics”. For a list of requirements-based
model testing metrics and their identifiers, see “Model Testing Metrics” (Simulink Check).
Example: "DataSegmentEstimate"
Example: ["ConditionCoverageBreakdown","DataSegmentEstimate"
"DecisionCoverageBreakdown", "ExecutionCoverageBreakdown",
"MCDCCoverageBreakdown", "OperatorCount",
"RequirementWithTestCaseDistribution", "RequirementWithTestCasePercentage",
"RequirementsPerTestCaseDistribution", "TestCaseStatusDistribution",
"TestCaseStatusPercentage", "TestCaseTagDistribution",
"TestCaseTypeDistribution", "TestCaseVerificationStatusDistribution",
"TestCaseWithRequirementDistribution", "TestCaseWithRequirementPercentage",
"TestCasesPerRequirementDistribution"]

Version History
Introduced in R2022a

See Also
metric.Engine | getAvailableMetricIds | execute | generateReport | updateArtifacts |
“Design Cost Model Metrics” | “Model Testing Metrics” (Simulink Check)

Topics
“How to Collect Design Cost Metrics”

 getAvailableMetricIds

7-21

getMetrics
Package: metric

Access metric data for model testing artifacts

Syntax
results = getMetrics(metricEngine,metricIDs)
results = getMetrics(metricEngine,metricIDs,'ArtifactScope',scope)

Description
results = getMetrics(metricEngine,metricIDs) returns metric results for the specified
metric.Engine object for the metrics specified by metricIDs. To collect metric results for the
metricEngine object, use the execute function. Then, to access the results, use the getMetrics
function.

results = getMetrics(metricEngine,metricIDs,'ArtifactScope',scope) returns metric
results for the artifacts in the specified scope. For example, you can specify scope to be a single
design unit in your project, such as a Simulink model or an entire model reference hierarchy. A unit is
a functional entity in your software architecture that you can execute and test independently or as
part of larger system tests.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project.

To open the project, use this command.

dashboardCCProjectStart

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of all available design cost estimation metrics.

metric_Ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation')

7 Model Metrics Objects and Object Functions

7-22

metric_Ids =

 1×2 string array

 "DataSegmentEstimate" "OperatorCount"

To collect results, execute the metric engine.

execute(metric_engine,metric_Ids);

Because the engine was executed without the argument for ArtifactScope, the engine collects
metrics for the db_Controller model reference hierarchy.

Use the getMetrics function to access the high-level design cost metric results.

results_OpCount = getMetrics(metric_engine,'OperatorCount');
results_DataSegmentEstimate = getMetrics(metric_engine,'DataSegmentEstimate');

disp(['Unit: ', results_OpCount.Artifacts.Name])
disp(['Total Cost: ', num2str(results_OpCount.Value)])

disp(['Unit: ', results_DataSegmentEstimate.Artifacts.Name])
disp(['Data Segment Size (bytes): ', num2str(results_DataSegmentEstimate.Value)])

Unit: db_Controller
Total Cost: 334

Unit: db_Controller
Data Segment Size (bytes): 151

The results show that for the db_Controller model, the estimated total cost of the design is 334
and the estimated data segment size is 151 bytes.

Use the generateReport function to access detailed metric results in a pdf report. Name the report
'MetricResultsReport.pdf'.

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
 'App','DesignCostEstimation',...
 'Type','pdf',...
 'Location',reportLocation);

The report contains a detailed breakdown of the operator count and data segment estimate metric
results.

 getMetrics

7-23

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which to access metric results, specified as a metric.Engine object.

metricIDs — Metric identifiers
character vector | cell array of character vectors

Metric identifiers for metrics to access, specified as a character vector or cell array of character
vectors. For a list of design cost metrics and their identifiers, see “Design Cost Model Metrics”. For a
list of requirements-based model testing metrics and their identifiers, see “Model Testing Metrics”
(Simulink Check).
Example: 'DataSegmentEstimate'
Example: {'DataSegmentEstimate', 'OperatorCount'}

scope — Path and identifier of project file
cell array of character vectors

Path and identifier of project file for which to get metric results, specified as a cell array of character
vectors. The first entry is the full path to a project file. The second entry is the identifier of the object
inside the project file.

For a unit model, the first entry is the full path to the model file. The second entry is the name of the
block diagram.
Example: {'C:\work\MyModel.slx', 'MyModel'}

Output Arguments
results — Metric results
array of metric.Result objects

Metric results, returned as an array of metric.Result objects.

Version History
Introduced in R2022a

7 Model Metrics Objects and Object Functions

7-24

See Also
metric.Engine | getAvailableMetricIds | execute | generateReport | updateArtifacts |
“Design Cost Model Metrics” | “Model Testing Metrics” (Simulink Check)

Topics
“How to Collect Design Cost Metrics”

 getMetrics

7-25

openArtifact
Package: metric

Open testing artifact traced from metric result

Syntax
openArtifact(metricEngine,artifactID)

Description
openArtifact(metricEngine,artifactID) opens the artifact that has the specified identifier
artifactID in the specified metricEngine object. The editor that opens depends on the type of
artifact.

• Simulink models open in the Simulink Editor.
• Requirements open in the Requirements Editor.
• Test cases and test results open in the Test Manager.

Examples

Open Model Artifact from Metric Result

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project. Then, open one of the top-level model in the Simulink editor.

To open the project, enter this command.

dashboardCCProjectStart

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes and ensure
that all test results are tracked.

updateArtifacts(metric_engine)

To collect results for the metric OperatorCount, execute the metric engine.

execute(metric_engine,{'OperatorCount'});

Use the getMetrics function to access the results.

results = getMetrics(metric_engine,'OperatorCount');
disp(['Unit: ', results.Artifacts.Name])
disp(['Total Cost: ', num2str(results.Value)])

Unit: db_Controller
Total Cost: 162

7 Model Metrics Objects and Object Functions

7-26

Open the model artifact in the Simulink Editor by using the artifact identifier.

openArtifact(metric_engine,results(1).Artifacts(1).UUID)

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which metric results are collected, specified as a metric.Engine object.

artifactID — Artifact identifier
character vector | string scalar

Artifact identifier, specified as a character vector or string scalar. In a metric.Result object, the
Artifacts field contains a structure for each artifact to which the result traces. To get the identifier
for an artifact, use the UUID field of the structure for the artifact.

Version History
Introduced in R2022a

See Also
metric.Engine | execute | getMetrics | “Design Cost Model Metrics”

Topics
“How to Collect Design Cost Metrics”

 openArtifact

7-27

updateArtifacts
Update trace information for pending artifact changes in project

Syntax
updateArtifacts(metricEngine)

Description
updateArtifacts(metricEngine) updates the trace information for any pending artifact changes
in the metric data specified by metricEngine to ensure that artifacts are captured by the metrics. If
an artifact has been created, deleted, or modified since the last time you used updateArtifacts,
running updateArtifacts performs traceability analysis and updates the trace information.

Examples

Collect Metric Data for Each Design Unit in Project

Use a metric.Engine object to collect design cost metric data on a model reference hierarchy in a
project.

To open the project, enter this command.

dashboardCCProjectStart

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Create a metric.Engine object.

metric_engine = metric.Engine();

Update the trace information for metric_engine to reflect any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of all available design cost estimation metrics.

metric_Ids = getAvailableMetricIds(metric_engine,...
 'App','DesignCostEstimation')

metric_Ids =

 1×2 string array

 "DataSegmentEstimate" "OperatorCount"

To collect results, execute the metric engine.

execute(metric_engine,metric_Ids);

7 Model Metrics Objects and Object Functions

7-28

Because the engine was executed without the argument for ArtifactScope, the engine collects
metrics for the db_Controller model reference hierarchy.

Use the generateReport function to access detailed metric results in a pdf report. Name the report
'MetricResultsReport.pdf'.

reportLocation = fullfile(pwd,'MetricResultsReport.pdf');
generateReport(metric_engine,...
 'App','DesignCostEstimation',...
 'Type','pdf',...
 'Location',reportLocation);

The report contains a detailed breakdown of the operator count and data segment estimate metric
results.

Input Arguments
metricEngine — Metric engine object
metric.Engine object

Metric engine object for which to collect metric results, specified as a metric.Engine object.

Version History
Introduced in R2022a

See Also
metric.Engine | getAvailableMetricIds | execute | generateReport | “Design Cost Model
Metrics” | “Model Testing Metrics” (Simulink Check)

Topics
“How to Collect Design Cost Metrics”

 updateArtifacts

7-29

Selected Bibliography
[1] Burrus, C.S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler,

Computer-Based Exercises for Signal Processing Using MATLAB, Prentice Hall, Englewood
Cliffs, New Jersey, 1994.

[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second
Edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1990.

[3] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser, John Wiley & Sons,
Inc., New York, 1993.

[4] Hanselmann, H., “Implementation of Digital Controllers — A Survey,” Automatica, Vol. 23, No. 1,
pp. 7-32, 1987.

[5] Jackson, L.B., Digital Filters and Signal Processing, Second Edition, Kluwer Academic Publishers,
Seventh Printing, Norwell, Massachusetts, 1993.

[6] Middleton, R. and G. Goodwin, Digital Control and Estimation — A Unified Approach, Prentice
Hall, Englewood Cliffs, New Jersey. 1990.

[7] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,” Cleve's Corner, The
MathWorks, Inc., 1996. You can find this article at https://www.mathworks.com/
company/newsletters/news_notes/clevescorner/index.html.

[8] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall, Englewood Cliffs, New
Jersey, 1995.

[9] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1987.

A

https://www.mathworks.com/company/newsletters/articles/floating-points-ieee-standard-unifies-arithmetic-model.html
https://www.mathworks.com/company/newsletters/articles/floating-points-ieee-standard-unifies-arithmetic-model.html

	Apps
	Fixed-Point Converter
	Fixed-Point Tool
	Lookup Table Optimizer
	Single Precision Converter
	Parameter Quantization Advisor
	Simulation Data Inspector

	Blocks
	Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition
	Complex Burst Matrix Solve Using Q-less QR Decomposition
	Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
	Complex Burst Matrix Solve Using QR Decomposition
	Complex Burst Q-less QR Decomposition
	Complex Burst Q-less QR Decomposition Whole R Output
	Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output
	Complex Burst QR Decomposition
	Complex Divide HDL Optimized
	Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
	Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
	Complex Partial-Systolic Matrix Solve Using QR Decomposition
	Complex Partial-Systolic Q-less QR Decomposition
	Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
	Complex Partial-Systolic QR Decomposition
	Divide by Constant and Round
	Divide by Constant HDL Optimized
	Euler to NED Transformation HDL Optimized
	Hyperbolic Tangent HDL Optimized
	Modulo by Constant
	Modulo by Constant HDL Optimized
	Normalized Reciprocal HDL Optimized
	Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition
	Real Burst Matrix Solve Using Q-less QR Decomposition
	Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
	Real Burst Q-less QR Decomposition
	Real Burst Matrix Solve Using QR Decomposition
	Real Burst Q-less QR Decomposition Whole R Output
	Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output
	Real Burst QR Decomposition
	Real Divide HDL Optimized
	Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
	Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
	Real Partial-Systolic Matrix Solve Using QR Decomposition
	Real Partial-Systolic Q-less QR Decomposition
	Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
	Real Partial-Systolic QR Decomposition
	Real Reciprocal HDL Optimized

	Properties
	fi Object Properties
	bin
	data
	dec
	double
	fimath
	hex
	int
	NumericType
	oct
	Value

	Functions
	abs
	accumneg
	accumpos
	add
	assignmentquantizer
	atan2
	autofixexp
	bin
	bin2num
	bitand
	bitandreduce
	bitcmp
	bitconcat
	bitget
	bitor
	bitorreduce
	bitreplicate
	bitrol
	bitror
	bitset
	bitshift
	bitsliceget
	bitsll
	bitsra
	bitsrl
	bitxor
	bitxorreduce
	buildInstrumentedMex
	cast
	cast64BitFiToInt
	cast64BitIntToFi
	castFiToInt
	castFiToMATLAB
	castIntToFi
	ceil
	ceilDiv
	clearInstrumentationResults
	coder.approximation
	coder.allowpcode
	coder.ArrayType
	coder.config
	coder.const
	coder.Constant
	coder.EnumType
	coder.extrinsic
	coder.FiType
	coder.FixPtConfig
	coder.ignoreConst
	coder.inline
	coder.load
	coder.newtype
	coder.nullcopy
	coder.PrimitiveType
	coder.resize
	coder.screener
	coder.StructType
	coder.target
	coder.Type
	coderTypeEditor
	coder.typeof
	coder.unroll
	coder.varsize
	colon, :
	complex
	conj
	conv
	convergent
	convertToSingle
	copyobj
	cordicabs
	cordicacos
	cordicangle
	cordicasin
	cordicatan2
	cordiccart2pol
	cordiccexp
	cordiccos
	cordicpol2cart
	cordicrotate
	cordicsin
	cordicsincos
	cordicsqrt
	cordictanh
	cos
	ctranspose
	CustomFloat
	DataTypeWorkflow.findDecoupledSubsystems
	dec
	dec2base
	dec2bin
	dec2hex
	denormalmax
	denormalmin
	divide
	double
	eps
	eq
	errmean
	errpdf
	errvar
	exponentbias
	exponentlength
	exponentmax
	exponentmin
	eye
	fi
	fiaccel
	filter
	fimath
	fipref
	fix
	fixed.extractNumericType
	fixDiv
	fixed.aggregateType
	fixed.backwardSubstitute
	fixed.complexConditionNumberUpperBound
	fixed.complexQlessQRMatrixSolveFixedpointTypes
	fixed.complexQRMatrixSolveFixedpointTypes
	fixed.complexQuantizationNoiseStandardDeviation
	fixed.complexSingularValueLowerBound
	fixed.cordicDivide
	fixed.cordicReciprocal
	fixed.fimathLike
	fixed.forgettingFactor
	fixed.forgettingFactorInverse
	fixed.forwardSubstitute
	fixed.qlessQR
	fixed.qlessQRMatrixSolve
	fixed.qlessqrFixedpointTypes
	fixed.qlessQRUpdate
	fixed.qrAB
	fixed.qrFixedpointTypes
	fixed.qrMatrixSolve
	fixed.Quantizer
	fixed.realConditionNumberUpperBound
	fixed.realQlessQRMatrixSolveFixedpointTypes
	fixed.realQRMatrixSolveFixedpointTypes
	fixed.realQuantizationNoiseStandardDeviation
	fixed.realSingularValueLowerBound
	fixed.singularValueUpperBound
	fixed.svd
	fixpt_instrument_purge
	floor
	floorDiv
	fma
	for
	fractionlength
	fxpopt
	fxptdlg
	ge
	get
	getlsb
	getmsb
	globalfimath
	gt
	half
	hex
	hex2num
	horzcat
	innerprodintbits
	int
	int8
	int16
	int32
	int64
	intmax
	intmin
	isboolean
	isdouble
	isequal
	isequivalent
	isequaln
	isfi
	isfimath
	isfimathlocal
	isfipref
	isfixed
	isfloat
	isnumerictype
	ispropequal
	isquantizer
	isscaleddouble
	isscaledtype
	isscalingbinarypoint
	isscalingslopebias
	isscalingunspecified
	issigned
	issingle
	isslopebiasscaled
	le
	logreport
	lowerbound
	lsb
	lt
	mat2str
	max
	maxlog
	mean
	median
	min
	minlog
	minus
	mod
	modByConstant
	mpower
	mpy
	mrdivide
	mtimes
	ne
	nearest
	nearestDiv
	nextpow2
	nnz
	noperations
	normalizedReciprocal
	noverflows
	num2bin
	num2hex
	num2int
	num2str
	numel
	numerictype
	NumericTypeScope
	nunderflows
	oct
	ones
	plus
	pow10
	pow2
	power
	qr
	quantize
	quantizenumeric
	quantize
	quantizer
	randquant
	range
	rdivide
	realmax
	realmin
	reinterpretcast
	removefimath
	rescale
	reset
	resetglobalfimath
	removeglobalfimathpref
	resetlog
	round
	rsqrt
	savefipref
	sdec
	set
	setfimath
	sfi
	shiftdata
	showfixptsimerrors
	showfixptsimranges
	showInstrumentationResults
	Simulink.sdi.compareRuns
	sin
	sign
	single
	sort
	sqrt
	storedInteger
	storedIntegerToDouble
	stripscaling
	svd
	sub
	subsasgn
	subsref
	sum
	times
	toeplitz
	tostring
	ufi
	uint8
	uint16
	uint32
	uint64
	uminus
	unitquantize
	unitquantizer
	unshiftdata
	upperbound
	vertcat
	wordlength
	zeros

	Classes
	coder.CellType
	coder.ClassType
	coder.mexconfig
	coder.SingleConfig
	DataTypeWorkflow.Converter
	DataTypeWorkflow.ProposalSettings
	DataTypeWorkflow.Result
	DataTypeWorkflow.VerificationResult
	fixed.DataGenerator
	fixed.DataSpecification
	fixed.Interval
	LUTCompressionResult
	FunctionApproximation.LUTMemoryUsageCalculator
	FunctionApproximation.LUTSolution
	FunctionApproximation.Options
	FunctionApproximation.Problem
	fxpOptimizationOptions
	OptimizationResult
	OptimizationSolution

	Methods
	coder.CellType.isHeterogeneous
	coder.CellType.isHomogeneous
	coder.CellType.makeHeterogeneous
	coder.CellType.makeHomogeneous
	coder.FixPtConfig.addApproximation
	coder.FixPtConfig.addDesignRangeSpecification
	coder.FixPtConfig.addFunctionReplacement
	coder.SingleConfig.addFunctionReplacement
	coder.FixPtConfig.clearDesignRangeSpecifications
	coder.FixPtConfig.getDesignRangeSpecification
	coder.FixPtConfig.hasDesignRangeSpecification
	coder.FixPtConfig.removeDesignRangeSpecification
	applyDataTypes
	applySettingsFromRun
	applySettingsFromShortcut
	deriveMinMax
	proposeDataTypes
	results
	proposalIssues
	saturationOverflows
	simulateSystem
	verify
	wrapOverflows
	addTolerance
	clearTolerances
	showTolerances
	convertToSingle
	explore
	getNumDataPointsInfo
	getUniqueValues
	outputAllData
	applyOnRootInport
	contains
	contains
	intersect
	isDegenerate
	isLeftBounded
	isnan
	isRightBounded
	overlaps
	quantize
	setdiff
	union
	unique
	quantize
	FunctionApproximation.compressLookupTables
	FunctionApproximation.LUTMemoryUsageCalculator.lutmemoryusage
	FunctionApproximation.LUTSolution.approximate
	FunctionApproximation.LUTSolution.compare
	FunctionApproximation.LUTSolution.displayallsolutions
	FunctionApproximation.LUTSolution.displayfeasiblesolutions
	FunctionApproximation.LUTSolution.getErrorValue
	FunctionApproximation.LUTSolution.replaceWithApproximate
	FunctionApproximation.LUTSolution.revertToOriginal
	FunctionApproximation.LUTSolution.solutionfromID
	FunctionApproximation.LUTSolution.totalmemoryusage
	FunctionApproximation.Problem.solve
	fxpOptimizationOptions.addSpecification
	fxpOptimizationOptions.addTolerance
	fxpOptimizationOptions.showSpecifications
	fxpOptimizationOptions.showTolerances
	replace
	revert
	OptimizationResult.explore
	OptimizationResult.revert
	OptimizationResult.openSimulationManager
	OptimizationSolution.showContents

	Model Metrics Objects and Object Functions
	metric.Engine
	metric.Result
	deleteMetrics
	execute
	generateReport
	getArtifactErrors
	getAvailableMetricIds
	getMetrics
	openArtifact
	updateArtifacts

	Selected Bibliography

